
Requirement specification and model-checking of a
real-time scheduler implementation

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE

Laboratoire des Sciences du Numérique de Nantes

June 2020

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 1 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Introduction

Context

If RTOS are to use the new scheduling policies:

the challenge: scheduling programming is a complex task since multiple
implementation constraints are abstracted in literature and must be
considered.

the need: the implementation of scheduling policies have to be rigorously
verified

Ô⇒ Our intention: study the suitability of model-checking for conducting
such a verification.

Trampoline RTOS

- Real-time operating system based on OSEK/
VDX and AUTOSAR standard [Béc2006]
- Partitioned xed task priority scheduling

Does the implemented scheduler behaves correctly?

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 2 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Introduction

Context

If RTOS are to use the new scheduling policies:

the challenge: scheduling programming is a complex task since multiple
implementation constraints are abstracted in literature and must be
considered.

the need: the implementation of scheduling policies have to be rigorously
verified

Ô⇒ Our intention: study the suitability of model-checking for conducting
such a verification.

Trampoline RTOS

- Real-time operating system based on OSEK/
VDX and AUTOSAR standard [Béc2006]
- Partitioned xed task priority scheduling

Does the implemented scheduler behaves correctly?

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 2 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Our contribution

Our approach

We propose a verification approach based on model-checking to formally
verify an implementation of a global scheduler in Trampoline

Steps of our verification approach

1 Elaborate the model of the scheduling components inside the OS model

2 Define requirements describing the expected behavior of the scheduling
components

3 Build scenario generators of scheduling events in relation with requirements

4 Conduct a modular verification of the requirements with respect to the scenarios

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 3 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Our contribution

Our approach

We propose a verification approach based on model-checking to formally
verify an implementation of a global scheduler in Trampoline

Steps of our verification approach

1 Elaborate the model of the scheduling components inside the OS model

2 Define requirements describing the expected behavior of the scheduling
components

3 Build scenario generators of scheduling events in relation with requirements

4 Conduct a modular verification of the requirements with respect to the scenarios

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 3 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Our contribution

Our approach

previous

study
- Implementation of G-EDF in Trampoline

- Modeling the implementation

- First try of veri cation of some

 requirements over a single application

Partial veri cation !

This work

Conduct the veri cation in depth by:
- rigorously developing the speci cation requirements

- carrying the veri cation by generating all possible

 scenarios of interleaved scheduling events

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 4 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Our contribution

Our approach

previous

study
- Implementation of G-EDF in Trampoline

- Modeling the implementation

- First try of veri cation of some

 requirements over a single application

Partial veri cation !

This work

Conduct the veri cation in depth by:
- rigorously developing the speci cation requirements

- carrying the veri cation by generating all possible

 scenarios of interleaved scheduling events

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 4 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Our contribution

Outline

1 BACKGROUND
- G-EDF implementation architecture
- Step 1: G-EDF implementation modeling

2 APPLYING THE VERIFICATION APPROACH
- Step 2: Requirement specification and formalization
- Step 3: Verification scenarios
- Step 4: Verification process

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 5 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

G-EDF implementation architecture

Scheduling perimeter

the implementation of Trampoline’s scheduler is kernel-based ==>
several OS components are contributing to the scheduling decision:
"The scheduling perimeter"

Responsible for
operations related to

the activation and
termination of tasks

Time

Manager
Task List

Manager

Scheduler

Context

Switch

Manager

Scheduling perimeter

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 6 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

G-EDF implementation architecture

Scheduling perimeter

the implementation of Trampoline’s scheduler is kernel-based ==>
several OS components are contributing to the scheduling decision:
"The scheduling perimeter"

Responsible for
operations related to

the activation and
termination of tasks

Time

Manager
Task List

Manager

Scheduler

Context

Switch

Manager

Scheduling perimeter

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 6 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

G-EDF implementation architecture

Scheduling perimeter

the implementation of Trampoline’s scheduler is kernel-based ==>
several OS components are contributing to the scheduling decision :
"The scheduling perimeter"

