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Abstract. Recently, there have been a number of proposals for lan-
guages for expressing web service constraints and capabilities, with WS-
Policy and WSPL leading the way. The proposed languages, although
relatively inexpressive, suffer from a lack of formal semantics. In this
paper, we provide a mapping of WS-Policy to the description logic frag-
ment species of the Web Ontology Language (OWL-DL), and describe
how standard OWL-DL reasoners can be used to check policy confor-
mance and perform an array of policy analysis tasks. OWL-DL is much
more expressive than WS-Policy and thus provides a framework for ex-
ploring richer policy languages.

1 Introduction

To provide for a robust development and operational environment, web services
are described using machine-readable metadata. This metadata serves several
purposes, one of them being describing the capabilities and requirements of a
service – often called the service policy. Recently, there have been many different
web service policy language proposals, all of them describing languages with
varying degrees of expressivity and complexity [17, 4, 1]. However, with most
current proposals it is difficult to determine their expressivity and computational
properties as most lack formal semantics. One characteristic of the proposed
languages is that they involve policy assertions and combinations of assertions.
For example, a policy might assert that a particular service requires some form
of reliable messaging or security, or it may require both reliable messaging and
security. Several industrial proposals (e.g., WS-Policy [17] and Features and
Properties [4]) appear to restrict them to a kind of propositional logic with policy
assertions being atomic propositions and the combinations being conjunction and
disjunction. By mapping the policy language constructs into a logic (e.g., some
variant of first order logic) we can acquire a clear semantics for the languages,
as well as a good sense of the computational aspects.

If we can map the policy languages into a standardized logic, we can benefit
from the tools and general expertise one expects to come with a reasonably
popular standard. By mapping two policy languages into the same background
formalism, we will be able to provide some measure of interoperability between
policies written in distinct languages. If we are smart in our mapping, we should
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also be able use pre-existing reasoners for the standardized logic to do policy
processing.

Our language of choice is the Web Ontology Language, OWL [2], and the
Resource Description Framework, RDF [11]. Both RDF and OWL are strict
subsets of first order logic, with the subspecies OWL-DL being a very expressive
yet decidable subset. OWL-DL builds on the rich tradition of description logics
where the tradeoff between computational complexity and logical expressivity
has been precisely and extensively mapped out and practical, reasonably scalable
reasoning algorithms and systems have been developed.

In this paper, we have translated one of the policy languages, WS-Policy,
to OWL-DL. WS-Policy is being developed by IBM, Microsoft, BEA, and other
major web services vendors and is generally considered to be the policy language
with the most momentum. Our approach maps policies to OWL-DL classes. With
this, we are able to use our OWL-DL reasoner, Pellet [15] as a policy processor
with analysis services that go far beyond what is usually offered. We also tackle
another policy-related proposal, Features and Properties, and describe how its
boolean predicates can also be translated to OWL-DL. In our evaluation section,
we demonstrate how generic OWL-DL reasoners can easily handle processing
moderately sized policies.

2 WS-Policy Overview

WS-Policy provides a general purpose model and syntax to describe the policies
of a Web service. It specifies a base set of constructs that can be used and
extended by other Web service specifications to describe a broad range of service
requirements and capabilities. WS-Policy’s scope is limited to allowing endpoints
to specify requirements and capabilities needed for establishing a connection. Its
goal is not be used as a language for expressing more complex, application-
specific policies that take effect after the connection is established.

For this purpose, WS-Policy introduces a simple and extensible grammar
for expressing policies and a processing model to interpret them. A policy, as
defined in the specification is composed from a combination of assertions and
alternatives.

An assertion is the basic, atomic unit of a policy. For example, an assertion
could declare that the message should be encrypted. The actual definitions and
meaning of the assertions are domain-dependent and not defined in WS-Policy.
An assertion is defined by a unique Qualified Name, and can be a simple string
or a complex object with many sub elements and attributes. A set of assertions
can be termed an alternative.

