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Motivation

For representation learning with unlabeled data:

It is a general topic, including semi-supervised learning, self-supervised learning, self-training,
etc.

Empirically with huge success, like the recently widely discussed contrastive self-supervised
learning.

Despite the empirical successes, theoretical progress in understanding how to use unlabeled
data has lagged.
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Notations

Hypothesis/Concept space H (here we do not distinguish the two)

True error: err(h)

Empirical error: êrr(h)
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Uniform Convergence Bounds: Finite Hypothesis

Theorem 1 (Realizable Case)

With probability 1− δ, for any h ∈ H with êrr(h) = 0, we have that the following bound for m
examples:

err(h) ≤
1

m

(
log |H|+ log

1

δ

)
. (1)

Proof: Use union bound.

Theorem 2 (Agnostic Case)

With probability 1− δ, for any h ∈ H, we have that the following bound for m examples:

err(h) ≤ êrr(h) +

√
log |H+ log 2/δ|

2m
. (2)

Proof: Use Hoeffding’s inequality.
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Uniform Convergence Bounds: Infinite Hypothesis

This is not applicable in general, since we have infinite size of the hypothesis complexity. How to
solve this?
We propose the following complexity measures.

Binary Classification Setting
Rademacher Complexity
Growth Function
Shattering and VC-Dimension

More General Setting
Covering numbers
Packing numbers, etc.
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Rademacher Complexity

Definition 3 (Empirical Rademacher complexity)

Let G be a family of functions mapping from Z to [a, b] and S = (z1, . . . zm) a fixed sample of
size m with elements in Z. Then, the empirical Rademacher complexity of G with respect to the
sample S is defined as:

R̂S (G) = Eσ
[

sup
g∈G

1

m

m∑
i=1

σig(zi )
]
, (3)

where σ = (σ1, . . . , σm)T , with σi independent uniform random variable taking values in {±1}.
The random variables σi are called Rademacher variables.

If we write gs as gS = (g(z1), . . . , g(zm))T . Then the empirical Rademacher complexity can be
rewritten as

R̂S (G) = Eσ
[

sup
g∈G

σ · gs
m

]
. (4)

Definition 4 (Rademacher complexity)

Let D be the data distribution. For any integer m ≥ 1, the Rademacher complexity of G is the
expectation of the empirical Rademacher complexity over all samples of size m drawn from D:

Rm(G) = ES∼Dm [R̂S (G)] = ES∼Dm,σ[sup
g∈G

1

m

m∑
i=1

σig(zi )] (5)
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Rademacher Complexity

Theorem 5 (Uniform convergence bounds with Rademacher complexity)

Let G be a family of functions mapping from Z to [0, 1]. Then, for any δ > 0, with probability at
least 1− δ over an i.i.d. sample S of size m, each of the following holds for all g ∈ G:

E[g(z)] ≤
1

m

m∑
i=1

g(zi )︸ ︷︷ ︸
ÊS [g(z)]

+2Rm(G) +

√
log 1/δ

2m
(6)

and

E[g(z)] ≤
1

m

m∑
i=1

g(zi ) + 2R̂S (G) + 3

√
log 1/δ

2m
. (7)
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Rademacher Complexity

Proof sketch:

Define Φ(S) =
∑

g∈G

(
E[g ]− ÊS [g ]

)
.

Use the McDiarmid’s inequality to get Φ(S) ≤ ES [Φ(S)] +
√

log 1/δ
2m

.

By definitions and properties of Rademacher complexity, we can then have

Φ(S) ≤ 2Rm(G) +
√

log 1/δ
2m

.

Use McDiarmid’s Inequality to have Rm(G) ≤ R̂S (G) +
√

log 1/δ
2m

.
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Rademacher Complexity

Lemma 6

Let H be a family of functions taking values in {±1} and let G be a family of loss functions
associated to H for the zero-one loss: G = {(x , y)→ 1h(x) 6=y : h ∈ H}. For any sample
S = ((x1, y1), . . . , (xm, ym)) of elements in X × {±1}, let SX denote its projection over
X : SX = (x1, . . . , xm). Then, the following relation holds between the empirical Rademacher
complexities of G and H:

R̂S (G) =
1

2
R̂SX (H)

Proof sketch:
If in the binary setting, the loss is L(h(x), y) = 1h(x)6=y we have:

R̂S (G) = Eσ
[

sup
g∈G

1

m

m∑
i=1

σi1h(x) 6=y

]
=

1

2
Eσ
[

sup
g∈G

1

m

m∑
i=1

−σih(xi )
]

=
1

2
R̂SX (H).

Note 1: Notice that the lemma implies, by taking the expectation, we have RS (G) = 1
2
RSX (H).

Note 2: R̂S (G) measures how the loss correlates with random noise, and R̂SX (H) measures how
the prediction correlates with random noise (no label here).
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Rademacher Complexity

With Theorem 5 and Lemma 6, we can easily get the following theorem:

Theorem 7 (Uniform convergence bounds with Rademacher complexity - Binary
Classification)

Let H be a family of functions mapping from X to {±1}. Then, for any δ > 0, with probability
at least 1− δ over an i.i.d. sample S of size m, each of the following holds for all f ∈ H:

R(h) ≤ R̂S (h) + Rm(H) +

√
log 1/δ

2m
(8)

and

R(h) ≤ R̂S (h) + R̂S (H) + 3

√
log 1/δ

2m
. (9)

Note: Notice that this bound can be interpreted as

R(h)︸ ︷︷ ︸
true loss

≤ R̂S (h)︸ ︷︷ ︸
empirical loss

+ Rm(H)︸ ︷︷ ︸
model complexity

+

√
log 1/δ

2m︸ ︷︷ ︸
margin

.