Responsible for the
calculation and

comparison of task
deadlines

Task List

Manager

Scheduler

Context

Switch

Manager

Scheduling perimeter

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 6 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

G-EDF implementation architecture

Scheduling perimeter

the implementation of Trampoline’s scheduler is kernel-based ==>
several OS components are contributing to the scheduling decision :
"The scheduling perimeter"

Responsible for the
insertions and

extractions on ready
job lists Scheduler

Context

Switch

Manager

Scheduling perimeter

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 6 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

G-EDF implementation architecture

Scheduling perimeter

the implementation of Trampoline’s scheduler is kernel-based ==>
several OS components are contributing to the scheduling decision :
"The scheduling perimeter"

Responsible for
determining the

scheduling decision
according to G-EDF

Context

Switch

Manager

Scheduling perimeter

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 6 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

G-EDF implementation architecture

Scheduling perimeter

the implementation of Trampoline’s scheduler is kernel-based ==>
several OS components are contributing to the scheduling decision :
"The scheduling perimeter"

Responsible for
applying the

scheduling decisions

Scheduling perimeter

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 6 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 1: G-EDF implementation modeling

General modeling techniques

Extended Finite Automata +
UPPAAL Functions

a function is modeled either
by an automaton or an
UPPAAL function

variables used in the model
are variables of the OS.

actions and conditions
attached to each transition
are the same ones of the
source code of the system.

Task List Manager

(EFAs + UPPAAL

functions)

Context Switch

Manager

(EFAs)

Time Manager
(EFAs + UPPAAL

functions)

Task Manager

(EFAs)

(EFAs)

Scheduler

Scheduling perimeter model

Modeling [Boukir et al. (2018)]

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 7 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 1: G-EDF implementation modeling

General modeling techniques

Extended Finite Automata +
UPPAAL Functions

a function is modeled either
by an automaton or an
UPPAAL function

variables used in the model
are variables of the OS.

actions and conditions
attached to each transition
are the same ones of the
source code of the system.

Task List Manager

(EFAs + UPPAAL

functions)

Context Switch

Manager

(EFAs)

Time Manager
(EFAs + UPPAAL

functions)

Task Manager

(EFAs)

(EFAs)

Scheduler

Scheduling perimeter model

Modeling [Boukir et al. (2018)]

The OS model

Pre-existing model of Trampoline's Kernel

[Tigori et al. (2017)]

+

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 7 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 1: G-EDF implementation modeling

General modeling techniques

the OS kernel is untimed
==> its execution is
performed in zero time

Task List Manager

(EFAs + UPPAAL

functions)

Context Switch

Manager

(EFAs)

Time Manager
(EFAs + UPPAAL

functions)

Task Manager

(EFAs)

(EFAs)

Scheduler

Scheduling perimeter model

Modeling [Boukir et al. (2018)]

The OS model

Pre-existing model of Trampoline's Kernel

[Tigori et al. (2017)]

+

+

Timer model

(Timed automaton)

G-EDF scheduler is based on jobs absolute deadline
Ô⇒ add an automaton that models the time progression and allows retrieving
the current time.

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 8 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 2: Requirement specification and formalization

Expected behavior of a G-EDF scheduler

Priority rule: at any time t , it is the m jobs (at most) with the closest absolute
deadlines that are running on the m processors of the platform.

Work-conserving policy: processor cannot be be free while there is a ready job.

To be mapped on the implementation level

Implementation
Why taking the implementation specification into account?

The scheduling decision within Trampoline involves
other OS components

Even if the scheduler operates correctly, the produced
scheduling sequence might be wrong

Example: the context switch manager does not apply the
scheduling decision after a rescheduling Ô⇒ the next
rescheduling will be based on false results

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 9 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 2: Requirement specification and formalization

Expected behavior of a G-EDF scheduler

Priority rule: at any time t , it is the m jobs (at most) with the closest absolute
deadlines that are running on the m processors of the platform.

