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In this paper we investigate the vortex structure and dynamics formed in the near
field of a turbulent axisymmetric jet subjected to transverse acoustic forcing. Full
three-dimensional phase-averaged velocity measurements were obtained to elucidate
the coherent structures formed when the jet is positioned at the pressure node of a
plane standing wave oriented transversely to the streamwise flow direction, which
creates a plane symmetry about the nodal line dissecting the jet exit. Due to the
change in phase that occurs across the nodal line, it was found that axisymmetry
is broken and the jet undergoes a periodic transverse flapping motion consistent
with a sinuous mode. This was accompanied by a periodic train of interconnected
vortex structures, resembling inverted hairpin (or horseshoe) vortices, formed as the
shear layers rolled up in anti-phase either side of the jet, and propagated a few
diameters downstream before breaking up. An inviscid vortex model employing
inverted hairpin line vortices is shown to capture both the dynamics of the vortex
structures and the fluctuating velocity fields. Overall, the jet response and resulting
vortex dynamics observed represent a significant departure from the axisymmetric
flow structures observed with conventional longitudinal forcing and more closely
resemble the phenomenon of bifurcating jets.

Key words: jets, vortex dynamics

1. Introduction

It has long been known that the Kelvin–Helmholtz instability leads to the formation
of organised coherent structures in the near field of turbulent jets (Becker & Massaro
1968; Crow & Champagne 1971). Depending on their application, there has been
significant interest in methods to manipulate the Kelvin–Helmholtz instability
mechanism by taking control of the jet boundary conditions through some form
of excitation in order to control the formation of coherent structures, to understand
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the fundamental response of jets to perturbations or to influence various aspects
of the downstream flow development such as the evolution of turbulent statistics,
mixing rates and amplification or suppression of jet noise amongst others (Crow
& Champagne 1971; Hussain & Zaman 1980; Zaman & Hussain 1980; Gutmark
& Ho 1983; Ho & Huerre 1984; Zaman 1985; Reynolds et al. 2003; Sadeghi &
Pollard 2012). In the vast majority of cases these effects are considered in response
to axisymmetric disturbances of finite amplitude.

There have been comparatively few studies to understand the response of jets
to asymmetric forcing and in particular transverse forcing. Reynolds et al. (2003)
summarised an early set of experimental studies in which jets were subjected
to asymmetry using a combination of axial and helical forcing. This caused the
momentum field of the jet to split (or bifurcate) into two or more directions, and
in some cases rapid spreading through the unstable so-called blooming phenomenon.
To produce the asymmetric disturbances, complex forcing methods were used such
as mechanically oscillating the jet nozzle (Lee & Reynolds 1985) and acoustically
by phased oscillations directed around the nozzle circumference (Parekh, Leonard
& Reynolds 1988). This induced either a slight staggering, or inclination change in
successive ring structures which, through mutual induction, proceed to alter their
relative orientation and phase as they advect downstream, effectively amplifying
the asymmetry, with dramatic consequences for the far-field jet development. This
reorientation of structures through mutual induction was demonstrated through
a series of vortex filament simulations, which are described in Leonard (1985).
Similar dynamics has also been produced by employing alternative methods of active
forcing (Suzuki, Kasagi & Suzuki 2004; Kasagi 2006) or passive control (Longmire
& Duong 1996).

More recently numerical simulations have also provided further insight into the
phenomenon of jet bifurcation. These have demonstrated that a dramatic enhancement
of the jet spreading rate could be achieved solely through transverse forcing rather
than through a combination of axial and transverse forcing (Urbin & Metais 1996;
Danaila & Boersma 2000). They have also examined the dependence of spreading
rates on Strouhal number (da Silva & Métais 2002), as well as the interaction
between axial and flapping modes of excitation in determining the symmetry of
the far-field response (Tyliszczak & Geurts 2014) with the ratio of axial to helical
excitation frequencies being able to control the jet blooming phenomena by dividing
the momentum stream into more than two branches (Gohil, Saha & Muralidhar 2015;
Tyliszczak 2015). While the primary focus of these investigations is often stated as
the modification or control of the far-field jet behaviour in terms of spreading rates,
some studies have also begun to qualitatively describe the organisation of coherent
structures in the near field. For example, da Silva & Métais (2002) observed an
arrangement of inclined vortex rings formed during flapping excitation, with the
alternate tilting and pairing of subsequent vortices resulting in a large merged train of
coherent vortices. A similar, complex near-field reorganisation of coherent structures
was observed by Urbin & Metais (1996), Danaila & Boersma (2000) and Suzuki
et al. (2004).

The current study is motivated by the important practical problem of self-excited
thermoacoustic instabilities in annular combustor geometries which are relevant
to gas turbines and rocket engines (Wolf et al. 2012; Worth & Dawson 2013;
Bauerheim et al. 2014; Bourgouin et al. 2015; Ghirardo, Juniper & Moeck 2016). If
we consider a rotationally symmetric annular geometry with a number of equispaced
jet-stabilised flames around the circumference, thermoacoustic instabilities typically

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.821


Vortex dynamics of a jet at the pressure node in a standing wave 882 A22-3

excite the azimuthal acoustic modes of the annulus. This generic case corresponds
to jet-stabilised flames immersed in an approximately one-dimensional azimuthal
acoustic field where the base flow of each jet is subjected to time-varying pressure
gradients that are orthogonal (locally transverse) to the streamwise flow direction.
Improved understanding of the effect of asymmetric forcing on the formation of
coherent structures is important in turbulent premixed flames as they directly affect
the fluctuating heat release rate through changes in the flame surface area (Trouvé &
Poinsot 1994).

Recently, the response of swirling flames (Hauser, Lorenz & Sattelmayer 2011;
O’Connor & Lieuwen 2011, 2012) and laminar flames (Lespinasse, Baillot & Boushaki
2013) to transverse excitation has been investigated using forcing configurations
specifically designed to be long in the transverse direction, relative to the streamwise
flow direction, to generate plane standing waves. The flame response, and by inference
the flow response as premixed flames are stabilised on the shear layers, have shown
significant departures from axisymmetric behaviour such as variations in the size of
the coherent structures formed on opposite sides of the flame (Lespinasse et al. 2013),
and the presence of helical (Hauser et al. 2011; O’Connor & Lieuwen 2011) and
plane-symmetric flame dynamics (Dawson & Worth 2014, 2015). However, the more
fundamental case of the response of a canonical round jet immersed in a transverse
acoustic field has yet to be investigated despite being a fundamental building block to
more complex engineering applications such as thermoacoustic instabilities in annular
combustor geometries.

In this paper we investigate the vortex structure and dynamics formed in the near
field of a turbulent axisymmetric jet positioned at the pressure node of a plane
standing wave generated by transverse acoustic forcing. This represents an as yet
unexplored method of applying asymmetric excitation in comparison with previous
studies of bifurcating jets. In contrast to the above mentioned studies of bifurcating
jets which primarily focus on the far field, we concentrate on the near-field response
which is relevant to the problem of thermoacoustic instabilities in annular combustion
chambers. In § 2 we describe the transverse forcing method and apparatus, how
the phase-resolved volumetric particle image velocimetry (PIV) measurements were
obtained to elucidate the three-dimensional coherent structures formed in the near
field, and a vortex model. In § 3 the vortex structure and dynamics are presented
and analysed followed by the results of the vortex model. Finally, we summarise our
findings in § 4. In order to aid understanding of the vortex dynamics presented herein,
two supplementary movies are available at https://doi.org/10.1017/jfm.2019.821.