Comments: The computation of Rm(H) is equivalent to an empirical risk minimization problem,
which is computationally expensive. In the next sections, we will relate the Rademacher
complexity to combinatorial measures that are easier to compute.
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Growth Function

Definition 8 (Growth function)

The growth function
∏
H : N→ N for a hypothesis set H is defined by:

∀m ∈ N,
∏
H

(m) = max
{x1,...,xm}⊆X

∣∣{(h(x1), . . . , h(xm)
)

: h ∈ H
}∣∣. (10)

Notice 1:
∏
H is the maximum number of distinct ways in which m points can be classified using

hypothesis in H. Thus, the growth function (shattering number) provides another way to
measure the richness of a hypothesis set H.
Notice 2: Unlike Rademacher complexity, this measure does not depend on the distribution, it is
purely combinatorial.
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Growth Function and Rademacher Complexity

Lemma 9 (Massart’s lemma)

Let A ⊆ Rm be a finite set, with r = maxx∈A ‖x‖2, then the following holds:

Eσ
[ 1

m
sup
x∈A

m∑
i=1

σixi
]
≤

r
√

2 log |A|
m

, (11)

where σi are independent uniform random variables taking values in {±1} and x1, . . . , xm are the
components of vector x.

Massart’s lemma relates the Rademacher complexity and growth function.

Corollary 10

Let G be a family of functions taking values in {±1}. Then the following holds:

Rm(G) ≤

√
2 log

∏
G(m)

m
. (12)
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Growth Function and Rademacher Complexity

Corollary 11 (Growth function generalization bound)

R(h) ≤ R̂S (h) +

√
2 log

∏
H(m)

m
+

√
log 1/δ

2m
(13)

Proof sketch: Can be directly obtained from Theorem 7 and Corollary 10. Notice 1: The

computation of growth function may not be always convenient since it requires
∏
H(m), ∀m ≥ 1.

The next section introduces an alternative measure of the complexity of H that is based on a
single scalar instead.
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VC-Dimension and Growth Function

Lemma 12 (Sauer’s lemma)

Let H be a hypothesis with VCdim(H) = d. Then for all m ∈ N, the following inequality holds:

∏
H

(m) ≤
d∑

i=0

(m
i

)
.

Proof sketch: By induction.

Corollary 13

Let H be a hypothesis set with VCdim(H) = d. Then for all m ≥ d,∏
H

(m) ≤
( em

d

)d
= O(md ).

Proof sketch: Use Lemma 12.
This is good because the sum when multiplied out becomes∑d

i=0

(m
i

)
=
∑d

i=0
m·(m−1)...

i!
= O(md ). When we plug this into the learning error limits, we have

log(
∏
H(2m)) = log(O(md )) = O(d log m). And this leads to the following bound with

VC-Dimension.

Shengchao Liu (MILA-UdeM) Representation Learning Theory with Unlabeled Data 2021 April 17 / 61



VC-Dimension

Corollary 14 (VC-dimension generalization bounds)

Let H be a family of functions taking values in {±1} with VC-dimension d. Then, for any δ > 0,
with probability at least 1− δ, the following holds for all h ∈ H:

R(h) ≤ R̂S (h) +

√
2d log em

d

m
+

√
log 1/δ

2m
. (14)

Proof sketch: This can be directly obtained by combining Corollary 11 and Corollary 13.
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A Discriminative Model for Semi-Supervised Learning, JACM’10

Definition 1:
A legal notion of compatibility is a function χ : C ×X → [0, 1] where we (overloading notation)
define χ(f ,D) = Ex∼D [χ(f , x)]. Given a sample S , we define χ(f , S) to be the empirical average

of χ over the sample, i.e., χ(f , S) = 1
|S|
∑|S|

i=1 χ(f , xi ). Here χ is the measure/function for

compatibility.

Definition 2:
Given compatibility notion χ, the incompatibility of f with D is 1− χ(f ,D). We will also call this
its unlabeled error rate, errunl (f ) , 1− χ(f ,D) when χ and D are clear from context. For a
given sample S , we use êrrunl (f ) = 1− χ(f , S) to denote the empirical average over S .

Definition 3:
Given value τ , we define CD,χ(τ) = {f ∈ C : errunl(f ) ≤ τ}. So, i.e., CD,χ(1) = C . Similarly, for
a sample S, we define CS,χ(τ) = {f ∈ C : êrrunl (f ) ≤ τ}.
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Notations

err(f ) = errD(f ) = Prx∼D [f (x) 6= c∗(x)]

d(f1, f2) = dD(f1, d2) = Prx∼D [f1(x) 6= f2(x)]

êrr(f ) = errS (f ) =
1

|S |

|S|∑
i=1

δ[f (xi ) 6= c∗(xi )]

d̂(f , f2) = dS (f1, d2) =
1

|S |

|S|∑
i=1

δ[f1(xi ) 6= f2(xi )].
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Finite Hypothesis Space

Theorem 4. (Finite hypothesis space, realizable unsupervised learning, realizable supervised
learning)
If c∗ ∈ C and errunl (c

∗) = 0, then mu unlabeled examples and ml examples are sufficient to learn
to error ε with probability 1− δ, where

mu =
1

ε
(log |H|+ log

2

δ
), and ml =

1

ε
(log |CD,χ(ε)|+ log

2

δ
).

In particular, with probability at least 1− δ, all f ∈ C with êrr(f ) = 0 and êrrunl (f ) = 0 have
err(f ) ≤ ε.

Theorem 5. (Finite hypothesis space, agnostic unsupervised learning, realizable supervised
learning)
If c∗ ∈ C and errunl (c

∗) = t, then mu unlabeled examples and ml labeled examples are sufficient
to learn to error ε with probability 1− δ, for

mu =
1

2ε2
(log(|H|) + log

4

δ
), and ml =

1

ε
(log |CD,χ(ε)|+ log

2

δ
).

(Typo in the paper.) In particular, with probability at least 1− δ, the f ∈ C that optimizes
êrrunl (f ) subject to êrr(f ) = 0 has err(f ) ≤ ε.