A policy is built up using assertions and nested combinations of the operators
wsp:All, wsp:ExactlyOne, and the attribute wsp:Optional. This policy syntax
is used to describe acceptable combinations of assertions to form a complete set
of instructions to the policy processing infrastruction, for a given Web service
invocation.
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2.1 Mapping WS-Policy Operators to OWL

In this section, we describe our mapping of the WS-Policy constructs from a
normal form policy expression into OWL expressions. A policy in a normal form
is a straightforward XML Infoset representation, enumerating each of its alterna-
tives that in turn enumerate each of its assertions. Following is a schema outline
for the normal form of a policy expression:

<wsp: Policy>
<wsp:ExactlyOne>

[ <wsp:All> [<Assertion> </Assertion>]* </wsp:All> ]*
</wsp:ExactlyOne>

</wsp:Policy>

Listing 1. Normal form of a policy expression

Policy expressions can also be represented in more compact forms, using ad-
ditional operators such as wsp:Optional, however as shown in [17] the policy ex-
pressions can all be expanded to normal form. Therefore we only provide a map-
ping of the constructs used in a normal form policy expression: wsp:ExactlyOne
and wsp:All.

First, we map policy assertions directly into OWL-DL atomic classes (which
correspond to atomic propositions). Though WS-Policy assertions often have
some discernible substructure, it is not key to their logical status in WS-Policy.
Or rather, that substructure is idiosyncratic to the assertion set, rather than
being a feature of the background formalism. So a general WS-Policy engine
must be adapted to deal with their structure, if it is to do so. The WS-Policy
specification asserts: ”Assertions indicate domain-specific (e.g., security, trans-
actions) semantics and are expected to be defined in separate, domain-specific
specifications.”

It seems unfortunate that each domain-specific specification comes with its
own domain specific syntax. If we are to capture the semantics of each assertion
language, we must separately map each assertion language into OWL. We do
provide a general strategy for mapping WS-Policy assertions in the next section.

Mapping wsp:All to an OWL construct is straightforward because wsp:All
means that all of the policy assertions enclosed by this operator have to be
satisfied in order for communication to be initiated between the endpoints. Thus,
it is a logical conjunction and can be represented as an OWL intersection. Each
of the members of the intersection is a policy assertion, and the resulting class
expression is a custom-made policy class that expresses the same semantics as
the WS-Policy one.

Handling wsp:ExactlyOne might be trickier, depending on the interpretation
of the operator. There are two possible interpretations:

– wsp:ExactlyOne means that a policy is supported by a requester if and
only if the requester supports at least one of the alternatives in the policy.
In the previous version of WS-Policy there was a wsp:OneOrMore construct
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capturing this meaning. In such case, the wsp:ExactlyOne is an inclusive
OR , and can be mapped using owl:unionOf.

– wsp:ExactlyOne means that only one, not more, of the alternatives should be
supported in order for the requester to support the policy. This is supported
by [17], where it is stated that although policy alternatives are meant to be
mutually exclusive, it cannot be decided in general whether or not more than
one alternative can be supported at the same time. Our translation covers
this more complicated case.

Wsp:ExactlyOne can be translated to OWL in the following way: for n differ-
ent policy assertions, expressed as OWL classes themselves, wsp:ExactlyOne is
the class expression consisting of the members of each separate policy class that
do not also belong to another policy class. In OWL terms, it is the union of all
of the classes with the complement of their pair-wise intersections. Because of
the pair-wise intersections there is a quadratic increase in the size of the OWL
construct that is used as a mapping for wsp:ExactlyOne.