2. Experimental methods and modelling
2.1. Experimental set-up

The axisymmetric jet, which was used in Aydemir, Worth & Dawson (2012) and
Lawson & Dawson (2013), was placed at the base of a long rectangular box with
a pair of loudspeakers mounted to adjustable end walls as illustrated in figure 1. The
walls were adjustable in order to change the resonance frequencies of the box and to
vary the position of the jet relative to the acoustic mode. The speakers mounted at
each end were used to produce approximately one-dimensional plane waves.

Air was supplied from a high-pressure supply via a mass flow controller (Alicat
MCR-500) which ensured that the flow rate varied by less than 2 % throughout the
experiments. The flow was initially passed through a cylindrical plenum chamber
with a length of 200 mm and diameter of 100 mm containing a honeycomb flow
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FIGURE 1. (a) Schematic and (b) image of the enclosure, forcing and camera set-up, and
coordinate system. (c) A Mie scattering visualisation of the forced and unforced jet in
two cross-sectional planes, illustrating the modified spreading rates in the far field.

straightener, and then into a pipe with a length of 300 mm and diameter of 35 mm,
followed by a converging nozzle with an exit diameter of D = 0.01 m. The jet exit
was knife-edged, and the nozzle was designed with a cubic matched geometry to
produce a top hat exit velocity profile. The exit nozzle protruded 30 mm into the
box to avoid wall effects. A large box width to jet diameter ratio, W/D = 22, was
employed to ensure confinement effects were negligible in the near-field region of
the jet, from 0 6 x/D 6 4.

Standing waves were generated using four speakers (Monacor KU-516) positioned
on opposing end walls. Resonance tubes were fitted to the end of each speaker, which
were of length λ/4, where λ is the wavelength of the standing pressure wave. A signal
generator (Aim-TTi TGA1244) connected to two 200 W amplifiers (Crown CE1000)
was used to drive the speakers. This forcing signal was also used as a reference
in order to phase-lock image acquisition. In order to characterise the acoustic mode
the pressure in the rectangular box was measured at four transverse locations using
microphones (Brüel & Kjær 4939-A-011) mounted flush with the wall.

In the context of combustion instabilities, the Strouhal numbers of interest are
selected based on approximate aero engine scaling where the circumference of
the annular combustor is O(1.5 m), the burner diameter is O(0.03 m) and the
bulk velocity is O(30–60 m s−1), which gives a typical range of Strouhal numbers
St = ff D/ue = 0.3–0.6. Accordingly, the jet response was initially investigated using
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stereoscopic PIV for a range of forcing frequencies, ff , and bulk flow velocities,
ue, resulting in Strouhal numbers in the range St = 0.19–0.6. During these tests,
the forcing amplitude was also varied, with the amplitude of transverse velocity
oscillations increased to up to approximately 20 % of the bulk flow velocity. During
self-excited instabilities, oscillations grow until they are limited by nonlinear effects
as they reach limit cycle (Dowling 1997), and large oscillation amplitudes may
be expected. Such amplitudes far exceed the small perturbations which cause the
preferred mode to lock in to the forcing frequency. Therefore, although the Strouhal
number range is close to the expected preferred Strouhal number of the jet (Ho &
Huerre 1984), the significant amplitude of excitation applied in the current study
in general resulted in a significant jet response and characteristic vortex dynamics
within the range St=0.34–0.5. A single case was selected for the current investigation,
which was chosen to be generally representative in terms of the dynamics of the wider
dataset.

In order to accommodate limitations in laser power and ensure that the flow
could be fully captured within the field of view, full three-dimensional velocity
measurements were undertaken at a single Reynolds number of Re=6000, where Re=
ueD/ν, in which ue= 9.0 m s−1 is the bulk flow velocity and ν= 1.5× 10−5 m2 s−1 is
the dynamic viscosity of air at room temperature. The jet was forced at ff = 450 Hz,
corresponding to a Strouhal number of St = 0.5, at an amplitude of transverse
oscillation of 10 % of the bulk flow. This combination of parameters ensured that
the resulting vortex dynamics remained within the field of view whilst also being
generally representative of the wider dataset. To achieve resonance at this frequency,
the box dimensions were adjusted to L= 1.60 m, H = 0.59 m and W = 0.22 m. The
jet was positioned a distance of 0.60 m from one edge of the box, as shown in
figure 1, at the location of the pressure node. Based on this frequency, it should
be noted that in the near field the jet diameter is very small in comparison with
the acoustic wavelength (λ= 0.8 m), and therefore the jet is considered acoustically
compact.

A typical power spectral density from a single microphone is shown in figure 2(b),
illustrating that the frequency response of the box enclosure is dominated by the
forcing frequency. The multiple microphone method (Jang & Ih 1998) was used to
estimate in a least squares sense the magnitude of incident, pi, and reflected, pr,
plane waves in the enclosure, and balance the forcing signals sent to the speakers.
Figure 2(c) shows a reconstruction of the pressure oscillation magnitude with varying
position in the enclosure, and the amplitude of the pressure measurements at the
four microphone locations, normalised by pa, the atmospheric pressure. Using this
approach a standing wave ratio of (|pi| − |pr|)/(|pi| + |pr|) = ±0.01 was maintained
throughout the experiments. Figure 2(c) also shows that the normalised maximum
amplitudes of the acoustic pressure oscillations are very small, and therefore the
acoustics remain linear. The jet was located at y/L = 0, which was the location of
a pressure node and a velocity anti-node. Pressure measurements (not shown) also
verified that the resonant modes of the box were decoupled from the upstream jet
geometry. Figure 2(d) shows the variation of the transverse component of velocity over
a forcing cycle. There is reasonable agreement between the acoustic particle velocity
amplitude reconstructed from the multiple microphone method and the velocimetry
measurements, which show that the amplitude of transverse velocity oscillations is
around 10 % of the bulk flow velocity, ue.

The streamwise, transverse and cross-stream coordinates and velocities are denoted
by x, y and z, and u, v and w, respectively. Figure 2(a) shows profiles of the
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FIGURE 2. Jet and acoustic characterisation results. (a) Profiles of the mean streamwise
velocity close to the jet exit. Profiles taken in the x–y plane (@), and in the x–z plane
(E) at a downstream distance x/D = 0.25. (b) Power spectral density from a single
microphone measurement. (c) Reconstructed pressure fluctuation magnitude (solid line)
and experimental measurements at microphone positions (∗). (d) Variation of transverse
velocity oscillation over a forcing cycle using reconstructed distribution from pressure
measurements (solid line) and spatial averaged component from PIV results (∗).

mean normalised streamwise velocity, u/ue, sampled in both the y and z directions
close to the jet exit when the jet is undergoing acoustic forcing. Both velocity
profiles correspond to the x–z and x–y planes, respectively. While both profiles are
approximately top hat, there is a clear difference between the profiles that can already
be observed by comparing the width of the potential core, which is slightly narrower
in the y direction. The potential core width was observed to decrease in both profile
directions as downstream distance is increased as the shear layers thicken and the
jet spreads. However, the spreading rate in the y direction is significantly enhanced
due to transverse acoustic forcing, which is discussed further in § 3.2. While the
far field is not the focus of the current study, an illustration of this is included in
figure 1(c), which shows Mie scattering images of the jet in two planes of interest
for both the unforced and forced jet. The application of acoustic forcing is observed
to significantly increase the jet spreading rate in the x–y plane and to decrease this in
the x–z plane. Although detailed measurements of the far field were not undertaken in
this study, the observed increased spreading of the jet is expected to result from the
inclination changes in subsequent structures manifested through the induced velocity
field, as described by Lee & Reynolds (1985) and Parekh et al. (1988).