Proof sketch: Both are using standard uniform convergence bounds and the union bound
between supervised and unsupervised part.
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Infinite Hypothesis Space

The main logic is we bound the sample complexity for the unlabeled part using VC-dim, and the
reduced hypothesis space is bounded by the number of splits/partitions, i.e., C [m,D] or C [m, S̄].

Theorem 7. (Infinite hypothesis space, PAC learnable H for unsupervised learning, realizable
supervised learning)
If c∗ ∈ C and errunl (c

∗) = t, then mu unlabeled examples and ml labeled examples are sufficient
to learn to error ε with probability 1− δ, for

mu = O
(VCdim(χ(C))

ε2
log

1

ε
+

1

ε2
log

2

δ

)
and

ml =
2

ε

[
log
(
CD,χ(t + 2ε)[2ml ,D]

)
+ log

4

δ

]
,

(15)

where recall CD,χ(t + 2ε)[2ml ,D] is the expected number of splits of 2ml points drawn from D
using concepts in C of unlabeled error rate ≤ t + 2ε. In particular, with probability at least 1− δ,
the f ∈ C that optimizes êrrunl (f ) subject to êrr(f ) = 0 has err(f ) ≤ ε.
Proof sketch: We can directly obtain this with VC-dim uniform convergence bound.

errunl (c
∗) = t //by assumption

êrrunl (c
∗) ≤ t + ε

êrrunl (h) ≤ êrrunl (c
∗) ≤ t + ε //by optimizing h

errunl (h) ≤ êrrunl (h) ≤ t + 2ε.

Notice 1: We want to highlight the difference between C and χ(C). C is the concept class, and
χ(C) is the set of compatibility functions for each hypothesis in C .
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Infinite Hypothesis Space

Theorem 10. (Infinite hypothesis space, PAC learnable H for unsupervised learning, agnostic
supervised learning)
Let f ∗t = arg minf∈C [err(f )|errunl (f ) ≤ t]. Then an unlabeled sample of size

mu = O
(max[VCdim(χ(C)),VCdim(C)]

ε2
log

1

ε
+

1

ε2
log

2

δ

)
and a labeled sample of size

ml =
8

ε2

[
log
(
CD,χ(t + 2ε)[2ml ,D]

)
+ log

16

δ

]
is sufficient so that with probability ≥ 1− δ, the f ∈ C that optimizes êrr(f ) subject to

êrrunl (f ) ≤ t + ε has err(f ) ≤ err(f ∗t ) + ε+
√

log(4/δ)/(2ml ) ≤ err(f ∗t ) + 2ε.

Interpretation: One can also state Theorem 10 in the form more commonly used in statistical
learning theory: given any number of labeled examples (ml ) and given t > 0, Theorem 10 implies
that with high probability, the function f that optimizes êrr(f ) subject to êrrunl (f ) ≤ t + ε
satisfies

err(f ) ≤ êrr(f ) + εt ≤ err(f ∗t ) + εt +

√
log 4/δ

2ml

where εt =
√

8
ml

log
(
16CD,χ(t + 2ε)[2ml ,D]/δ

)
.
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Short Summary

err(f ) ≤ err(f ∗t ) + εt +

√
log 4/δ

2ml

where εt =
√

8
ml

log
(
16CD,χ(t + 2ε)[2ml ,D]/δ

)
.

This is agnostic of the compatibility function on the unlabeled data.

Yingyu’s paper discuss what compatibility (regression) loss would look like in the
self-supervised learning setting.

Sanjeev’s paper discuss what f ∗t looks like in the contrastive self-supervised learning case.

Kento’s paper discuss a potential drawback of Sanjeev’s paper.
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Notations

labeled data S = {(xi , yi )}
ml
i=1 from a distribution D over the domains X × Y.

X ⊆ Rd is input feature space

Y is the label space

representation function φ = h(x) ∈ Rr , where h ∈ H
predictor y = f (φ) ∈ Y, where f ∈ F
loss function `c (f (h(x)), y) ∈ [0, 1]

unlabeled data U = {x̃i}mu
i=1 from a distribution UX , which can be same or different from the

marginal distribution DX of D.
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Definitions

Definition 1. Given a loss function Lr (h, g ; x) for an input x involving a representation h and a
regularization function g , the regularization loss of h and g on a distribution UX over X is defined
as

Lr (h, g ;UX ) , Ex∼UX
[
Lr (h, g ; x)

]
.

The regularization loss of a representation h on UX is defined as

Lr (h;UX ) , min
g∈G

Lf (h, g ;UX ).

Definition 2. Given τ ∈ [0, 1], the τ -regularization-loss subset of representation hypotheses H is:

HDX ,Lr (τ) , {h ∈ H : Lr (h;DX ) ≤ τ}.
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Sample Complexity Analysis

Same Domain, Realizable, Finite Hypothesis Class.
Theorem 1. Suppose there exist h∗ ∈ H, f ∗ ∈ F , g∗ ∈ G such that Lc (f ∗, h∗;D) = 0 and
Lr (h∗, g∗;DX ) = 0. For any ε0, ε1 ∈ (0, 1/2), a set U of mu unlabeled examples and a set S of
ml labeled examples are sufficient to learn 4o an error ε1 with probability 1− δ, where

mu ≥
1

ε0

[
ln |G|+ ln |H|+ ln

2

δ

]
, ml ≥

1

ε1

[
ln |F|+ ln |HDX ,Lr (ε0)|+ ln

2

δ

]
.

In particular, with probability at least 1− δ, all hypotheses h ∈ H, f ∈ F with Lc (h, f ; S) = 0 and
Lr (h;U) = 0 will have Lc (f , h;D) ≤ ε1.
Proof sketch: Same as before.
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Sample Complexity Analysis

Same Domain, Unrealizable, Infinite Hypothesis Class. Let NH(ε) denote the ε-covering
number of H.
Standard bound. With the size of

m ≥
C

ε2
ln

1

δ
ln ε = O

(
ln

1

δ
ln ε
)

= O
(

log 1
ε

1

δ

)
then we can have P[|Lc (h, f ;D)− Lc (h, f ; S)| ≤ ε] > 1− δ.

