Requirement specification and model-checking of a real-time scheduler implementation

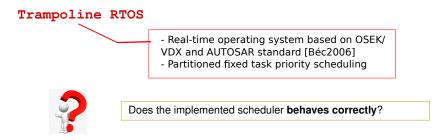
Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE

Laboratoire des Sciences du Numérique de Nantes

June 2020

Background 0000000	Applying the verification approach	Conclusion and persp	ectives
ire to use the new so	cheduling policies:		
	are to use the new so	rre to use the new scheduling policies:	are to use the new scheduling policies:

- the challenge: scheduling programming is a complex task since multiple implementation constraints are abstracted in literature and must be considered.
- the need: the implementation of scheduling policies have to be rigorously verified


 \implies **Our intention:** study the suitability of model-checking for conducting such a verification.

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
Context			

If RTOS are to use the new scheduling policies:

- the challenge: scheduling programming is a complex task since multiple implementation constraints are abstracted in literature and must be considered.
- the need: the implementation of scheduling policies have to be rigorously verified

 \implies **Our intention:** study the suitability of model-checking for conducting such a verification.

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
0000	0000000	0000000	000
Our approach	1		

We propose a verification approach based on model-checking to formally verify an implementation of a global scheduler in Trampoline

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
0000			
Our approach			

We propose a verification approach based on model-checking to formally verify an implementation of a global scheduler in Trampoline

Steps of our verification approach

- Elaborate the model of the scheduling components inside the OS model
- 2 Define requirements describing the expected behavior of the scheduling components
- Build scenario generators of scheduling events in relation with requirements
- Conduct a modular verification of the requirements with respect to the scenarios

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
0000			
Our approach	`		
Our approact	1. A second sec second second sec		

 Implementation of G-EDF in Trampoline
 Modeling the implementation
 First try of verification of some requirements over a single application
 Partial verification !

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
0000			
Our approach	1		

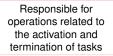
 Implementation of G-EDF in Trampoline
 Modeling the implementation
 First try of verification of some requirements over a single application
 Partial verification !

Conduct the verification in depth by: - rigorously developing the specification requirements - carrying the verification by generating all possible scenarios of **interleaved** scheduling events

Context Overview ○○○●	Background	Applying the verification approach	Conclusion and perspectives
•			

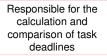
Outline

BACKGROUND

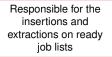

- G-EDF implementation architecture
- Step 1: G-EDF implementation modeling

APPLYING THE VERIFICATION APPROACH

- Step 2: Requirement specification and formalization
- Step 3: Verification scenarios
- Step 4: Verification process

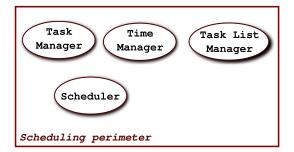

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
	0000000		
Scheduling pe	erimeter		

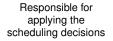
Context Overview	Background	Applying the verification approach	Conclusion and perspectives
	0000000		
Scheduling p	erimeter		

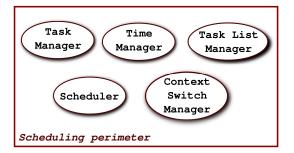

Task Manager
Scheduling perimeter

000	

Task Manager Manager
Scheduling perimeter


Context Overview	Background	Applying the verification approach	Conclusion and perspectives	
0000	0000000	0000000	000	
	G-EDF implementation architecture			
Scheduling p	erimeter			


Task Manager Time Manager Manager
Scheduling perimeter


Context Overview	Background	Applying the verification approach	Conclusion and perspectives
G-EDF implementation architecture			
Scheduling per	imeter		

Responsible for determining the scheduling decision according to G-EDF

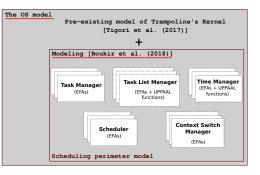
Context Overview	Background	Applying the verification approach	Conclusion and perspectives
0000	00000000	0000000	000
G-EDF implementation architecture			
Scheduling p	erimeter		

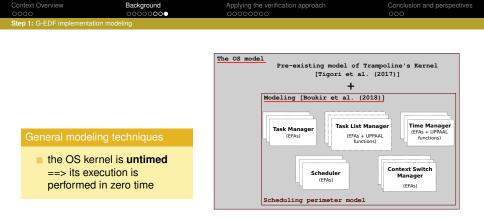
Step 1: G-EDF implementat	tion modeling		
0000	00000000	0000000	000
Context Overview	Background	Applying the verification approach	Conclusion and perspectives

General modeling techniques

Extended Finite Automata + UPPAAL Functions

- a function is modeled either by an automaton or an UPPAAL function
- variables used in the model are variables of the OS.
- actions and conditions attached to each transition are the same ones of the source code of the system.