Work-conserving policy: processor cannot be be free while there is a ready job.

To be mapped on the implementation level

Implementation
Why taking the implementation specification into account?

The scheduling decision within Trampoline involves
other OS components

Even if the scheduler operates correctly, the produced
scheduling sequence might be wrong

Example: the context switch manager does not apply the
scheduling decision after a rescheduling Ô⇒ the next
rescheduling will be based on false results

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 9 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 2: Requirement specification and formalization

Modular approach

Describe the expected behaviour of each component in
the form of a set of requirements

Task

Manager

- for every job activation or
termination, the scheduler
shall be called

Scheduler

- during the execution, the jobs
in the RUNNING state have al-
ways a lower absolute deadline
than any other ready job
- a processor shall never be idle
while there is a ready job

Context

Switch

Manager

- the context switching shall
be performed according to the
Scheduler decisions

...

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 10 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 2: Requirement specification and formalization

Modular approach

Describe the expected behaviour of each component in
the form of a set of requirements

Task

Manager

- for every job activation or
termination, the scheduler
shall be called

Scheduler

- during the execution, the jobs
in the RUNNING state have al-
ways a lower absolute deadline
than any other ready job
- a processor shall never be idle
while there is a ready job

Context

Switch

Manager

- the context switching shall
be performed according to the
Scheduler decisions

...

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 10 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 2: Requirement specification and formalization

Why using observers?

Several requirements are complex and depend on implementation choices ==> the
translation to a CTL formulae can become complicated and error-prone

Structure of an observer

observer = EFA witch committed states
running in parallel with the model

each observer corresponds to an OS
component of the scheduling perimeter

its execution is launched using a triggering
broadcast synchronization

requirement are checked in the verification
box using a set of test functions that return
true or false depending on the result of
meeting the requirements. Veri�cation

Box

Init

BadGood

OS_component_name_trigger_syn?

!Req_1
Req_1 &&

Req_2 &&

Req_3

C

!Req_3

!Req_2

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 11 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 2: Requirement specification and formalization

Why using observers?

Several requirements are complex and depend on implementation choices ==> the
translation to a CTL formulae can become complicated and error-prone

Structure of an observer

observer = EFA witch committed states
running in parallel with the model

each observer corresponds to an OS
component of the scheduling perimeter

its execution is launched using a triggering
broadcast synchronization

requirement are checked in the verification
box using a set of test functions that return
true or false depending on the result of
meeting the requirements. Veri�cation

Box

Init

BadGood

OS_component_name_trigger_syn?

!Req_1
Req_1 &&

Req_2 &&

Req_3

C

!Req_3

!Req_2

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 11 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 2: Requirement specification and formalization

Check a requirement

Each requirement is checked using reachability test on the Good and Bad states of the
corresponding observer.

A <> Observer.Good: all paths lead finally to the Good state

E <> Observer.Bad: there exists a path leading to a Bad observer state

check_edf_prio(): during the execution the m jobs
in the RUNNING state have always a lower
absolute deadline than any other ready job

check_idle_cores(): a processor shall never be
idle while there is a ready job

==> E <> Scheduler_Observer.Bad

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 12 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 2: Requirement specification and formalization

Check a requirement

Each requirement is checked using reachability test on the Good and Bad states of the
corresponding observer.

A <> Observer.Good: all paths lead finally to the Good state

E <> Observer.Bad: there exists a path leading to a Bad observer state

check_edf_prio(): during the execution the m jobs
in the RUNNING state have always a lower
absolute deadline than any other ready job

check_idle_cores(): a processor shall never be
idle while there is a ready job

==> E <> Scheduler_Observer.Bad

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 12 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step3: Verification scenarios

Verification engines

trigger the scheduler by producing scheduling events

generate different scenarios of job activation and termination : activation
and execution engines

Activations can occur at anytime and in
any order

Several combinations of task activations
are possible: tasks with different
deadlines and/or equal deadlines.