Theorem 4. Suppose there exist h∗ ∈ H, f ∗ ∈ F , g∗ ∈ G such that Lc (f ∗, h∗;D) = 0 and
Lr (h∗, g∗;DX ) ≤ εr . For any ε0, ε1 ∈ (0, 1/2), a set U of mu unlabeled examples and a set S of
ml labeled examples are sufficient to learn to an error ε1 with probability 1− δ, where

mu ≥
C

ε2
0

ln
1

δ

[
lnNG

( ε0

4L

)
+ lnNH

( ε0

4L

)]
,

ml ≥
C

ε2
1

ln
1

δ

[
lnNF

( ε1

4L

)
+ lnNHDX ,Lr

(εr +ε0)

( ε1

4L

)]
for some absolute constant C . In particularly, with probability at least 1− δ, the hypothesis
f ∈ F , h ∈ H with Lc (h, f ; S) = 0 and Lr (h, g ;U) ≤ εr + ε0 for some g ∈ G satisfy
Lc (f , h;D) ≤ ε1.
Proof sketch: With the standard bound by covering numbers, the bound can be easily derived.
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Sample Complexity Analysis

Different Domain, Unrealizable, Infinite Hypothesis Class.
Theorem 3. Suppose the unlabeled data U is from a distribution UX different from DX . Suppose
there exist h∗ ∈ H, f ∗ ∈ F , g∗ ∈ G such that Lc (f ∗, h∗;D ≤ εc and Lr (h∗, g∗;UX ) ≤ εr . Then
the same sample complexity bounds as in Theorem 2 hold as follows (replacing DX with UX in
the Equation 7):

mu ≥
C

ε2
0

ln
1

δ

[
lnNG

( ε0

4L

)
+ lnNH

( ε0

4L

)]
,

ml ≥
C

ε2
1

ln
1

δ

[
lnNF

( ε1

4L

)
+ lnNHUX ,Lr (εr +2ε0)

( ε1

4L

)]
.

Proof sketch: Same as Theorem 4, except by replacing DX with UX .
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Discussions of Functional Regularization

When is functional regularization not helpful? The theorems and analysis also provide
implications for cases when the auxiliary self-supervised task may not help the target prediction
task.

1 The regularization may not lead to a significant reduction in the size of hypothesis class.
Namely, it can be too easy to be “compatible” on the self-supervised learning tasks. To
make it useful, we need to get HDX ,Lr (ε0) significantly (exponentially) smaller than the
entire class H.

2 The auxiliary task can fail if the regularization loss threshold may contain no hypothesis with
a small prediction loss.

3 Inability of the optimization to lead to a good solution.

Is uniform convergence suitable for our analysis?

Existing work with failed uniform convergence are for supervised learning without auxiliary
tasks: it is generally believed that the hypothesis class is larger than statistically necessary,
and the optimization has an implicit regularization during training. Thus the uniform
convergence fails to explain the generalization.

In the setting with auxiliary tasks, functional regularization has a regularization effect of
restricting the learning to a smaller subset of the hypothesis space, as will be shown next.

Once with the functional regularization, the regularization effect is more significant than the
implicit ones, thus the generalization can be explained by uniform convergence.

Note. Another story here: explicit regularization (L2 norm, data augmentation, momentum,
functional regularization) has more significant effect than the implicit regularization.
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An Example of Functional Regularization via Auto-encoder

Auto-Encoder as functional regularization

Learning Without Functional Regularization. Let H be the class of linear functions from Rd to
Rr , where r < d/2. F be the class of linear functions over some activations.

φ = hW (x) = Wx , y = fa(φ) =
r∑

i=1

aiσ(φi ), where W ∈ Rr×d , a ∈ Rr

Here σ(t) is an activation function, the rows of W and a have `2 norms bounded by 1. We
consider the MSE prediction loss, i.e., Lc (f , h; x) = ‖y − f (h(x))‖2

2. Without prior knowledge on
data, no functional regularization corresponds to end-to-end training on F ◦ H.

Data Property. Assume data consists of a signal and noise. Let columns of B ∈ Rd×d be
eigenvectors of Σ , E

[
xxT

]
, then the prediction labels are largely determined by the signal in the

first r directions: y =
∑r

i=1 a
∗
i σ(φ∗i ) + ν and φ∗ = BT

1:rx , where a∗ ∈ Rr is a ground-truth
parameter with ‖a∗‖2 ≤ 1, B1:r is the set of first r eigenvectors of Σ, and ν is a small Gaussian
noise.
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An Example of Functional Regularization via Auto-encoder

Learning With Functional Regularization. Then we show that NH
(
ε

4L

)
≥ NDX ,Lr (εr )

(
ε

4L

)
(see

Lemma 6 below) since

HDX ,Lr

(
εr
)

= {hW (x) : W = OBT
1:r , O ∈ Rr×r ,O is orthonormal},

H ⊇ {hW (x) : W = OBT
S , O ∈ Rr×r ,O is orthonormal},

where BS refers to the sub-matrix of columns in B having indices in S. Therefore, the label
sample complexity bound is reduced by C

ε2 ln
(d−r

r

)
, i.e., the error bound is reduced by

C√
ml

ln
(d−r

r

)
when using ml labeled points.

Shengchao Liu (MILA-UdeM) Representation Learning Theory with Unlabeled Data 2021 April 34 / 61



An Example of Functional Regularization via Auto-encoder

Lemma 6 For ε/4L < 1/2,

NH
( ε

4L

)
≥
(d − r

r

)
NHDX ,Lr (εr )

( ε

4L

)
(16)

Proof sketch.