WS-Policy Construct OWL Expression

Wsp:All (policies A and B) owl:intersectionOf(A B)

Wsp:ExactlyOne intersectionOf(
(policies A and B) complementOf(intersectionOf(A B))

unionOf(A B)
)

Table 1. Mapping of WS-Policy Constructs to OWL

To more compactly express complex policies, WS-Policy allows nesting of
operators. To convert a policy from a compact to a normal form, the proper-
ties of wsp:ExactlyOne and wsp:All can be used. If we are to show that our
translation correctly captures the meaning of wsp:ExactlyOne and wsp:All,
we need to prove that the mappings from Table 1. have the same properties
as the WS-Policy operators. wsp:ExactlyOne and wsp:All have the following
properties: commutativity, associativity, idempotency and distributivity. It can
be easily shown that our mappings, which are essentially a logical conjunction
and explicit disjunction, also satisfy these properties.

2.2 Mapping Policy Assertions to OWL

In this section we provide a mapping for the building blocks of a policy ex-
pression, the policy assertions. Our proposal for mapping assertions is first
to create a base class for every general policy assertion, e.g., wsp:Language,
wsp:TextEncoding,wsse:BinarySecurityToken would be mapped to OWL classes
BaseLanguage, BaseTextEncoding, BaseBinarySecurityToken. A WS-Policy
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assertion in normal form consists of attributes and elements. We describe how
these are handled separately:

– for attributes, we create a datatype property representing that attribute
and use the owl:hasValue restriction on that property to create a new class
corresponding to the assertion.

– for elements, we create separate classes for all of the elements contained in
the policy assertion. Then, the specific assertion class is created by placing
owl:allValuesFrom restrictions on properties that relate the base assertion
class with the generated classes for the elements.

In order to illustrate the approach, consider the following assertion:

<wsse:Integrity wsp:Preference="100">
<wsse:Algorithm Type="wsse:AlgCanonicalization"

URI="http://www.w3.org/Signature/xml-exc-c14n"/>
</wsse:Integrity>

The translation of this assertion would produce two classes, Integrity1 and
Algorithm1, shown below:

Integrity1 ≡ ((∀ hasAlgorithm. Algorithm1) ∩ (=1 hasAlgorithm.Algorithm1) ∩
(∃hasPreference.100) ∩ BaseIntegrity)

Algorithm1 ≡ ((=1 hasType.{”wsse:AlgCanonicalization”}) ∩
(=1 hasURI.{”http://www.w3.org/Signature/xml-exc-c14n”}) ∩
BaseAlgorithm)
Table 2. Translation of Example Policy Assertion

Having this information in hand, we developed an XSL script3 that takes a
WS-Policy expression in normal form and produces valid OWL-DL. For demon-
strative purposes, we translated a subset of WS-PolicyAssertions using the ap-
proach specified above.

2.3 WS-Policy Merge and Intersection

In this section, we discuss the possibility of expressing Merge and Intersection.
Merge is the process of combining sub-policies together to form a single policy.

This operation is needed because a policy might be specified in a distributed
way, having its fragments defined in separate files. It is necessary to combine all
these policy fragments together to form a single merged policy which could be
processed further.
3 http://www.mindswap.org/2005/services-policies/wsp2owl.xsl
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Merge works on policies already converted to normal form. The merged policy
is a cartesian product of the alternatives in the first policy and the alternatives in
the second policy. There is a straightforward way of doing the Merge operation
in OWL-DL. First, we translate each of the input policies into OWL-DL as
described above. Then, the merged policy is simply the intersection of the input
policies. Thus, Merge also maps cleanly onto OWL-DL. An outline of the proof
is shown in Appendix 1.

The goal of WS-Policy is to allow endpoints to specify requirements for start-
ing a web service interaction. To achieve this goal, the Intersection operation
compares two Web services policies for common alternatives. The interaction is
possible only when both of the endpoints agree on at least one policy alternative.

Like in Merge, the process of coming up with an intersection is carried out in a
cross product fashion, comparing each alternative from the first policy with every
alterantive from the other one. However, in the case of Intersection, if the two
alternatives that are being combined do not agree on the same vocabulary, then
they combined alternative is not added to the new policy. A vocabulary of an
alternative is simply defined as the set of QNames of the assertions in that
alternative.