2.2. Tomographic PIV
We performed tomographic PIV measurements of the jet using multiple volumetric
measurements which were later stitched together. Rather than capture the entire
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volume simultaneously, reducing the depth of the reconstructed slices helped to
eliminate ghost particles and to reduce measurement noise (Elsinga et al. 2011). A
thick light-sheet was generated using a high-speed laser (Litron LDY303HE) and a
series of sheet-forming optics (Thorlabs). The ambient region in the chamber and
the jet flow were seeded using olive oil droplets that were produced via a Laskin
nozzle. The particle images were captured using four high-speed cameras (Photron
SA1.1) that were oriented 12.5◦ from each other (see figure 1b). Due to reflections at
the nozzle, data upstream of x/D = 0.20 could not be collected. The particle image
separation time was δt = 20 µs and the vector field separation time was 1/900 s.
During each experiment phase-locked data were therefore collected at two points in
the oscillation cycle. For each laser sheet position, the experiment was run a total of
six times, and before each run a phase offset was adjusted so phase-locked results
were recorded for 12 equally spaced positions in the cycle.

The volumetric reconstruction was performed using an in-house tomographic PIV
implementation of the MART algorithm (Herman & Lent 1976). A 42 mm×22 mm×
7 mm volume was discretised at 20 voxels mm−1 to ensure a pixel-to-voxel ratio of
one. The routine applies a multiplicative first guess procedure (Worth & Nickels 2008)
to accelerate convergence, requiring only three MART iterations to be performed. The
reconstructed light intensity volumes from 20 phase-locked instantaneous realisations
were first summed together before cross-correlation was performed. This sum of
volumes procedure is the three-dimensional analogue of the two-dimensional average
image method described by Meinhart, Wereley & Santiago (2000), and its application
allows the spatial resolution to be improved, while also improving the reconstruction
signal-to-noise ratio.

The intensity volumes were next processed using an in-house cross-correlation
algorithm with multi-pass processing, window shift and window deformation
developed for volumetric PIV (Lawson & Dawson 2014). The initial window size
for the PIV processing was 643 voxels, which was reduced to 483, 403 and finally
323 voxels, with 75 % window overlap. Vector validation was performed through
a median criterion (Westerweel 1994). For each volumetric slice we processed 20
phase-averaged vector fields (which due to the sum of volumes method is itself an
average of 20 instantaneous flow realisations) that are used for the analysis presented
in this paper. This process yields the phase-average velocity, u, which itself can be
represented as the sum of the mean velocity (u) and the phase-averaged fluctuating
component (ũ), or u = u + ũ. While the phase averaging removes the turbulent
fluctuations, u′ = 0, it should be noted that the phase-averaged fluctuating velocity
component (ũ) captures most of the vortex structures in the region x/D< 2 because
the turbulent fluctuations are very small here.

After each set of experiments the light-sheet was traversed 5 mm in the z direction
and a total of seven volumetric slices were obtained, with an overlap of 1 mm
between volumes. The vector fields were stitched using linear interpolation to obtain
a final volume of dimensions 40 mm× 20 mm× 20 mm centred on the jet centreline.
Finite differencing must be applied to evenly spaced PIV data in order to calculate the
velocity gradient tensor. A second-order-accurate least squares differencing scheme
was adopted (Raffel et al. 1998), except at the edges where forward and backward
differencing was used. Gradient fields were smoothed using a 33 element Gaussian
smoothing kernel, with a standard deviation of σ = 0.65.

2.3. Vortex line modelling
Previous studies have used simple inviscid vortex models to capture the turbulent
spectra of a jet (Nickels & Marusic 2001), and to capture the dynamics leading to
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jet bifurcation in the far field (Leonard 1985). In order to understand the source of
the flow-field dynamics in the present study a simple inviscid vortex line model was
employed, which was developed previously by Berk & Ganapathisubramani (2019).
The model periodically creates coherent structures based on an initial definition of
the structure shape, orientation and circulation. These structures are then advected
and allowed to develop downstream to understand primarily the role of the induced
velocity. This approach allows us to strengthen our conclusions relating to the
geometry and dynamics of the flow field, with comparisons drawn as part of the
discussion in the following sections. It should be stressed that the aim of the model
was not to capture the formation of coherent structures, but rather to better understand
their downstream development as well as the role of the induced velocity in the
velocity field statistics.

The initial coherent structure shapes were defined to match the experimentally
observed inclined hairpins close to the jet exit. Therefore, the initial shape was
modelled on an inclined vortex ring, which is left open at one end to mimic a hairpin
structure. Each ring was discretised and modelled as a series of Nv=40 straight vortex
filaments with constant non-dimensional circulation, Γ ∗v =Γv/ueD= 0.5. Each filament
is defined through the location of two end points, with these node locations shared
between consecutive filaments. Rings were initialised so that their geometry resembled
experimental results, with geometric centres positioned at x/D = 0.25, y/D = ±0.08
and z/D = 0, with an inclination angle defined by a plane rotated around the z
axis by an angle of Φv = ±22◦. Rings were introduced at a rate of two rings per
forcing cycle, and alternating structures were given opposite-signed initial inclination,
offset initial transverse positions, and the open end location was switched to the
edge which was furthest downstream of the ring in order to match the experimental
observations. A constant circulation decay rate, dΓ ∗v /d(t/T)= 0.1, was defined based
on the experimental measurements, where T = 1/ff is the period, in order to reduce
the influence of structures which break down far downstream and allow the model to
rapidly converge. Finally, a Rankine vortex core radius of Rcore/D= 0.4 was chosen
empirically to prevent unphysical displacements of individual nodes.

The structures are advected by updating the location of the connecting nodes,
which are translated according to the superposition of streamwise mean advection,
us = {us, 0, 0}, transversely oscillating periodic, ut(t) = {0, vt(t), 0}, and induced,
ui(t), velocity components. For simplicity the complexity of the jet structure is
not represented directly, and instead a streamwise mean velocity corresponding
approximately to the average shear-layer velocity was chosen, us = 0.7ue. The
transversely oscillating periodic component is modelled as vt(t)=−Av sin(2πff t+ φt),
where Av = 0.1ue and φt = 0.3 are the amplitude and the phase offset required
to replicate the experimentally observed oscillating transverse velocity shown in
figure 2(d). Vortex structures are created when t/T = 0 and t/T = 0.5 to ensure that
the transverse location of the structures is correctly replicated by the model. Finally,
the induced velocity at a node location (x, y, z) from all filaments (ds) is calculated
using the Biot–Savart law, given by

ui(x, y, z)= Γ

4π

ds× l
|l|(max[|l|, Rcore])2 , (2.1)

where l is the vector from the centre of the segment to the point (x, y, z) and Rcore
is the Rankine vortex radius. The total advection velocity, uadv(t)= us + ut(t)+ ui(t),
together with a non-dimensional time step of 1tmod/T = 1/48 is then used to advect
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FIGURE 3. Velocity profiles for streamwise and transverse components at each phase angle
in the x–y plane, at x/D = 0.25. Profiles are offset for visibility, with the zero of each
profile represented by a dashed line. Lowest profile corresponds to t/T=0, with increasing
time for each offset curve above.

each node. The model is run for a duration t/T = 10 to ensure that a steady periodic
solution has been reached. On the final cycle the Biot–Savart law is used to calculate
the induced velocities on several planes of interest. During velocity field calculation a
vector spacing of 1x/D= 0.04 was used, and averaging over a 5× 5 neighbourhood
was used in order to match both the experimental spatial resolution and vector pitch.
The results of the vortex line modelling are presented and discussed in § 3.3.