1 We first have HDx ,Lr and HS .

HDX ,Lr

(
εr
)

= {hW (x) : W = OBT
1:r , O ∈ Rr×r ,O is orthonormal},

H ⊇ {hW (x) : W = OBT
S , O ∈ Rr×r ,O is orthonormal},

2 We say that the covering number for HDx ,Lr and HS are the same (with same tau).

3 We prove that HS and H′S are far away.

‖OBT
S − O′BT

S′‖
2
F = trace((OBT

S − O′BT
S′ )

T (OBT
S − O′BT

S′ ))

= ‖BT
S ‖

2
F + ‖BS′‖2

F − trace((O′BT
S′ )

T (OBT
S ))

≥ r + r − (r − 1)− (r − 1) = 2.

For different S ans S ′, they do not overlap, so there are
(d−r

r

)
so many different S , and all

of the corresponding HS do not overlap.

Note that ln
(d−r

r

)
= Θ(r ln(d)) when r is small, and thus the reduction is roughly linear initially

and then grows slower with r .
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A Theoretical Analysis of Contrastive Unsupervised Representation
Learning, ICML’19

Some notations:

X denotes the set of all possible data points.

(x , x+) ∼ Dsim similar data in the form of pairs that come from a distribution Dsim.

(x−1 , x
−
2 , . . . , x

−
k ) ∼ Dneg as k iid negative samples from distribution Dneg .

The goal is to learn the representation function f : X → Rd such that ‖f (·)‖ ≤ R for some
R > 0.

To formalize the notion of semantically similar pairs (x , x+), we introduce the concept of
latent class: let C denote the set of all latent classes. Associated with each class c ∈ C is a
probability distribution Dc over X .

We assume a distribution ρ over the classes that characterizes how these classes occur on
the unlabeled data.

Based on this, we define the semantic similarity and dissimilarity:
Dsim(x, x+) = Ec∼ρDc (x)Dc (x+)

Dneg (x−) = Ec∼ρDc (x−)

Currently empirically works heuristically identify such similar pairs from co-occurring image
or text data.

The supervised labeled dataset for the task T consists of this process: A label c is picked
according to a distribution DT . Then, a sample is drawn from Dc . Together they form a
labeled pair (x , c) with distribution DT (x , c) = Dc (x)DT (c).
Notice that Dc may or mat not relate to ρ, the previous one is on supervised label, while the
latter is the latent class on the unlabeled data.
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Notations

Define classifier g : X → Rk+1 (for k + 1z classes) and loss as `({g(x)y − g(x)y′}y′ 6=y ). We
consider two losses:

hinge loss: `(v) = max{0, 1 + maxi{−vi}} for v ∈ Rk

logistic loss: `(v) = log(1 +
∑

i exp(−vi )) for v ∈ Rk

Notice that here the loss is operated on a vector.
Supervised loss of the classifier g is

Lsup(T , g) = E(x,c)∼DT

[
`({g(x)c − g(x)c′}c′ 6=c )

]
Often we use g(x) = Wf (x), where W ∈ R(k+1)d . In the fine-tuning case, the supervised loss is
to learn W with f fixed:

Lsup(T , f ) = inf
W∈R(k+1)d

Lsup(T ,Wf )
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Definitions

Definition 2.1 (Mean classifier) For a function f and a task T = {c1, . . . , ck+1}, the mean
classifier is Wµ whose cth row is the mean µc of representations of inputs with label c:
µc = Ex∼Dc [f (x)]. We use Lµsup(T , f ) = Lsup(T ,Wµf ) as shorthand for its loss.

Definition 2.2 (Average Supervised Loss) Average loss for a function f on (k + 1)-way task is
defined as

Lsup(f ) = E{ci}k+1
i=1 ∼ρ

k+1

[
Lsup({ci}k+1

i=1 , f )|ci 6= cj
]

The average supervised loss of its mean classifier is

Lsup(f )µ = E{ci}k+1
i=1 ∼ρ

k+1

[
Lµsup({ci}k+1

i=1 , f )|ci 6= cj
]

Definition 2.3 (Unsupervised Loss) The population loss if

Lun(f ) = E
[
`
(
{f (x)T (f (x+)− f (x−i ))}ki=1

)]
and its empirical counterpart with M examples (xj , x

+
j , x
−
j1 , . . . , x

−
jk )Mk=1 from Dsim × Dk

neg is

L̂un(f ) =
1

M

M∑
j=1

`
(
{f (xj )

T (f (x+
j )− f (x−ij ))}ki=1

)
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Binary Classification

Theorem A.3 [Vector-contraction inequality. Corollary 4 in paper A vector-contraction inequality
for Rademacher complexities] Let Z be any set, and S = {zj}Mj=1 ∈ ZM . Let F̃ be a class of

functions f̃ : Z → Rn and h : Rn → R be L-Lipschitz. For all f̃ ∈ F̃ , let gf̃ = h ◦ f̃ . Then

Eσ∼{±1}M
[

sup
f̃∈F̃
〈σ, (gf̃ )|S 〉

]
≤
√

2LEσ∼{±1}nM
[∑
f̃∈F̃

〈σ, f̃|S 〉
]

where f̃|S =
(
f̃t(zj )

)
t∈[n],j∈[M

.

Interpretation: f̃ is like representation function, h is like loss function. This Theorem is

essentially saying that RS ({h ◦ f̃ : f̃ ∈ F̃}) ≤ 2LRS ( ˜̃F) (an informal version).
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Binary Classification

Lemma 4.2 With probability at least 1− δ over the training set S , for all f ∈ F

Lun(f̂ ) ≤ Lun(f ) + GenM

Lemma A.2 Let ` : Rk → R be η-Lipschitz and bounded by B. Then with probability at least

1− δ over the training set S = {(xj , x+
j , x
−
j1 . . . x

−
jk )}Mj=1, for all f ∈ F

Lun(f̂ ) ≤ Lun(f ) +O
(ηR√kRS (F)

M
+ B

√
log 1/δ

M

)
,

where
RS (F) = Eσ∼{±1}(k+2)dM [ sup

f∈F
〈σ, f|S 〉]

and f|S =
(
ft(xj ), ft(x

+
j ), ft(x

−
j1 ), . . . , ft(x

−
jk )
)
j∈[M],t∈[d ]

. Note that for (k + 1)-way classification,

for hinge loss we have η = 1 and B = O(R2), while for logistic loss η = 1 and
B = O(R2 + log k). With k = 1, we get Lemma 4.2.