Intersection cannot be mapped into a single OWL construct, however using
our OWL mappings of the policy assertions it is not difficult to rule out the
incompatible alternatives. If the policy assertions are mapped to classes, then to
check whether two alternatives are equal, we need to see whether the assertions
in the two alternatives are derived from the same base clases. Specifically, evey
assertion in the first alternative needs to be derived from the same base class with
some assertions from the second alternative, and vice-versa, for the alternatives
to be compatible.

3 Policy Processing

One of our arguments for expressing policies using OWL was the ability to reason
about policy containment - whether the requirements for supporting one policy
are a subset of the requirements for another. That would allow us to be more
flexible in determining whether a particular requestor supports a policy, in the
cases where the requestor supports a superset of the requirements established
by the policy.

In general, we get the following inferences out of the box:

1. policy inclusion ( if x meets policy A then it also meets policy B; a.k.a., A
rdfs:subClassOf B);

2. policy equivalence (A owl:equivalentTo B);
3. policy incompatibility (if x meets policy A then it cannot meet policy B;

a.k.a, A owl:disjointWith B);
4. policy incoherence (nothing can meet policy A; a.k.a., A is unsatisfiable)
5. policy conformance (x meets policy A; a.k.a, x rdf:type A)
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One futher reasoning service supported by Pellet, and integrated with Swoop
[10], is explanations for inconsistencies [14], which can be used to help debug
policy incompatibility, incoherence, and the like. As we add further explanation
capability to our systems, this debugging power will grow.

Thus we see that with a fairly simple mapping, we can use an off the shelf
OWL reasoner as a policy engine and analysis tool, and an off-the-shelf OWL
editor as a policy development and integration environment. OWL editors can
also be used to develop domain specific assertion languages (essentially, domain
Ontologies) with a uniform syntax and well specified semantics. We can also
experiment with extensions to WS-Policy, by using more expressive constructs
from OWL at the policy language, as well as the assertion language, level. We
can experiment with extensions before having to write a yet another processor
for them. Of course, if it turns out that we really want to restrict ourselves to a
very inexpressive subset, then we may still want to build specific reasoners and
processors that are tuned for that sublanguage. But there again, our tools can
help us. Pellet does expressivity analysis of ontologies, so can help determine
what logic we are really using and the price of extensions.

Furthermore, ontology development techniques can be useful for policy devel-
opment as well. Most human generate ontology develop iteratively, with special-
izations added to the class tree over time. Similarly, we can build up our policies
from more general ones. A general policy could be very restrictive, setting tough
guidelines for all of a companies policies.

If we have a similar style mapping for another policy language, we will be
able to do policy analysis and integration across policy languages. We have taken
the first steps in this direction with providing a translation of the Features and
Properties compositors.

However, some care must be taken given the open world semantics of OWL.
For example, an OWL reasoner does not assume that because it cannot prove
that x conforms to policy A, that x does not conform to policy A. It is unclear
what the WS-Policy authors intend, though a closed world assumption is not
unlikely. However, even if there is a closed world assumption on WS-Policies, we
can handle at least some of those cases by adding explicit disjoint statements at
translation time.

4 The semantics of policies

Many of the current web policy languages do not have a formal semantics, leav-
ing the meaning of certain language constructs unclear. The WS-Policy language
provides for a good example. In our translation of WS-Policy documents into
OWL, we assume, of course, OWL’s open world semantics. Under this assump-
tion, the failure to prove an assertion leaves us with no conclusion about the
assertion’s truth or falsity. That is, in light of incomplete knowledge, some state-
ments about policies simply remain unknown. By contrast, in the closed world
assumption the failure to prove an assertion φ leads to the conclusion that ¬φ
is the case.
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While the open world assumption was made for OWL ontologies, and the
choice can certainly be justified, it seems that WS-Policy operates under closed
world assumption. The Intersection operation in WS-Policy, which is used to
determine the policy on which both endpoints agree, does not include those
alternatives that have no matching assertions. In other words, if the provider
has an assertions indicating support of a specific functionality, and the requester
is missing that assertions in his policy, then they are not compatible with each
other.