The execution time of a task is
indeterministic

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 13 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step3: Verification scenarios

Verification engines

trigger the scheduler by producing scheduling events

generate different scenarios of job activation and termination : activation
and execution engines

Activations can occur at anytime and in
any order

Several combinations of task activations
are possible: tasks with different
deadlines and/or equal deadlines.

The execution time of a task is
indeterministic

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 13 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step3: Verification scenarios

Verification engines

trigger the scheduler by producing scheduling events

generate different scenarios of job activation and termination : activation
and execution engines

Activations can occur at anytime and in
any order

Several combinations of task activations
are possible: tasks with different
deadlines and/or equal deadlines.

The execution time of a task is
indeterministic

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 13 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step3: Verification scenarios

Verification engines

trigger the scheduler by producing scheduling events

generate different scenarios of job activation and termination : activation
and execution engines

Activations can occur at anytime and in
any order

Several combinations of task activations
are possible: tasks with different
deadlines and/or equal deadlines.

The execution time of a task is
indeterministic

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 13 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step3: Verification scenarios

Verification engines

Verification scenarios

Choose a number of tasks and a verification duration depending on the
requirement to be verified

Scenario to verify the context switch manager requirement

To be verified: "the context switching shall be performed according to the
scheduler decisions"

Scenario: we initiate the activation and termination of one task and observe the
reaction of context switch manager regarding the scheduling decisions

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 14 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 4: Verification process

Observers are combined with the system model (OS + Timer)

The system model is stimulated using verification engines

CTL properties are expressed over observer models

Verification results: good or counterexample scenario

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 15 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 4: Verification process

Verification results

runtime: between 0.9 seconds and 49 hours

number of states: between 6285 and 1.3 × 109 state

Detected errors:
1 The late update of the ready list regarding the scheduler’s decision

2 Not taking into account the scheduling decisions by the context switch
manager.

3 Saving the context of a terminating task

4 Trying to load the context of a new activated task

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 16 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Step 4: Verification process

Verification results

runtime: between 0.9 seconds and 49 hours

number of states: between 6285 and 1.3 × 109 state

Detected errors:
1 The late update of the ready list regarding the scheduler’s decision

2 Not taking into account the scheduling decisions by the context switch
manager.

3 Saving the context of a terminating task

4 Trying to load the context of a new activated task

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 16 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Achieved

Proposing a modular approach to verify scheduling policies based on
model-checking: it allows the checking of specification requirements

Testing the approach on an implementation of G-EDF within Trampoline

Detecting implementation errors related to switching the OS from static to dynamic
scheduling

Challenges

The combinatorial explosion of the state space

Abstracting the system as much as possible

Future works

Study the integration of model abstraction techniques to limit the explosion of the
state space

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 17 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Thank you for your attention

-

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 18 / 19

Context Overview Background Applying the verification approach Conclusion and perspectives

Bibliography

Jean-Luc Béchennec, Mikael Briday, Sébastien Faucou, and Yvon Trinquet.
"Trampoline an open source implementation of the osek/vdx rtos
specification"
In Emerging Technologies and Factory Automation, 2006. ETFA’06. IEEE
Conference on, pages 62–69. IEEE, 2006.

Kabland Toussaint Gautier Tigori, Jean-Luc Béchennec, Sébastien Faucou, and
Olivier Henri Roux.
"Formal model-based synthesis of application-specific static rtos"
ACM Transactions on Embedded Computing Systems (TECS), 16(4) :97,
2017.

Khaoula BOUKIR, Jean-Luc Béchennec, and Anne-Marie Déplanche.
"Formal approach for a verified implementation of Global EDF in
Trampoline"
In Proceeding of the 26th International Conference on Real-Time Networks
and Systems, pages 83-92, 2018

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE June 2020 19 / 19

	Context Overview
	Introduction
	Our contribution

	Background
	G-EDF implementation architecture
	Step 1: G-EDF implementation modeling

	Applying the verification approach
	Step 2: Requirement specification and formalization
	Step3: Verification scenarios
	Step 4: Verification process

	Conclusion and perspectives