Proof sketch of Lemma A.2: Start with the uniform convergence bound with Rademacher
complexity and definitions before. One key step is to calculate the bound for the Lipschitz
coefficient.
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Binary Classification

Lemma 4.3 For all f ∈ F
Lµsup(f ) ≤

1

1− τ
(Lun(f )− τ)

Proof.

The key idea of the proof is the use of Jensen’s inequality. Unlike the unsupervised loss which
uses a random point from a class as a classifier, using the mean of the class as the classifier
should only make the loss lower. Let µc = Ex∼Dc f (x) be the mean representation of class c.

Lun(f ) = E(x,x+)∼Dsim

x−∼Dneg

[
`(f (x)T (f (x+)− f (x−)))

]
= E

c+,c−∼ρ2

x∼Dc+

E x+∼Dc+

x−∼D
c−

[
`(f (x)T (f (x+)− f (x−)))

]
≥ Ec+,c−∼ρ2Ex+∼Dc+

[
`(f (x)T (µc+ − µc− ))

]
// Jensen’s Inequality

= (1− τ)Ec+,c−∼ρ2

[
Lµsup({c+, c−}, f )|c+ 6= c−

]
+ τ

= (1− τ)Lµsup(f ) + τ // Def 2.2
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Binary Classification

Theorem 4.1 With probability at least 1− δ, for all f ∈ F

Lµsup(f̂ ) ≤
1

1− τ
(Lun(f )− τ) +

1

1− τ
GenM ,

where

GenM = O
(
R
RS (F)

M
+ R2

√
log 1/δ

M

)
Proof.

The result follows directly by applying Lemma 4.3 for f̂ and followed with Lemma 4.2. First
according to Lemma 4.3, f̂ ∈ F , we have:

Lµsup(f̂ ) ≤
1

1− τ
(Lun(f̂ )− τ)

Then plug in Lemma 4.2, we have

Lµsup(f̂ ) ≤
1

1− τ
(Lun(f )− τ + GenM)

We can say that if F is rich enough and Lun can be made small, then Theorem 4.1 suffices. In
the next section we explain that this may not always be possible unless τ � 1. And we show one
way to alleviate this.
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Price of Negative Sampling: Class Collision

The inherent limitation of contrastive learning: negative samples can be from the same class as
similar pair =⇒ Lun(f ) can be large. Need to understand when Lun can be made small:

Lun(f )− τ = (1− τ)L6=un(f )︸ ︷︷ ︸
c+ 6=c−

need contrastive f

+ τ(L=
un(f )− 1)︸ ︷︷ ︸
c+=c−

need intraclass concentration

L6=un(f ) = E
c+,c−∼ρ2

x,x+∼D2
c+

x−∼D
c−

[
`(f (x)T (f (x+)− f (x−)))|c+ 6= c−

]

L=
un(f ) = E c∼ν

x,x,x−∼D3
c

[
`(f (x)T (f (x+)− f (x−)))

]
≥ Ec∼ν,x∼Dc

[
`(f (x)T (µc − µc ))

]
= 1

We will show next is that the magnitude of L=
un(f ) can be controlled by the intraclass deviation of

f . Let Σ(f , c) be the covariance matrix of f (x) when x ∼ Dc . We define a notion of intraclass
deviation as follows:

s(f ) = Ec∼ν
[√
‖Σ(f , c)‖2Ex∼Dc ‖f (x)‖

]
(17)
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Price of Negative Sampling: Class Collision

Lemma A.1 Let c ∈ C and ` : Rt → R be either the t-way hinge loss or t-way logistic loss, as
defined in Section 2. Let x , x+, x−1 , . . . , x

−
t be iid draws from Dc . For all f ∈ F , let

L=
un,c (f ) = E

x,x+,x−i

[
`
(
{f (x)T (f (x+)− f (x−))}ti=1

)]
Then

L=
un,c (f )− `(0) ≤ c ′t

√
‖Σ(f , c)‖2Ex∼Dc [‖f (x)‖]

Theorem 4.5 With probability at least 1− δ, ∀f ∈ F

Lsup(f̂ ) ≤ Lµsup(f̂ ) ≤ L 6=un(f ) + βs(f ) + ηGenM

where β = c ′ τ
1−τ , η = 1

1−τ and c ′ is a constant.
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Towards Competitive Guarantees

Limitations of contrastive learning.

Inter-class representation not well aligned and distributed.

Intra-class representation not well bounded.

Shengchao Liu (MILA-UdeM) Representation Learning Theory with Unlabeled Data 2021 April 46 / 61



Limitations of contrastive learning

Figure: Figure 1

supervised unsupervised

Figure 1.a
f0(xi ) = (0, 0)
f1(x1) = (1, r)
f1(x2) = (−1, 2r)

1○: Lsup(f0) = 0, Lsup(f1) = 1 2○: Lun(f0) = 1, Lun(f1) = Ω(r2)

Figure 1.b

f0(xi ) = (0, 0)
f1(x1) = (0, 1)
f1(x2) = (0, r)
f1(x3) = (0,−1)
f1(x4) = (0,−r)

3○: Lsup(f0) = 0, Lsup(f1) = 1 4○: Lun(f0) = 1, Lun(f1) = Ω(r2)

Table: Illustrations of two examples in Figure 1.
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Limitations of contrastive learning

First of all, because it’s the binary case (suppose y = {±1}), so the length of v is 1, and the loss
becomes

` = max(0, 1− (g(x)y − g(x)−y ))

2○, for the unsupervised learning on Figure 1.a.