Let us contrast open and closed world assumptions. Suppose that a policy is
devised to express the constraints for gaining web access. A person fulfills the
requirement for web access if he or she are either a registered user or a guest
user. The policy can be expressed in OWL as follows:

WebAccessPolicy v Policy

WebAccessPolicy ≡ (RegisteredUser t GuestUser)

u ¬(RegisteredUser u GuestUser)

Table 3. Web Access Policy class definition

It is easy to see what kind of individual will fail to belong to WebAccessPolicy.
Since our definition of this class corresponds to the WS-Policy ExactlyOne op-
erator, its members must be instances of either GuestUser or RegisteredUser,
but not both. However, as a consequence of OWL’s open world semantics, it is not
enough for an individual i to simply belong to GuestUser or RegisteredUser
(and not to both) for i to satisfy the second conjunct of the WebAccessPolicy
class definition. Rather, in the case that i : RegisteredUser, it must also be
provable that i : ¬GuestUser, and vice versa.

Contrast this with a translation of the above policy into a closed world lan-
guage, such as Prolog, given below.4

not(X, Y) :- \+ X ; \+ Y.
policy(X) :- webAccessPolicy(X).
webAccessPolicy(X) :- (guestUser(X) ; registeredUser(X)),

not(guestUser(X), registeredUser(X)).

Unlike in the OWL case, the knowledge base consisting of the assertions
{guestUser(bob), regularUser(john)} will be sufficient to conclude that both
webPolicyAccess(bob) and webPolicyAccess(john). Since it is not provable
that guestUser(john) and regularUser(bob) (which would disqualify both
from our policy), we simply assume that they are not such. This constitutes the
closed world assumption. The behavior of this example might be more reason-
able than its OWL counterpart, depending on the specific policy and associated
knowledge base.
4 Note that in Prolog, ; stands for disjunction, \+ for negation, and , for conjunction
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4.1 Bridging open and closed assumptions

It would be desirable to have a way to ’turn on’ the closed world effect as needed
in our own policies, depending on the specific application, without committing to
it across the board (which Prolog does.) Furthermore, there are cases where the
open world effect can force us to model our policies unnaturally. These counter
intuitive results of open world semantics for policy developers can be handled
with a closed world mechanism. Consider the following example:

A research lab in College Park uses OWL to specify its policies. In the re-
search lab, there are two types of employees: senior employees and non-senior
(regular) employees, both subclassed from the Employee class. Every employee
has been specified a set of rights for use of devices in the lab. While senior
employees are able to delegate rights to use certain devices, regular employees
cannot. For example, a senior employee might delegate the right to use the con-
ference room printer to a regular employee. Now consider two individuals, Evren
who is a regular employee, and Ryu who is a senior one. If we specify that Ryu
delegates the right to Evren to use the conference room printer, there is no harm
done since Ryu is a Senior Employee. However, if we specify that Evren dele-
gates the right to use the, say, conference printer to Ryu, we would expect a
contradiction since regular employees are not able to delegate rights. However,
because of the open world assumption, the fact that Evren is delegating rights,
and isn’t defined to be a non-senior employee, allows the OWL reasoner to infer
that Evren is a senior employee. This is the opposite of what the policy writer
had in mind. The undesirable consequence is illustrated below.