Context Overview	Background	Applying the verification approach	Conclusion and perspectives
	00000000		
Step 1: G-EDF implementat			

General modeling techniques

Extended Finite Automata + UPPAAL Functions

- a function is modeled either by an automaton or an UPPAAL function
- variables used in the model are variables of the OS.
- actions and conditions attached to each transition are the same ones of the source code of the system.

G-EDF scheduler is based on jobs absolute deadline \implies add an automaton that models the time progression and allows retrieving the current time.

Sten 2. Requirement specifi	cation and formalization		
0000	00000000	0000000	000
Context Overview	Background	Applying the verification approach	Conclusion and perspectiv

Expected behavior of a G-EDF scheduler

- **Priority rule:** at any time *t*, it is the *m* jobs (at most) with the closest absolute deadlines that are running on the *m* processors of the platform.
- Work-conserving policy: processor cannot be be free while there is a ready job.

Sten 2. Requirement specific	cation and formalization		
		• 000 0000	
Context Overview	Background	Applying the verification approach	Conclusion and perspectives

Expected behavior of a G-EDF scheduler

- **Priority rule:** at any time *t*, it is the *m* jobs (at most) with the closest absolute deadlines that are running on the *m* processors of the platform.
- Work-conserving policy: processor cannot be be free while there is a ready job.

Implementation

Why taking the implementation specification into account?

- The scheduling decision within Trampoline involves other OS components
- Even if the scheduler operates correctly, the produced scheduling sequence might be wrong

Example: the context switch manager does not apply the scheduling decision after a rescheduling \implies the next rescheduling will be based on false results

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
		0000000	
Step 2: Requirement specification a	nd formalization		

Modular approach

Describe the expected behaviour of each component in the form of a set of requirements

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
		0000000	
Step 2: Requirement specification and formalization			

Modular approach		
	Describe the expected behavior the form of a set of required	aviour of each component in ments
Task Manager	Scheduler	Context Switch Manager
	- during the execution, the jobs in the RUNNING state have al-	Manager
- for every job activation or termination, the scheduler shall be called	ways a lower absolute deadline than any other ready job - a processor shall never be idle	 the context switching shall be performed according to the Scheduler decisions
	while there is a ready job	

...

Sten 2: Requirement specifi	cation and formalization		
0000	0000000	0000000	000
Context Overview	Background	Applying the verification approach	Conclusion and perspectiv

Why using observers?

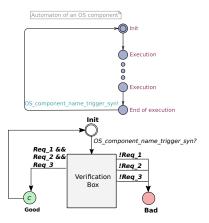
Several requirements are complex and depend on implementation choices ==> the translation to a CTL formulae can become complicated and error-prone

Context Overview

Background

Applying the verification approach

Conclusion and perspectives


Step 2: Requirement specification and formalization

Why using observers?

Several requirements are complex and depend on implementation choices ==> the translation to a CTL formulae can become complicated and error-prone

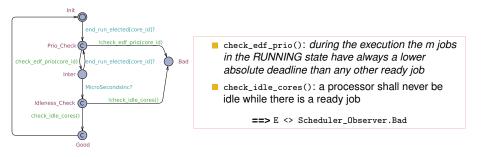
Structure of an observer

- observer = EFA witch committed states running in parallel with the model
- each observer corresponds to an OS component of the scheduling perimeter
- its execution is launched using a triggering broadcast synchronization
- requirement are checked in the verification box using a set of test functions that return true or false depending on the result of meeting the requirements.

Context Overview	Background	Applying the verification approach	Conclusion and perspectives	
		00000000		
Step 2: Requirement specification and formalization				

Check a requirement

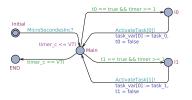
Each requirement is checked using reachability test on the **Good** and **Bad** states of the corresponding observer.


- A <> Observer.Good: all paths lead finally to the Good state
- E <> Observer.Bad: there exists a path leading to a Bad observer state

Check a requirement

Each requirement is checked using reachability test on the **Good** and **Bad** states of the corresponding observer.