3. Results
3.1. Phase-averaged vortex structure

The jet was positioned at a pressure node of the transverse acoustic mode in the
rectangular box. Therefore, the incoming jet flow is not modified by acoustic pressure
oscillations in the box, resulting in negligible levels of velocity oscillations in the
inlet bulk flow velocity. However, this location is also an acoustic velocity anti-node
location. Therefore, the application of acoustic forcing results in a strong transverse
flapping motion of the jet at the forcing frequency, which can be viewed as the
superposition of both m=±1 azimuthal modes. While the acoustic transverse velocity
oscillations were described previously in figure 2(d), to describe the inlet conditions
in more detail the velocity profiles in the x–y plane close to exit are shown in
figure 3.

The phase-averaged exit profiles show a strong dependence on phase angle as
expected. Close to the jet axis (r/D = 0) the transverse component follows the
acoustic velocity, switching sign sinusoidally. The strong peaks and troughs at the jet
edges (r/D≈±0.5) are associated with the induced velocity from the coherent vortex
structures located in the shear layers (discussed below). Similar features related to
the vortices can also be observed in the streamwise velocity profiles. The changing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.821


882 A22-10 N. A. Worth and others

centres of the streamwise profiles additionally demonstrate the flapping motion of the
jet, even at this small downstream distance.

In order to understand the structure and phase-averaged dynamics of the jet we
begin by studying isosurfaces of normalised vorticity magnitude, |ω∗| = |ω|D/ue, at
three points in the forcing cycle, as shown in figure 4. The isosurfaces have been
coloured by the normalised transverse component of vorticity, ω∗y = ωyD/ue, in order
to more clearly identify separate structures and to indicate the orientation of vorticity.

As the jet flaps in the transverse direction, vorticity generated in the shear layer is
observed to roll up periodically, forming a train of large coherent vortex structures
which are advected downstream. The topology of these structures can be described
as inverted hairpins (or horseshoes), with the head and legs of each hairpin structure
aligned in the cross-stream and transverse directions respectively. The head and legs of
a single structure have been marked in figure 4 as B1 and B2, respectively. The term
inverted here refers to the legs of each hairpin preceding the head in the streamwise
direction. The structures are oriented in this manner at formation due to the inclination
of the jet when the roll-up process begins. The orientation of the jet can be observed
from the isosurfaces close to the jet exit (x/D = 0), showing the orientation of the
cylindrical shear layer (marked in figure 4 as A). The orientation can also be inferred
from the transverse velocity (shown previously in figure 2d), which is identified in
each panel through the sine wave inset in the upper left corner. It should also be noted
that as roll-up occurs when the trajectory of the jet changes direction, two hairpin
structures are formed on opposite sides of the jet during each forcing cycle. This
behaviour is qualitatively different from that of a jet experiencing purely longitudinal
oscillations, a process which results in the formation of a single vortex ring structure
during each oscillation cycle (Aydemir et al. 2012). The rapid organisation of the
coherent structures in anti-phase with respect to the x–z symmetry plane appears to be
qualitatively similar to the alternating pairing structure observed by Urbin & Metais
(1996) and da Silva & Métais (2002), although in the present investigation this pairing
occurs immediately downstream of the exit. This much more rapid organisation is
therefore similar to the structures observed by Suzuki et al. (2004).

The transverse flapping motion of the jet also causes the hairpin heads to be
located further from the jet centreline in comparison with the legs, resulting in
lower advection velocities. This results in an increase in the inclination angle of the
hairpin structures with downstream distance from the nozzle due to differences in
these advection velocities (with this observation marked E in figure 4). These two
observations are quantified in § 3.2. Furthermore, as each hairpin structure advects
downstream, the velocity field induced by the head can be observed to draw the legs
of the upstream structure through the arch of the hairpin (marked C in figure 4),
drawing the two legs of each structure closer together. This process can also be
seen to modify the local inclination of the structure. Once they have been threaded
through the arches in this manner, the proximity of these leg vortex cores results in
the breakdown of the hairpin head, which can then be observed to realign with the
legs from the upstream structure (marked D and F in figure 4). As the structures
advect further downstream (x/D > 2) this unstable reconnection around the hairpin
heads can be observed to result in rapid breakdown of the coherent structure (marked
G in figure 4). The time-dependent formation and downstream evolution of the vortex
structures can be more clearly understood from supplementary movies 1 and 2 of
normalised vorticity magnitude.

In order to further investigate the position of these vortex structures it is useful
to study the components of the vorticity field in different planes of interest.
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FIGURE 4. Three-dimensional isosurfaces of normalised vorticity magnitude, |ω∗|, at three
points in the forcing cycle. A threshold level of |ω∗|=6 was chosen to highlight the vortex
structure. The isosurfaces have been coloured by the normalised cross-stream component
of vorticity, ω∗y = ωyD/ue, in order to more clearly identify separate structures and to
identify the orientation of vorticity. Sine wave inset in upper left corner of each panel
indicates the transverse velocity at each phase angle. Annotations identify: A, initial
roll-up of the cylindrical vortex sheet shed from the nozzle lip; B1, formation of hairpin
head; B2, formation of hairpin legs; C, the legs of the hairpin being drawn through the
arch of the preceding structure; D, the formation of oscillations along the head; E, the
increasing inclination angle of hairpin structures as they are advected downstream; F, the
break-up of the head and reorientation of vortex lines with the legs of the following
structure; G, the break-up of coherent structures at the end of the near field.
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FIGURE 5. Slices of normalised vorticity, ω∗z = ωzD/ue, in the x–y plane, at z/D= 0, at
six points in the forcing cycle. Velocity vectors at the jet exit are included to help identify
the corresponding flapping motion of the jet (showing every third vector).

Figure 5 shows the variation of the normalised cross-stream component of vorticity,
ω∗z = ωzD/ue, on the x–y plane along the axis of the jet at z/D = 0, at six instants
in the oscillation cycle. This plane of interest therefore cuts through the heads of the
inverted hairpin structures, and shows a train of vortex cores of opposite-sign vorticity
on the left- and right-hand side of the plot. Close to the exit, structures on the same
side of the jet are separated by 1x/D≈ 1 which corresponds to their advection during
a single oscillation cycle at the mean shear-layer velocity, (ue/2)/ff D = 1. However,
the downstream location of the vortex cores is staggered between the right- and
left-hand sides of the plot, with a difference in axial location of 1x/D≈ 0.5. This is
expected due to the transverse flapping of the jet in response to the acoustic forcing.
The formation of structures on the left- and right-hand side of the jet occurs in
anti-phase as illustrated by the position of the vortex cores. Close to the jet exit the
transverse location of the vortex cores on both sides is y/D≈±0.6, which increases
slightly with downstream distance. It is also observed that the flapping of the jet
results in an elongated roll-up process. As the jet changes direction the vortex core is
located at a larger radial position in comparison with the remaining shear layer, which
continues to therefore pass inside of the core. The remaining shear-layer vorticity
continues to wrap around and even over the top of the existing vortex core, both
increasing its circulation and additionally forming a smaller satellite core downstream.
As downstream distance increases the core locations become less distinct as the
vortex structure begins to break up, and complex merging and interactions between
subsequent structures occur. It should be noted that there is some persistent asymmetry
present between structures on the left-hand (y/D< 0) and right-hand (y/D> 0) sides
of the domain. This is ascribed to the imperfect alignment of the jet with the acoustic
node position in the enclosure.