Policy definition

DelegationConfPrinter v Delegation

DelegationConfPrinter ≡ ∃delegationGiver.SeniorEmployee
u ∃delegationType.RightToUseDevices

RightToUseConfPrinter v RightToUseDevices

Knowledge base

evren : RegularEmployee

ryu : SeniorEmployee

badOWA : DelegationConfPrinter

delegationGiver(badOWA, evren)

delegationReceiver(badOWA, ryu)

Table 4. Undesirable consequence of OWA for policy modelling

The above policy, paired with the shown knowledge base, will yield the in-
ference that Evren is of type SeniorEmployee. An obvious fix for the problem
would be to make SeniorEmployee and RegularEmployee disjoint, though this
would break the perfectly correct modeller’s intuition that the two kinds of em-
ployees share the superclass Employee.
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A better solution that would allow us to keep the current class hierarchy
intact is to use a default rule. Essentially, we’d like for all those individuals
who are not known to be senior employees to not be able to delegate rights to
others. The individual ryu in the above knowledge base is clearly an exception to
this default rule. The epistemic K operator, introduced as an extension for the
description logic ALC in [3], allows us to express such defaults. The K operator
can be applied to any ALC class expression and is read as what the knowledge
base “knows” to hold true. Semantically, given a knowledge base Γ , an ALC
concept C and an individual i, we say that Γ entails i : KC just in case i : C
holds every first-order model of Γ . Our default rule could then be expressed as
follows:

¬KSeniorEmployee v ¬Delegation
Which can be read as “If one is not known to be a senior employee, then one

does not have the ability to delegate rights.” Note that the use of K here intro-
duces a closed world assumption with respect to the rule. If it is only asserted
that evren is an Employee for example, then he is certainly not known to be
a SeniorEmployee; thus, no information about evren in this context remains
open.

Returning to our first example, the closed world behavior of the Prolog pro-
gram is also easily represented using K. Our modified class definition would then
be:

WebAccessPolicy ≡ K(RegisteredUser t GuestUser) u
¬K(RegisteredUser u GuestUser)

With the addition of K, the class definition will be satisfied as in the Prolog
program.

5 WSDL

In addition to WS-Policy, we explored another proposal, Features and Proper-
ties [4] that has also been put forth as a candidate for describing web service
policies. Integrating WSDL 2.0 with Features and Properties produced a frame-
work that allows users to specify web service capabilities and requirements in the
service description, with expressiveness similar to WS-Policy. The framework in
question is based on three concepts, Features, Properties and Compositors.
Simply put, a Feature represents a piece of functionality, identified by a URI. An
example of a Feature would be encryption. Properties are the parameters of a
Feature, also identifiable by a URI. For an encryption Feature, Property might
be the algorithm used, part of message encrypted, etc. Compositors are used
for combining multiple Features and Properties. There are four Compositors
defined in the proposal:

1. all : this compositor specifies that a service invocation MUST comply with
all the children elements

2. choice: specifies that a service invocation MUST comply with exactly one of
the possibly many children elements
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3. one-or-more: specifies that a service invocation MUST comply with at least
one of the possibly many children elements

4. zero-or-more: specifies that a service invocation MAY comply with one or
more of the children elements

The compositors in WSDL do provide more options than WS-Policy, however
they too can be mapped to OWL, as shown in the following table:

WSDL Compositor OWL Expression

all (policies A and B) owl:intersectionOf(A B)

choice intersectionOf(
(policies A and B) complementOf(intersectionOf(A B))

unionOf(A B))

one-or-more owl:unionOf

zero-or-more Optional

Table 5. Mapping of Features and Properties Compositors to OWL

6 Evaluation

One of the benefits of expressing policies in OWL is the possibility of using an off-
the-shelf OWL reasoner as a policy engine and analysis tool. In this section, we
show that currently available DL reasoners can easily process moderately-sized
policies. For the purpose of our evaluation, we have selected three reasoners,
Pellet [15], FaCT [8] and Racer [6]. We also created a random policy generator,
a script that creates policy assertions and specific policy classes and individuals
that have the structure of a WS-Policy in OWL form. Table 6 summarizes the
results of classifying these policy ontologies with the reasoners.

The evaluation supports our claim that OWL Reasoners are more than ready
to be used as policy processing tools.

