
University of Groningen

Faculty of Mathematics and Natural Sciences
Department of Mathematics and Computing Science

Software Engineering and Architecture group

Requirements Speci�cation

Open Pattern Repository
<http://openpatternrepository.googlecode.com>

-DRAFT-
v 1.0r

Groningen, October 7, 2009

Authors

Name Acronym E-Mail

Manteu�el, Christian cm c.manteu�el@student.fontys.nl
Verspai, Martin mv m.verspai@student.fontys.nl

Revision History

Version Author Date Description

0.1 cm 09/08/09 Set up template conform to IEEE/ANSI 830-1998
0.2 cm 09/09/09 Added Purpose and Scope
0.2r mv 09/10/09 Reviewed document and corrected typos
0.3 cm 09/11/09 Components, HLUC, Quality Attributes and supplementary requirements
0.4 cm,mv 09/15/09 Speci�c use cases
0.4r cm 09/16/09 Review �rst part and HLUC
0.5 mv 09/17/09 Added and re�ned SPUCs
0.6r cm 09/17/09 Added outlines and reviewed
0.7 cm 09/22/09 Added customer notes (refer to 10.../20.../correspondence_21_09.txt)

HLUC(2, 6, 9) SPUC(2.2, 2.3, 4.3), Glos category, A3
0.8 cm,mv 09/23/09 Updating Glossary(OpenID, artifact, force, pattern, repository,

template (removed: category, context, description, relationship,
solution, source)), 1.2 Scope, 2.1 Stakeholder, 2.2 Product Perspective,
2.3 User characteristics , HLUC(1, 5, 6,7, 9, 10, 11, 12),
SPUC(1.1-2, 2.1, 4.1, 4.3, 5.1, 10.1-3, 11.1-2, 12.1-3), traceability matrix
SUPR(I1, I2, Q10, Q11, Q13, Q20), general constraints

0.8r cm,mv 09/24/09 Review
0.9 cm,mv 09/25/09 Typos, changes: 1.2 Scope, 2.1 Stakeholders, 2.2 Product perspective,

2.3 User characteristics, HLUC(2, 6, 7, 8, 9, 10, 11), SUPR(I1,I2,Q13)
SPUC(1.1, 1.2, 2.1, 4.2, 4.3, 6.1, 6.2, 6.3, 6.4, 9.1, 9.3, 10.1, 11.1)

1.0 mv 10/05/09 Corrected typos, changed glossary(pattern, template),
user rights graphics, HLUC(1, 5, 6), SPUC(2.2, 4.1, 6.3, 11.1)

1.0r mv 10/06/09 Reviewed introduction, Overall description

Legend: r = reviewed

Contents

Contents I

List of �gures II

List of tables II

Glossary IV

1 Introduction 1

1.1 Purpose . 1
1.2 Scope . 1
1.3 De�nitions, acronyms and abbreviations . 1
1.4 References . 1
1.5 Overview . 1

2 Overall Description 2

2.1 Main Stakeholders of the OPR . 2
2.2 Product perspective . 2
2.3 User characteristics . 2
2.4 Product functions . 3

2.4.1 Package - Pattern Management . 4
2.4.2 Package - Con�guration . 6
2.4.3 Package - Design Decision Management . 7

2.5 General contraints . 8
2.6 Assumptions and dependencies . 9

3 Speci�c requirements 10

3.1 Use Cases . 10
3.1.1 Package - Pattern Management . 10
3.1.2 Package - Con�guration . 19
3.1.3 Package - Design Decision Management . 20

3.2 Supplementary Requirements . 25
3.2.1 Interface Requirements . 25
3.2.2 Software System Attributes . 25
3.2.3 Usability . 25
3.2.4 Reliability . 26
3.2.5 Performance . 26
3.2.6 Extensibility . 27
3.2.7 Availability . 27
3.2.8 Scalability . 27
3.2.9 Portability . 27
3.2.10 Security . 28