The roll-up mechanics is also shown in this plane, and can be described further
through a sketch of the process in figure 6, which represents roll-up through the
dynamics of the vortex sheet. At t/T = 0 the magnitude of the transverse acoustic
velocity is at a maximum in the negative y direction. As the oscillation cycle
progresses, the transverse acoustic velocity changes sign, and in response the jet flaps
from its leftward inclined orientation at t/T = 0, first to slight leftward orientation
at t/T = 1/6, and then to a slight rightward inclined orientation at t/T = 2/6. This
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FIGURE 6. Sketch of the vortex sheet roll-up process in the x–y plane. The vector arrow
at the bottom centre of each panel represents the jet velocity.

flapping produces an inflection in the vortex sheet, indicated by point A in figure 6.
The sign of the vorticity on the left-hand side is such that the fold in the sheet now
begins to roll up under the action of induction, with point A indicating the rolled-up
vortex core head location. During half the oscillation cycle, as the jet flaps from left
to right a single hairpin structure is therefore formed. Despite a similar inflection
formed through the flapping of the jet, the vortex sheet on the right-hand side of
the jet remains stable during the first half of the cycle (shown through a point at a
similar height, marked B in figure 6) due to the sign of the vorticity on this side.
However, once the jet flaps from right to left to complete a single full oscillation
cycle (from t/T = 3/6 to t/T = 0), a second structure is formed on the right-hand
side of the jet, due to the now unstable arrangement of the vortex sheet. This roll-up
process is therefore distinct from a jet experiencing longitudinal oscillations, in which
a variation in circulation along the vortex sheet in the streamwise direction produces
roll-up. The current constant circulation vortex sheet roll-up process is driven by the
spatial rearrangement of the sheet, through the flapping action of the jet.

Figure 7 shows the variation of the normalised transverse component of vorticity,
ω∗y = ωyD/ue, in the x–z plane, at six points in the oscillation cycle. The plane is
positioned along the axis of the jet at y/D = 0, and therefore cuts through the legs
of the hairpin structures. In this plane the shear layer is observed to form a train of
vortical structures, with structures on either side of the jet centreline having opposite-
sign vorticity. In contrast with the cross-stream plots (shown in figure 5), the vorticity
distribution in the transverse plane is approximately symmetric. Structures at the same
downstream location on the left- and right-hand side of the plot correspond to the left-
and right-hand legs of a single hairpin structure, which is formed at the same point in
the forcing cycle. Given that two hairpin structures are formed during each oscillation
cycle, and that each pair of legs can be observed in this plane, the streamwise distance
between vortex cores is 1x/D≈ 0.5. It should also be noted that in comparison with
the head locations, the cross-stream location of the vortex cores on both sides of
the jet is z/D ≈ ±0.5 close to the jet exit, and decreases slightly with downstream
distance.

The symmetry observed in the x–z plane, and the anti-symmetry observed in the
x–y plane together with the observations of the three-dimensional structure therefore
demonstrate that the current application of transverse acoustic forcing results in the
formation of plane-symmetric vortex structures about the x–z plane, which exist with
a phase difference of half the forcing cycle. In other words the instantaneous structure
of the jet is instantaneously anti-symmetric about the x–z plane, and plane-symmetric
in the mean.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.821


882 A22-14 N. A. Worth and others

-0.5 0
z/D

x/
D

0.5 -0.5 0
z/D

0.5 -0.5 0
z/D

0.5 -0.5 0
z/D

0.5 -0.5 0
z/D

0.5 -0.5 0
z/D

0.5

4

3

2

1

0

t/T = 0 t/T = 1/6 t/T = 2/6 t/T = 3/6 t/T = 4/6 t/T = 5/6

10
0
-10 ø y

D
/u

e

FIGURE 7. Slices of normalised vorticity, ω∗y = ωyD/ue, in the x–z plane, at y/D= 0, at
six points in the forcing cycle. Velocity vectors at the jet exit are included (showing every
third vector).

3.2. Vortex tracking
In order to quantify the observation that the advection velocity of the hairpin head
and legs is different, a simple vortex tracking algorithm was employed. Local vorticity
maxima above a threshold value of |ω∗|> 4 were located in the jet centreline vorticity
slices presented in figures 5 and 7, which allow the in-plane location of the vortex
cores described as the hairpin heads and legs to be defined. This choice of slices
captures one location for the vortex core of the head, and two locations for the
corresponding vortex cores of the legs. A least squares fit to a two-dimensional
Gaussian vorticity distribution was performed over a 7 × 7 vector window around
each of the local maxima in order to determine their locations to sub-vector spacing
resolution. The vortex tracking algorithm was applied to each of the phase-averaged
fields and the positions of the cores plotted with varying cycle time, as shown in
figure 8(a). It should be noted that vortex cores formed during four oscillation cycles
are simultaneously present in the measurement volume, and therefore the spatial
locations of the vortex core positions have been unwrapped with respect to the
oscillation cycle to aid the interpretation of their positions. Tracking results from the
inviscid vortex model are also plotted in this section, but are discussed further in
§ 3.3.

Figure 8(a) shows the position of both the vortex core head and legs. Vortex
cores associated with structures of opposite orientation are identified separately,
with a distinction made between structures with heads lying on either the left-hand
(y/D < 0) or right-hand (y/D > 0) sides of the jet, hereafter referred to as LHS
and RHS structures. This separation was made in order to account for the phase
difference between structures, allowing a t/T = −1/2 shift to be applied to RHS
structures in order to collapse the data. Despite a small amount of positional scatter,
structures on both sides of the jet share similar dynamics. The location of the hairpin
head is observed to vary approximately linearly with time, therefore advecting at a
near-constant rate. As expected from the inverted orientation of the hairpin structures
shown previously, at a given instant in time the hairpin legs are downstream of the
heads. Therefore, in figure 8(a) the scattered points denoting the hairpin leg locations
are located above the head locations. The downstream location of each pair of hairpin
legs is shown to match very closely, meaning that the hairpin structures are symmetric
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FIGURE 8. Vortex core tracking results. In both panels the filled markers show structures
with the heads on the left-hand side (y/D < 0) and open markers show structures with
heads on the right-hand side (y/D> 0). (a) Non-dimensional vortex core location against
time shows the different advection velocities of cores in the x–y plane (blue circles) and
in the x–z plane (red squares and triangles). Solid and dashed lines represent the leg and
head positions, respectively, calculated using the vortex model (VM). (b) Variation of the
hairpin inclination angle, Φ, with downstream distance. The solid line shows the ring
angle calculated using the VM.

about the x–z plane. The location of the legs is also observed to vary approximately
linearly with time, again corresponding to a near-uniform advection velocity. However,
calculating a linear line of best fit to the core locations demonstrates through the
differing slopes that the advection velocities of the head and legs differ, with mean
advection velocities of uhead/ue = 0.45 and ulegs/ue = 0.53 calculated for the head and
legs, respectively.

The difference in advection velocity between the head and legs of each hairpin
means that as these structures advect downstream the difference in location between
the head and legs increases (as shown by the diverging lines in figure 8a), meaning
the inclination angle of the structures also increases. An estimate of the hairpin
inclination angle, Φ, can be made by relating the downstream location of the head
and legs at each point in the cycle according to Φ = arctan((xhead − xlegs)/|yhead|). The
variation of Φ with time is shown in figure 8(b). The plot shows that immediately
after the hairpin structure pinches off, it has an inclination of Φ ≈ 25◦. Based on
the magnitude of the transverse acoustic velocity oscillations, the maximum jet angle
at exit is approximately 6◦. Therefore during the roll-up process, the fluid entering
the head and legs of each hairpin structure must also advect at differing velocities,
increasing the inclination angle by another 19◦ over three-quarters of a cycle. While
the rate of this initial inclination increase is not possible to quantify, due to a lack
of data at the jet exit, and the difficulty of defining the location of the structure prior
to pinch-off, a similar difference in advection rates to the newly pinched-off structure
would provide such an increase in inclination over this period. Following pinch-off,
the inclination angle is shown to increase with downstream distance with the structure
reaching an angle of Φ ≈ 40◦ before breaking up.