7 Related Work

To the best of our knowledge, there have been no previous attempts of express-
ing WS-Policy in OWL. However, by looking at our work as a web service policy
language in OWL we discover an amount of relevant related work. The main
difference between our work and related policy languages is the level of expres-
sivity - WS-Policy is focused on those aspects of a service required to establish a
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Policy Size
(assertions, policies) Pellet (sec.) Racer (sec.) FaCT (sec.)

(100,10) 0.81 0.91 1.03
(100,20) 1.00 1.32 1.20
(200,20) 1.53 1.45 1.55
(200,40) 2.17 1.75 2.30

(1000,100) 15.54 22.32 16.22

Table 6. Classifying Policy ontologies using off-the-shelf DL reasoners

connection between endpoints and it does not require a great deal of expresivitiy.
Most of the languages discussed in this section on the other hand, have a big-
ger scope of being able to specify high-level, application-specific, heterogeneous
policies.

First, we look at XML-based policy languages. The Web Services Policy Lan-
guage [1], developed at Sun Microsystems, is suitable for specifying a wide range
of policies, including authorization, quality-of-service, quality-of protection, re-
liable messaging, privacy, and application-specific service options. WSPL is of
particular interest in several respects. It supports merging two policies, result-
ing in a single policy that satisfies the requirements of both, assuming such a
policy exists. Policies can be based on comparisons other than equality, allowing
policies to depend on fine-grained attributes such as time of day, cost, or net-
work subnet address. By using standard data types and functions for expressing
policy parameters, a standard policy engine can support any policy. The syntax
is a strict subset of the OASIS eXtensible Access Control Markup Language
(XACML [5]) Standard.

In essence, a WSPL policy is a sequence of one or more rules, where each
rule represents an acceptable alternative. A rule contains a number of predicates,
which correspond to policy assertions in WS-Policy. All of the predicates need
to be satisfied for the rule to be satisfied. However, only one of the rules can be
satisfied for the policy to be satisfied. A WSPL Policy on an operator level is in
Disjunctive Normal Form, thus expressible in OWL-DL.

WSPL defines a standard language for use in specifying predicates that con-
strain domain-specified vocabulary items. Each predicate places a constraint on
the value of an Attribute. Possible constraints are: equals, greater than, greater
than or equal to, less than, less than or equal to, setequals and subset. Unfor-
tunately , the OWL datatyping formalism is not expressive enough to gener-
ally represent datatype predicates such as the ones mentioned. There has been
a recent proposal of an extension to OWL-DL, caled OWL-E [13] which adds
datatype group-based class constructors to allow the use of datatype expressions
in class restrictions. OWL-E is interesting because it adds much more datatype
expressiveness and it is still decidable.

The Platform for Privacy Preferences Project (P3P [12]) enables Web sites
to express their privacy practices in a standard XML-based format that can be
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retrieved automatically and interpreted easily by user agents. Similar to what we
hav edone with WS-Policy, there has been a number of attempts to use an RDF
or OWL schema to describe the semantics of P3P. According to [18], there exists
a data-centric relational semantics for P3P in which a P3P policy is modeled as
a relational database, that further allows to express P3P using RDF. However, it
is important to take note that modal logical statements can be made about data
types in the P3P schema. This issue is investigated in detail by Hogben [7], whih
provides a complete OWL schema that captures the semantics of P3P. Having
P3P modelled in OWL allows the authors to perform syntactic and semantic
validation on the policies.

Moving to OWL-based systems, Rei [9] is a policy specification language
based on a combination of OWL-Lite, logic-like variables and rules. It allows
users to develop declarative policies over domain specific ontologies in RDF,
DAML+OIL and OWL. Rei allows policies to be specified as constraints over
allowable and obligated actions on resources in the environment. A distinguishing
feature of Rei is that it includes specifications for speech acts for remote policy
management and policy analysis specifications like what-if analysis and use-case
management.