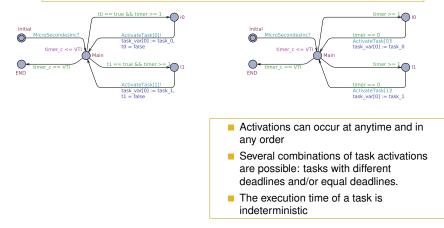
- A <> Observer. Good: all paths lead finally to the Good state
- E <> Observer.Bad: there exists a path leading to a Bad observer state

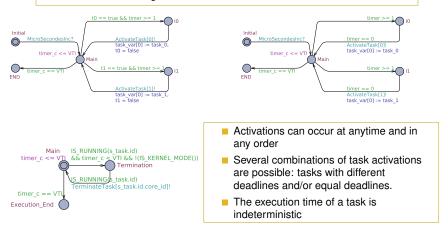


Context Overview	Background	Applying the verification approach	Conclusion and perspectives
Step3: Verification scenarios			
Verification engi	nes		

- trigger the scheduler by producing scheduling events
- generate different scenarios of job activation and termination : activation and execution engines

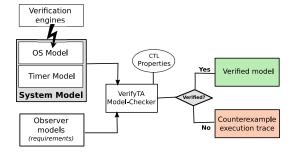
Context Overview	Background	Applying the verification approach	Conclusion and perspectives	
		0000000		
Step3: Verification scenarios				
Verification engines				
Vormoution o	nginoo			


- trigger the scheduler by producing scheduling events
- generate different scenarios of job activation and termination : activation and execution engines


- Activations can occur at anytime and in any order
- Several combinations of task activations are possible: tasks with different deadlines and/or equal deadlines.
- The execution time of a task is indeterministic

- trigger the scheduler by producing scheduling events
- generate different scenarios of job activation and termination : activation and execution engines

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
Step3: Verification scenarios			
Verification e	ngines		


Verification scenarios

Choose a number of tasks and a verification duration depending on the requirement to be verified

Scenario to verify the context switch manager requirement

- To be verified: "the context switching shall be performed according to the scheduler decisions"
- Scenario: we initiate the activation and termination of one task and observe the reaction of context switch manager regarding the scheduling decisions

Context Overview	Background	Applying the verification approach	Conclusion and perspectives
		00000000	
Step 4: Verification process			

- Observers are combined with the system model (OS + Timer)
- The system model is stimulated using verification engines
- CTL properties are expressed over observer models
- Verification results: good or counterexample scenario

Context Overview	Background 00000000	Applying the verification approach ○○○○○○●	Conclusion and perspectives
Step 4: Verification process			
Verification re	esults		

runtime: between 0.9 seconds and 49 hours

number of states: between 6285 and 1.3 × 10⁹ state

Context Overview	Background	Applying the verification approach	Conclusion and perspectives	
Step 4: Verification process				
Verification results				

- runtime: between 0.9 seconds and 49 hours
- number of states: between 6285 and 1.3 × 10⁹ state

Detected errors:

- The late update of the ready list regarding the scheduler's decision
- 2 Not taking into account the scheduling decisions by the context switch manager.
- Saving the context of a terminating task
- Trying to load the context of a new activated task

Context Overview	Background 00000000	Applying the verification approach	Conclusion and perspectives •OO

Achieved

- Proposing a modular approach to verify scheduling policies based on model-checking: it allows the checking of specification requirements
- Testing the approach on an implementation of G-EDF within Trampoline
- Detecting implementation errors related to switching the OS from static to dynamic scheduling

Challenges

- The combinatorial explosion of the state space
- Abstracting the system as much as possible

Future works

Study the integration of model abstraction techniques to limit the explosion of the state space

Thank you for your attention

Khaoula BOUKIR, Jean-Luc BÉCHENNEC, Anne-Marie DÉPLANCHE

Bibliography

 Jean-Luc Béchennec, Mikael Briday, Sébastien Faucou, and Yvon Trinquet.
 "Trampoline an open source implementation of the osek/vdx rtos specification"

In **Emerging Technologies and Factory Automation**, 2006. ETFA'06. IEEE Conference on, pages 62–69. IEEE, 2006.

 Kabland Toussaint Gautier Tigori, Jean-Luc Béchennec, Sébastien Faucou, and Olivier Henri Roux.

"Formal model-based synthesis of application-specific static rtos" ACM Transactions on Embedded Computing Systems (TECS), 16(4) :97, 2017.

 Khaoula BOUKIR, Jean-Luc Béchennec, and Anne-Marie Déplanche.
 "Formal approach for a verified implementation of Global EDF in Trampoline"
 In Proceeding of the 26th International Conference on Real-Time Networks

and Systems, pages 83-92, 2018