The reduced advection velocity of the hairpin heads is due to their repositioning
through the action of the jet flapping. This is quantified in figure 9, which shows
the variation in radial location of the vortex cores with downstream distance. The
markers show that the vortex cores are more widely spread in the x–y plane, with
a mean position of y/D ≈ 0.6, compared with the position of the cores in the x–z
plane, which are initially spaced at z/D ≈ 0.5. However, as shown previously in
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FIGURE 9. Vortex core tracking results showing radial location of vortex cores and shear
layer half-width. Both panels show the non-dimensional radial vortex core location against
downstream location for vortex cores in the x–y plane (blue circles) and in the x–z plane
(red squares and triangles). The mean jet half-widths are also plotted for the x–y plane
(solid blue line) and in the x–z plane (dashed red and dash-dot red lines). The radial
positions calculated using the vortex model (VM) are also plotted for the head (dashed
black line) and legs (solid black line).

figure 2(a), even close to exit, the jet appears to be spreading more rapidly in the y
direction due to the transverse acoustic excitation. Therefore it is useful to analyse
the location of the vortex cores together with the local spreading rate, defined as the
jet half-width y1/2 in the x–y plane, where u(y)/ue = 1/2, or z1/2 in the x–z plane,
where u(z)/ue = 1/2. In the current study to account for the imperfect alignment
of the jet with the acoustic mode, we define the jet half-width separately for left-
and right-hand sides on each plane of interest, allowing the vortex location to be
compared to the local jet velocity in each case. While the vortices in the x–z plane
closely follow the mean shear-layer velocity, the cores the x–y plane periodically fall
above this line, and, as a consequence, are advected more slowly downstream. This
periodic oscillation in radial location also results in the periodic oscillation in the
hairpin inclination angle observed in figure 8(b). The jet spreading behaviour is also
noteworthy, with a significantly enhanced spreading rate in the transverse direction
beyond x/D > 2, although beyond this location there is considerable asymmetry in
the spreading rate on left- and right-hand sides.

The strength and pinch-off time of vortices were characterised through structure
circulation in the two planes of interest, and the total circulation present in these
planes. This characterisation is similar to the work of Gharib, Rambod & Shariff
(1998), and is calculated here through the integration of the non-dimensional vorticity
above a threshold value of |ωi|∗> 1 over a non-dimensional area, described in the two
planes of interest using the following equations:

Γ ∗y =
∫ x2/D

x1/D

∫ z2/D

z1/D
ω∗y d

( z
D

)
d
( x

D

)
, (3.1)

Γ ∗z =
∫ x2/D

x1/D

∫ y2/D

y1/D
ω∗z d

( y
D

)
d
( x

D

)
. (3.2)

The circulation is therefore non-dimensionalised by the jet velocity and diameter,
Γ ∗i = Γi/ueD. However, the constant circulation generated by the jet shear layer in
the current work and the ambiguous pinch-off location of structures in the x–z plane
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at this threshold level required us to use a slightly modified approach which is now
described.

In order to neglect circulation from previous cycles, vorticity is only included from
a region of interest which is extended at the mean shear-layer velocity. Initially the
upper bound of this window, x2, was positioned at x0,z/D= 0.2 in the x–z plane and at
x0,y/D=0.75 in the x–y plane. The upper-bound location was selected in the x–y plane
in order to include the initial shear-layer circulation which never pinches off. Each
upper bound was translated downstream at the mean shear-layer velocity, whereas the
lower bound was held at x1/D = 0, thereby extending the region of interest at each
time step. The total circulation is assessed between these bound locations, and for left-
and right-hand sides of each plane.

In order to assess the circulation contained in the pinched-off structures, separate
lower bounds were introduced to separate the contribution from these. The lower
vortex bound positions were selected in order to separate the bulk vorticity observed
in each structure from that in adjacent structures, and the shear layer. Given that a
vortex advecting at the mean shear-layer velocity would translate a non-dimensional
distance of dvortex/D = (ue/2)/ff D = 1 in the current flow, the vortex bound in the
x–y plane is set approximately 1x/D = 1 upstream of the upper bound. Two vortex
bounds are introduced in the x–z plane to separate the circulation present in the two
legs formed during a forcing cycle, with these located at approximately 1x/D= 1/2
and 1x/D = 1 upstream of the upper bound. Given that the pinch-off of vortex
structures from the shear layer at this threshold level is less obvious than that in
previous work (Gharib et al. 1998; Aydemir et al. 2012), and structures in the x–y
plane begin to strongly interact with structures from the previous cycle at t/T = 1.3,
these definitions are imperfect. However, separating the circulation in this relatively
straightforward manner does allow us to isolate the majority of circulation present
in the observed structures, allowing us to make some interesting observations. The
bound definitions for all circulation calculations are summarised in the Appendix.

The non-dimensional circulation is plotted in figure 10. The total circulation
in both planes is shown to increase approximately linearly with time, which is
somewhat expected given the steady generation of vorticity from the jet shear
layer. However, in the absence of significant axial velocity oscillations this steady
production is significantly different from the behaviour of longitudinally forced jets,
where the production of circulation is highly unsteady (Aydemir et al. 2012). The
total circulation in the x–y plane does, however, appear to oscillate very slightly, as
the transverse velocity appears to first supplement (t/T < 0.5) and then counteract
(t/T > 0.5) the generation of circulation. After the hairpin head has pinched off, its
circulation remains relatively constant at Γ ∗z ≈ 1 for around half a period before
interacting with downstream structures. This allows the pinch-off time, where the
circulation of the structure matches the total circulation, to be estimated as t/T ≈ 0.5.
This point in the cycle corresponds to transverse fluctuating velocity maxima, or the
point at which the jet orientation is rotating away from the forming structure most
rapidly. In contrast, the leg structures on the x–z plane contain approximately half the
circulation of the heads, Γ ∗y ≈ 0.5. While this may be obvious from the definition of
vortex bounding boxes used, it is a useful point to explicitly confirm, suggesting that
each head shares vortex lines, and is thereby linked, not only with its own legs, but
also with the legs of the upstream structure. The doubling of the circulation between
head and leg structures is therefore consistent with previous visual observations of the
complex linking of vortex rings of alternating inclination (Urbin & Metais 1996; da
Silva & Métais 2002). Finally, it should also be noted that while the head structures
contain twice the vorticity of the legs, the spatial organisation of this vorticity (shown
previously in figures 5 and 7) is clearly quite different.
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FIGURE 10. Circulation against time in two planes of interest. Both panels show the
total non-dimensional circulation (blue squares). (a) Additionally showing the circulation
contained in the hairpin head structures (red triangles). To account for the phase difference
between structures on the left- and right-hand sides, a t/T = −1/2 shift was applied to
the structures on the right-hand side, to collapse the data. (b) Additionally showing the
circulation contained in the hairpin leg structures (red left-facing and right-facing triangles).
In both panels the filled markers show the circulation for structures with heads on the
left-hand side (y/D< 0) and open markers show structures with heads on the right-hand
side (y/D> 0).

3.3. Inviscid vortex line model
Having experimentally characterised the jet in terms of its dominant vortical structures,
it is now useful to present results from the inviscid vortex line model introduced in
§ 2.3 in order to further understand the role of induction in the development of
these structures. Figure 11 shows vortex line representations of structures from the
inviscid model, at three points in the forcing cycle. Close to the jet exit, the initial
inclined ring shape of the structures is clearly shown, with alternating structures
plotted with different colours to aid identification. As the model time advances, these
structures are advected downstream with a uniform velocity, as well as advecting
in the transverse direction due to the applied periodic acoustic advection velocity.
The constant downstream advection results in multiple structures distributed in the
streamwise direction, separated as in the experiment by a distance of 1x/D≈1. While
difficult to see in this three-dimensional representation due to the smaller transverse
component magnitude, the structures also periodically advect back and forth slightly
in the transverse direction. However, except for defining the initial relative locations
of the structures, these steady and quasi-steady components of the total advection
do nothing to modify the shape or orientation of the structures themselves. It is
rather the induced velocity component which results in hairpin deformations as they
are advected downstream. In order to understand this contribution, velocity vectors
representing only the induced velocity component, ui(t), are also plotted at every
fourth node location.