KaOS Policy and Domain Services [16] use ontology concepts encoded in
OWL to build policies. These policies constrain allowable actions performed by
actors which might be clients or agents. The KAoS Policy Service distinguishes
between authorizations and obligations. The applicability of the policy is de-
fined by a class of situations which definition can contain components specifying
required history, state and currently undertaken action.

8 Conclusion and Future Work

In this section we provide a summary of our contributions and possible future
directions:

1. By providing a mapping for the formalism of WS-Policy we have shown that
it is an expressive subset of OWL-DL

2. Currently available OWL reasoners perform reasonably well as policy pro-
cessors, without any modification, and we have preliminary empirical results
to show for it.

3. OWL-DL provides an interesting framework for exploring richer policy lan-
guages with minimal implementation cost. An interesting direction would be
integration of our policy mapping with OWL-S profiles, which seems like a
natural next step.

4. In the cases when OWL is not suitable, we have clear extensions we can add
to address these issues. We covered the K operator and OWL with datatype
predicates in this paper.

5. Finally, since other policy languages (WSDL, WSPL) also seem to be subsets
of (a slightly extended) OWL, OWL-DL seems to be the right language for
specifying policies in general.
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10 Appendix

Theorem 1 Merge between two policies, as defined in WS-Policy, is equivalent
to the conjunction of the translations of the two policies.

Proof : Consider two policies, P1 and P2 in normal form: P1 = ExactlyOne(A1,
A2, A3, ... An) P2 = ExactlyOne(B1, B2, B3, ... Bn)

Then, their translations to OWL would have the following form:
O1 = (A1∪A2∪A3∪ ...∪An)

⋂
¬((A1∩A2)∪ (A1∩A3)∪ ...∪ (An−1∩An))

O2 = (B1∪B2∪B3∪ ...∪Bn)
⋂
¬((B1∩B2)∪ (B1∩B3)∪ ...∪ (Bn−1∩Bn))

A merged policy can be mapped to the following OWL expression, P1 merge
P2 = ((A1 ∩B1) ∪ (A1 ∩B2) ∪ ... ∪ (An ∩Bm))

⋂
¬((A1∩B1∩A1∩B2)∪ (A1∩B1∩A1∩B3)∪ ...∪ (An∩Bm−1∩An∩Bm)).

We are going to show that (O1 ∩ O2) ⇔ (P1 merge P2). The proof follows
the divide and conquer approach - we first split up both of the expressions in
two disjoint parts, then show that the subexpressions are equivalent.

For the first part,
((A1 ∩B1) ∪ (A1 ∩B2) ∪ ... ∪ (An ∩Bm)) ⇔
(A1 ∪A2 ∪A3 ∪ ... ∪An) ∩ (B1 ∪B2 ∪B3 ∪ ... ∪Bn)
holds because ∩ distributes over ∪.
After eliminating ¬, the second part is to prove that

((A1 ∩B1 ∩A1 ∩B2)∪ (A1 ∩B1 ∩A1 ∩B3)∪ ...∪ (An ∩Bm− 1∩An ∩Bm)) (1)

is equivalent to:

((A1∩A2)∪(A1∩A3)∪ ...∪(An−1∩An))∩((B1∩B2)∪ ...∪(Bn−1∩Bn)) (2)

After applying distributive law, (2) can be written in DNF as well:

((A1∩A2∩B1∩B2)∪(A1∩A2∩B1∩B3)∪...∪(An−1∩An∩B(m−1)∩Bm)) (3)

Having both of the expressions in DNF, we can easily show that each disjunct
from (1) can be expressed using a combination of disjuncts in (3), and vice-versa.
Having (1) ⊆ (3) and (3) ⊆ (1) means that (1) = (3), thus these subexpressions
are equivalent,too. Having proven that the corresponding subexpressions are
equivalent, we conclude that (O1 ∩O2) ⇔ (P1 merge P2).Q.E.D