Lun(f0) = 0.5 max(0, 1− f0(x1)T (f0(x1)− f0(x2))

+ 0.5 max(0, 1− f0(x2)T (f0(x2)− f0(x1))

= 0.5 max(0, 1− 0) + 0.5 max(0, 1− 0)

= 1

L=
un(f1) = 0

L 6=un(f1) = 0.5 max(0, 1− f1(x1)T (f1(x1)− f1(x2))

+ 0.5 max(0, 1− f1(x2)T (f1(x2)− f1(x1))

= 0.5 max(0, 1− 〈(1, r), (2,−r))〉+ 0.5 max(0, 1− 〈(−1, 2r), (−2, r)〉

= 0.5 max(0, r2 − 1) + 0.5 max(0,−1− 2r2)

= Ω(r2)
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Limitations of contrastive learning

4○, for the unsupervised learning on Figure 1.b.

Lun(f0) = 0.25 ∗ 4 max(0, 1− (0, 0)T (0, 0))

= 1

L 6=un(f1) = 0.25 max(0, 1− f1(x1)T (0, r + 1)) + 0.25 max(0, 1− f1(x2)T (0, r + 1))

+ 0.25 max(0, 1− f1(x3)T (0,−r − 1)) + 0.25 max(0, 1− f1(x4)T (0,−r − 1))

= 0.5 max(0,−r) + 0.5 max(0, 1− r r − r)

= 0

For L=
un(f1), WLOG, let’s only check the first half of them.

L=
un(f1) =

1

8
max(0, 1− 〈(0, 1), (0, 1− r)〉) +

1

8
max(0, 1− 〈(0, 1), (0, r − 1)〉) + . . .

=
1

8
max(0, r) +

1

8
max(0, r2 − r)

= Ω(r2)
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Limitations of contrastive learning

Figure: Figure 1

supervised unsupervised

Figure 1.a
f0(xi ) = (0, 0)
f1(x1) = (1, r)
f1(x2) = (−1, 2r)

1○: Lsup(f0) = 0, Lsup(f1) = 1 2○: Lun(f0) = 1, Lun(f1) = Ω(r2)

Figure 1.b

f0(xi ) = (0, 0)
f1(x1) = (0, 1)
f1(x2) = (0, r)
f1(x3) = (0,−1)
f1(x4) = (0,−r)

3○: Lsup(f0) = 0, Lsup(f1) = 1 4○: Lun(f0) = 1, Lun(f1) = Ω(r2)

Table: Illustrations of two examples in Figure 1.
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Competitive Bound via Intraclass Concentration

Lemma 5.1 For f ∈ F , if the random variable f (X ), where X ∼ Dc , is σ2-sub-Gaussian in every
direction for every class c and has maximum norm R = maxx∈X ‖f (x)‖, then for all ε > 0,

L6=un(f ) ≤ γLµγ,sup(f ) + ε

where γ = 1 + c ′Rσ
√

log R
ε

and c ′ is some constant.

Corollary 5.1.1 For all ε > 0, with probability at least 1− δ, for all f ∈ F ,

Lµsup(f̂ ) ≤ γ(f )Lµ
γ(f ),sup

(f ) + βs(f ) + ηGenM + ε

where γ(f ) is as defined in Lemma 5.1, β = c ′ τ
1−τ , η = 1

1−τ , and c ′ is a constant.

Proof sketch: This can be obtained directly by combining Theorem 4.5 and Lemma 5.1.
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Some Insights

Another relevant paper we discussed before: [1] Understanding Contrastive Representation Learning through Alignment and
Uniformity on the Hypersphere, ICML’20

Figure: 3 from [1].

The competitive bound needs high-margin mean classifier (well-distributed and well-aligned) and strong/low intraclass
concentration (well-aligned).

The first condition can match with [1].

Yet, the second condition hasn’t attracted enough attention yet.

We will see some more details in the next paper.Shengchao Liu (MILA-UdeM) Representation Learning Theory with Unlabeled Data 2021 April 52 / 61
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1 Motivation

2 Standard Uniform Convergence Bounds

3 Paper: A Discriminative Model for Semi-Supervised Learning, JACM’10

4 Paper: Functional Regularization for Representation Learning: A Unified Theoretical
Perspective, NeurIPS’20

5 Paper: A Theoretical Analysis of Contrastive Unsupervised Representation Learning, ICML’19

6 Paper: Understanding Negative Samples in Instance Discriminative Self-supervised
Representation Learning, ArXiv’21

7 Conclusions and Future Directions
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Definitions

Definition 1 (Data Generation Process).

1 Draw latent classes: c, {c−k }
K
k=1 ∼ ρ

K+1

2 Draw input example: x ∼ Dc

3 Draw data augmentations: a, a′ ∼ A2

4 Apply data augmentations: a(x), a′(x)

5 Draw negative examples: {x−k }
K
k=1 ∼ D

K

c−
k

6 Draw data augmentations: {a−k }
K
k=1 ∼ A

K

7 Apply data augmentations: {a−k (x−k )}Kk=1

Definition 2 (Self-supervised Loss). Expected self-supervised loss is defined as

Linfo(f ) , E
c,{c−

k
}K
k=1
∼ρK+1

E
x∼Dc

a,a′∼A2

E
{x−

k
∼D

c
−
k

}Kk=1

{a−
k
}Kk=1∼A

K

`info(z,Z)

, E
c,{c−

k
}K
k=1
∼ρK+1

E
x∼Dc

a,a′∼A2

E
{x−

k
∼D

c
−
k

}Kk=1

{a−
k
}Kk=1∼A

K

− log
exp(z · z/t)∑

zk∈Z exp(z · zk/t)
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Definitions

Definition 3 (Mean Classifier’s Supervised Loss).

Lµsup(f̂ ) , E
x,y∼D
a∼A

− ln
exp

(
f̂ (a(x)) · µy

)∑
j∈Y exp

(
f̂ (a(x)) · µj

)
Definition 4 (Mean Classifier’s Supervised Sub-class Loss).