As the hairpin structures advect downstream they are observed to deform in a
number of ways. In particular, however, there is a strong interaction between the
open ends of each ring, which represents the lower part of each hairpin’s legs,
and the head of the structure immediately downstream. The lower part of each
hairpin’s legs begins by trailing the head of the structure immediately downstream
(A1 in figure 11). However, these are rapidly pulled upwards (A2 in figure 11) and
ultimately through the arch and over the top of the head of the structure immediately
downstream (A3 and A4 in figure 11), as a result of the induced velocity from the
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FIGURE 11. Vortex line locations from the inviscid vortex model, at three points in
the forcing cycle. Structures with opposite initial inclination angle and orientation are
plotted with different colours to aid identification. Velocity vectors representing only the
induced component of velocity, ui(t), are also plotted at every fourth node location.
Annotations identify: A1–A4, the legs of the hairpin are drawn through the arch of the
preceding structure; B, the induced component of velocity on the head has a negative
radial component and a modest axial component; C, the induced component on the legs
has a positive radial component and a large axial component which in combination give
rise to the observed dynamics; D, the centre of the hairpin head begins to arch upward
under the induced velocity of the legs; E, the shoulders of the hairpin begin to bow
outwards in the cross-stream direction resulting in an increasingly square geometry.

downstream hairpin head. This effect is made apparent when comparing the size and
inclination of the velocity vectors on the legs of one structure and the head of the
downstream structure. Higher velocity magnitudes and a positive radial component

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.821


882 A22-20 N. A. Worth and others

are observed on the lower part of the legs (C in figure 11), and lower velocity
magnitudes and a negative radial component are seen on the heads (B in figure 11).

The lower part of the hairpin legs also induces a reciprocal effect, causing the head
of the downstream structure to arch upwards in its centre (D in figure 11), and the
shoulders of the structure (the points approximately between the head and legs) to
bow downwards in the streamwise and outwards in the cross-stream direction (E in
figure 11). The deformation this induces bears strong similarities to the structures
observed experimentally in figure 4. Therefore, while this simple model cannot capture
the full complexity of the jet dynamics, it does indicate that the increasingly square
geometry of the structures as they advect downstream, the increasing hairpin angle
and the deformation and eventual break-up of the structure head may all be a result
of the interaction between subsequent structures through mutual induction.

The structure dynamics predicted by the vortex model can be further quantified by
examining the downstream and radial locations of the filaments and the corresponding
evolution of the hairpin inclination angle. The normalised hairpin head and leg
locations were defined in a manner similar to those for the experimental results, in
this case through the intersection of the closest vortex filament from each structure
with the x–y and x–z planes for the head and legs, respectively. The inclination angles
were also defined in a similar manner, and calculated from these locations. In order
to compare directly with the experimental results, the locations and angles from the
vortex model were plotted previously in figures 8 and 9, and are now discussed.

As observed previously in the experimental results, figure 9 shows that the heads
are created at a larger radius than the legs due to the transverse flapping of the jet. In
the model the radial positioning of the hairpin heads at small downstream distances
is correctly replicated primarily through the initialisation of the ring position. The
periodic oscillation of head radial position with downstream location is also well
captured at moderate downstream distances, through the specified phase relationship
of the transverse acoustic advection velocity.

As shown in figure 9, the legs are initially located at smaller radii in comparison
with the heads, and as the structures advect downstream they are seen to move further
inwards radially. This inward radial movement of the legs is captured correctly by
the vortex model which also shows a decrease in radial position with increasing
downstream distance. This behaviour in the modelled structures can be attributed
to the interaction induced between subsequent structures. As the two legs from a
hairpin structure are pulled up and through the head of the downstream structure,
they are induced to bunch more closely together. As the hairpin legs bunch together
they induce greater velocities on one another and advect more rapidly downstream.
Conversely the larger radial location of the hairpin heads means that these experience
lower induced velocities, and therefore advect more slowly downstream. In conformity
with the experimental results, these differing advection velocities are reflected in both
the downstream locations of the head and legs shown in figure 8(a), and also the
vortex inclination angles calculated from these in figure 8(b). Therefore, despite
its simplistic formulation, the vortex model provides reasonable prediction of the
development of the vortex locations in the near field, indicating that the complex
dynamics of the hairpin structures is largely driven by induction. The model cannot,
however, capture the break-up of the vortices, and therefore the radial locations of
the head at large downstream distances are poorly described.

3.4. Root mean square velocity oscillations
It is also interesting to examine the velocity field statistics through the root mean
square (RMS) velocity oscillations. On an unforced turbulent round jet these would be
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FIGURE 12. Comparison of normalised components of the RMS velocity between
experimental (Exp.) and vortex model (VM) results. Contours are presented in both the
x–y plane at z/D= 0 and the x–z plane at y/D= 0.

expected to grow in amplitude with downstream distance as the shear layers develop,
reaching modest amplitudes (see for example Pope (2000), § 5.4.1, p. 136). However,
the formation of large-scale phase-averaged vortex structures at the jet exit due to
acoustic forcing significantly modifies their distribution. To illustrate this, normalised
RMS velocity oscillations are plotted in figure 12 on both the x–y and x–z planes
from both the experiment (left-hand half of each panel) and the model (right-hand
half of each panel). It should be noted that both experimental and model results lack
a turbulent fluctuating component, and therefore the RMS components in the present

study are representative of the phase-averaged velocity fluctuations,
√

ũ2, rather than
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the more conventional sum of phase-averaged fluctuating and turbulent oscillations,√
(ũ+ u′)2.

The streamwise component of the RMS velocity,
√

ũ2/ue, is presented in
figures 12(a) and 12(d) for the x–y and x–z planes, respectively. The x–y plane
captures the transverse jet oscillation, and the experimental results show a high-
magnitude region close to the jet exit and a lower-magnitude streak which follows
the meandering trajectory of the vortex structures as these advect downstream. In the
x–z plane there are no large oscillations at the base of the jet in the experimental
results, but a similar lower-magnitude streak appears along the shear layer, with the
shape of this streak again closely following the vortex trajectories observed previously.
It is also worth commenting on the magnitude of oscillations. Experimentally RMS
velocities are observed up to approximately 30 % of the bulk flow velocity, which is
significantly larger than the magnitude of turbulent fluctuations in the near field of
an unforced jet.

The model results in the right-hand half of the panels of figure 12(a,d) show
artificially high regions of oscillating velocity in the near field close to the jet axis
in both planes of interest. These regions result from the artificial method of structure
formation used in the current model. The sudden placement of structures, rather
than directly modelling the roll-up process, gives rise to large oscillations over the
forcing cycle close to the jet exit. However, as our current interest is in understanding
structure development, accepting this deficiency the model does appear to capture
some important features of the downstream RMS distribution, replicating to a certain
degree the high-magnitude streaks associated with the meandering path of the vortex
cores, and the approximate magnitude of the RMS velocity.

The transverse component of oscillating velocity,
√
ṽ2/ue, is shown in figures 12(b)

and 12(e) for the x–y and x–z planes, respectively. From the experimental results, the
fields are dominated by a series of high-magnitude regions, which again follow the
trajectory of the vortex cores. The pinching and expanding of these high-magnitude
regions in the x–y plane with increasing downstream distance result from the
combination of the induced velocity from the vortex cores either combining with
or cancelling out the transverse acoustic velocity oscillations. This results in a
distinctive patternation of the field, the essential features of which are replicated
relatively well by the vortex model. However, the vortex model is not capable of
accurately capturing the vortex breakdown, and therefore larger discrepancies are seen
with increasing downstream distance (x/D > 2). Similarly, important features of the
transverse component in the x–z plane, such as the inwardly inclined high-magnitude
streaked regions close to the jet shear layers and the low-magnitude elliptical regions
along the jet centreline, are also represented relatively well by the vortex model in
the near field.

Finally, reasonable agreement in the distribution and amplitude of RMS velocity is
also observed for the cross-stream component,

√
w̃2/ue, as shown in figure 12(c, f ).

The reasonably good agreement between experimental and numerical results in
terms of both distribution and amplitude of velocity oscillations demonstrates that
the velocity field statistics are dominated by the large-scale hairpin structures, with
the pronounced departures from the behaviour of an unforced jet driven by velocity
induced by the coherent hairpin structures in addition to the contribution from the
acoustic field, rather than by jet instabilities or other viscous effects.
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FIGURE 13. Weighted phase of vorticity fluctuations in the y–z plane at different
downstream locations, showing the response at the forcing frequency and second and third
harmonics. The colour in each panel represents the phase angle of the fluctuation at the
measurement location, and the brightness represents the oscillation magnitude.

3.5. Spectral analysis
In order to further analyse the spectral content of the velocity gradient field, the
weighted phase of vorticity fluctuations was calculated in y–z planes at different
downstream locations, shown in figure 13. The weighted phase calculation used
an approach similar to that of Hauser et al. (2011), in which the fast Fourier
transform of the vorticity magnitude fluctuation at each measurement point within
each plane of interest was taken, before using these complex values to calculate the
magnitude, |ω( f )|, and phase, Ψω( f ), of vorticity oscillations for different harmonic
components ( f = mff , where m is an integer). Weighted phase images were created
at integer values of the forcing frequency by using colour to denote the phase angle
of the oscillations at each measurement location, and brightness to denote amplitude.
Through this weighting the phase variation is only discernible in regions with a
significant fluctuation amplitude, providing a useful way of understanding the most
significant vorticity oscillations. Zero padding was used in order to ensure frequency
bins were located at integer multiples of the forcing frequency, and Hann windowing
was employed in order to reduce dependence on the limited sample size. Finally, it
is also important to note that the cyclic colour map was selected to be perceptibly
uniform prior to the brightness weighting process (Thyng et al. 2016).

The development of the vortex structures as they advect downstream can be
understood by looking from left to right on the figure. Images in the top row are
brightest, indicating that the vorticity field is dominated by oscillations at the first
harmonic. Crescent-shaped regions in this row correspond to the head and legs of
the vortex structures, which are clearly visible on each side of the y axis. The phase
colouring shows these structures are in anti-phase with each other at each downstream
location, corresponding to the previously observed staggered downstream locations
of the vortex core heads. As the hairpin structures are advected downstream they
can be seen to deform, from initially round close to the jet exit to increasingly
square. It is also interesting to note that immediately downstream of the jet exit,
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vorticity fluctuations along structures either side of the y axis are in phase, but as
these structures are advected downstream, they exhibit phase variations along each
structure. These waves are likely to arise as a result of the observed mutual interaction
of the structures with vortices downstream.

While vorticity fluctuations at the second harmonic are in general significantly
lower in amplitude in comparison with the fundamental frequency, the middle row
of weighted phase images is marked by two bright points between 1 < x/D < 2,
which lie on the y axis at x/D = ±0.5. These two points represent the passage of
the hairpin leg structures, but these peaks are now centred at f /ff = 2, due to the
formation of two structures every forcing cycle. The way that these hairpin structures
are interwoven means that only a relatively small region of the flow experiences a
strong frequency doubling due to the leg vortices advecting past the same volumetric
location. The figure also demonstrates how short-lived these structures are, with
the magnitude of the other harmonic components becoming similar to that of the
principal components further downstream, x/D > 2.5, which is indicative of their
rapid subsequent breakdown.

4. Conclusions
In the present paper we have studied a turbulent jet subject to transverse acoustic

excitation using tomographic PIV. The jet was located at the pressure node location
in an enclosure, and experienced a strong transverse flapping motion which was
found to dominate its structure and dynamics. The vorticity field was dominated
by the roll-up and advection of inverted hairpin structures, with two of these
structures formed during each forcing cycle. The vorticity distribution was found
to be plane-symmetric with a half-cycle offset in phase, and could therefore be
described as anti-symmetric about the x–z plane. This anti-symmetric distribution of
vorticity represents a significant departure from the structures of axially forced jets,
which are dominated by unsteady axisymmetric structures.

As the hairpin structures advect downstream their orientation angle was shown
to increases due to different advection velocities of head and leg vortices. These
velocity differences are caused by the spatial organisation of the vortices as a result
of the roll-up mechanics. The flapping motion of the jet causes the hairpin heads to
be formed at larger radial distances in comparison with the hairpin legs, resulting
in a reduction in their induced advection velocity. Furthermore as the structures
are advected downstream they were observed to interact through mutual induction.
These effects resulted in the distortion of the hairpin shape, meaning they became
increasingly square with downstream distance, and also increasingly intertwined.

The formation of two distinct structures during each forcing cycle results in the
generation of harmonic oscillations at certain locations in the volume. The hairpin
structures were shown to be short-lived, rapidly breaking down after several jet
diameters, which was accompanied by rapid jet spreading in the transverse plane. A
simple vortex model was introduced, and it was found that the vortex dynamics and
distribution of velocity fluctuations in the flow are dominated by velocity induced by
the phase-averaged large-scale structures.
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Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2019.821.

Appendix
Tables 1 and 2 describe the bound positions for the calculation of circulation in the

heads, legs and total domain as described in § 3.2.

x1/D x2/D y1/D y2/D

Γ ∗z total LHS 0
x0,z

D
+ t

T
−1 0

Γ ∗z total RHS 0
x0,z

D
+ t

T
− 1

2
0 1

Γ ∗z head LHS
x2

D
− 1

x0,z

D
+ t

T
−1 0

Γ ∗z head RHS
x2

D
− 1

x0,z

D
+ t

T
− 1

2
0 1

TABLE 1. Bound values for Γ ∗z circulation calculations in § 3.2, based on an initial bound
of x0,z/D= 0.2. The bounds are time dependent. Calculation of the LHS starts at t/T = 0,
whereas calculation of the RHS starts at t/T = 1/2.

x1/D x2/D z1/D z2/D

Γ ∗y total LHS 0
x0,y

D
+ t

T
−1 0

Γ ∗y total RHS 0
x0,y

D
+ t

T
− 1

2
0 1

Γ ∗y leg 1 LHS
x2

D
− 1

2
x0,y

D
+ t

T
−1 0

Γ ∗y leg 1 RHS
x2

D
− 1

2
x0,y

D
+ t

T
− 1

2
0 1

Γ ∗y leg 2 LHS
x2

D
− 1

x0,y

D
+ t

T
− 1

2
−1 0

Γ ∗y leg 2 RHS
x2

D
− 1

x0,y

D
+ t

T
− 1 0 1

TABLE 2. Bound values for Γ ∗y circulation calculations in § 3.2, based on an initial bound
of x0,y/D= 0.75. The bounds are time dependent. Calculation of the LHS starts at t/T = 0,
whereas calculation of the RHS starts at t/T = 1/2.
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