Lµsub(f̂ ,Ysub) , E
x,y∼Dsub

a∼A

`µsub(f̂ (a(x)), y ,Ysub)

, E
x,y∼Dsub

a∼A

− ln
exp

(
f̂ (a(x)) · µy

)∑
j∈Ysub exp

(
f̂ (a(x)) · µj

)
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Theoretical Analysis by using CURL (Review of Arora’s paper)

Step 1. Introduce a lower bound We derive a lower bound of unsupervised loss Linfo(f ).

Linfo(f ) ≥ E
c,{c−

k
}Kk=1∼ρ

K+1

x∼Dc
a∼A

{x−
k
∼D

c
−
k

}Kk=1

`info
(
z, {µ(x), µ(x−1 ), . . . , µ(x−K )}

)

≥ E
c,{c−

k
}Kk=1∼ρ

K+1

x∼Dc
a∼A

`info
(
z, {µ(x), µ

c−1
, . . . , µ

c−
K
}
)

≥ E
c,{c−

k
}Kk=1∼ρ

K+1

x∼Dc
a∼A

`info
(
z, {µc , µc−1

, . . . , µ
c−
K
}
)

+ d(f ), (7)

where µ(x) = Ea∼Af (a(x)) and d(f ) = 1
t
Ec∼ρ[−Ex∼Dc ‖µ(x)‖2

2].

Step 2. Decomposition into the averaged sub-class loss Follow Arora’s paper, we introduce
collision probability: τK = P(Col(c, {c−k }

K
k=1) 6= 0), where Col(c, {c−k }

K
k=1 =

∑K
k=1 1

c=c−
k

. We

omit the arguments of Col for simplicity: let Csub = Csub({c, c−1 , . . . , c
−
K }) be a function to

remove duplicated latent classes given sampled latent classes.
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Theoretical Analysis by using CURL (Review of Arora’s paper)

Proposition 6 (CURL Lower Bound of Self-supervised Loss). For all f ,

Linfo(f ) ≥ E
c,{c−

k
}Kk=1∼ρ

K+1

x∼Dc
a∼A

`info
(
z, {µc , µc−1

, . . . , µ
c−
K
}
)

+ d(f )

≥ (1− τK ) E
c,{c−

k
}K
k=1
∼ρK+1

[Lµsub(f ,Csub)︸ ︷︷ ︸
sub-class loss

|Col = 0]

+ τK E
c,{c−

k
}K
k=1
∼ρK+1

[ln(Col + 1)︸ ︷︷ ︸
collision

|Col 6= 0] + d(f ).
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Limitations of CURL Lower Bound

Proposition 6 (CURL Lower Bound of Self-supervised Loss). For all f ,

Linfo(f ) ≥ E
c,{c−

k
}Kk=1∼ρ

K+1

x∼Dc
a∼A

`info
(
z, {µc , µc−1

, . . . , µ
c−
K
}
)

+ d(f )

≥ (1− τK ) E
c,{c−

k
}K
k=1
∼ρK+1

[Lµsub(f ,Csub)︸ ︷︷ ︸
sub-class loss

|Col = 0]

+ τK E
c,{c−

k
}K
k=1
∼ρK+1

[ln(Col + 1)︸ ︷︷ ︸
collision

|Col 6= 0] + d(f ).

We can easily observe that the lower bound converges to the collision term by increasing K since
the collision probability τK converges to 1. As a result, the sub-class loss rarely contributes to the
lower bound.
For example in CIFAR-10, the number of supervised classes is 10, and let’s assume the latent
classes are the same as the supervised classes. Then K = 32 means we have K = 32 i.i.d. draws
for unsupervised/self-supervised learning. When K = 32,

(1− τK=32) =
9

10

32

≈ 0.034, τK=32 ≈ 0.967,

i.e., the only 3.4% training examples contribute to the sub-class loss, the others fall into the
collision term. In Arora’s paper, it argues that large negative samples degrade performance.
However, empirically it’s not the case, where larger K can be better.
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Proposed Lower Bound

Definition 7 (Probability to Draw All Latent Classes). Assume that ρ is a uniform distribution
over latent classes C . The probability such that drawn K latent classes from ρ contain all latent
classes is defined as

vk ,
K∑

n=1

|C |−1∑
m=0

(|C | − 1

m

)
(−1)m

(
1−

m

|C |

)n−1
,

where the first summation is a probability such that n drawn latent samples contain all latent
classes.
Proof sketch. Classic combinatorial problems.
Theorem 8 (Lower Bound of Self-supervised Loss). For all f ,

Linfo(f ) ≥
1

2

{
vK+1 E

c,{c−
k
}K
k=1
∼ρK+1

[Lµsub(f ,C)︸ ︷︷ ︸
sup loss

|Csub = C ]

+ (1− vK+1) E
c,{c−

k
}K
k=1
∼ρK+1

[Lµsub(f ,Csub)︸ ︷︷ ︸
sub-class loss

|Csub 6= C ]

+ E
c,{c−

k
}K
k=1
∼ρK+1

ln(Col + 1)︸ ︷︷ ︸
collision

}
+ d(f ).

Proof sketch. Based on definition and Eq (7).
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Conclusions and Future Directions

Conclusions:

We discuss two general frameworks for theoretical analysis on the effect of how unlabeled
training can help supervised learning.

By taking the unlabeled training as a functional regularization to reduce the hypothesis space to be
exponentially smaller.
By introducing the notion of mean-class classifier learned from the contrastive self-supervised
learning.

Future Directions:

Finer-grained analysis, like the effect of different transformations.

Another recent research direction in non-contrastive self-supervised learning: BYOL and
SimSiam.

Ongoing project to illustrate how to generalize this to the standard supervised learning with MLE.

Besides, some recent work have extended SimSiam to GNN:
Paper: Bootstrap Representation Learning on Graphs
Paper: SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling
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