Bibliography 29

Appendix 30

A1Copyright handling 30

A1.1 Add pattern description . 30
A1.2 Edit pattern description . 30

A2Traceability matrix 31

A3Category tree 32

A4Outlines 33

A5Usability Measurement Matrix 34

List of Figures

1 Inheritance of user rights . 3
2 Use case packages . 3
3 Relation of actors and use cases in package Pattern Management 4
4 Relation of actors and use cases in package Con�guration . 6
5 Relation of actors and use cases in package Design Decision Management 7
6 Add Pattern . 33
7 View Pattern . 33

List of Tables

1 HLUC-1 - Add Pattern . 4
2 HLUC-2 - Modify Pattern . 5
3 HLUC-3 - Delete Pattern . 5
4 HLUC-4 - Explore Patterns . 5
5 HLUC-5 - Review a Pattern . 6
6 HLUC-6 - De�ne a category . 6
7 HLUC-7 - Create an account . 7
8 HLUC-8 - Manage users . 7
9 HLUC-9 - Document Design Decision . 8
10 HLUC-10 - Explore Design Decisions . 8
11 HLUC-11 - Manage Project . 8
12 SPUC-1.1 - Add Pattern wizard-based . 10
13 SPUC-1.2 - Quick add Pattern . 11
14 SPUC-2.1 - Modify Pattern . 11
15 SPUC-2.2 - Propose to delete a Pattern . 12
16 SPUC-2.3 - Delete a Pattern . 12
17 SPUC-3.1 - Remove Pattern irrevocable . 13
18 SPUC-3.2 - Remove a version of a Pattern . 13
19 SPUC-4.1 - Browse Pattern . 14
20 SPUC-4.2 - Search for Pattern . 14
21 SPUC-4.3 - View Pattern . 15
22 SPUC-5.1 - Review Pattern . 16
23 SPUC-6.1 - Add Category . 16
24 SPUC-6.2 - Edit Category . 17
25 SPUC-6.3 - Remove Category . 17
26 SPUC-6.4 - Transfer Category . 18
27 SPUC-7.1 - Create an account . 19
28 SPUC-8.1 - Manage user rights . 20
29 SPUC-9.1 - Add design decision . 20
30 SPUC-9.2 - Edit design decison . 21
31 SPUC-9.3 - Revoke design decision . 21
32 SPUC-10.1 - Browse design decisions . 22
33 SPUC-10.2 - View design decision . 22
34 SPUC-10.3 - Generate Project Documentation . 23
35 SPUC-11.1 - Add Project . 23
36 SPUC-11.2 - Edit Project . 24
37 SPUC-11.3 - Remove Project . 24
38 SUPR-I1 . 25
39 SUPR-I2 . 25
40 SUPR-Q1 . 25
41 SUPR-Q2 . 25
42 SUPR-Q3 . 25
43 SUPR-Q4 . 26
44 SUPR-Q5 . 26
45 SUPR-Q6 . 26
46 SUPR-Q7 . 26
47 SUPR-Q8 . 26
48 SUPR-Q9 . 26
49 SUPR-Q10 . 26
50 SUPR-Q11 . 27

51 SUPR-Q12 . 27
52 SUPR-Q13 . 27
53 SUPR-Q14 . 27
54 SUPR-Q15 . 27
55 SUPR-Q16 . 27
56 SUPR-Q17 . 28
57 SUPR-Q18 . 28
58 SUPR-Q19 . 28
59 SUPR-Q20 . 28

Glossary

API

=Application Programming Interface; is an interface in computer science that de�nes the ways by which
an application program may request services from libraries and/or operating systems.

artifact

An artifact represents a document or resource that is used in a software project. For instance design
diagrams, source code or reports but also intangible resources like revisions within a versioning system.

CASE

Computer-Aided Software Engineering; automated tools that can be used in the software development
process.

driver

Drivers are the reasons why a pattern has been chosen. Forces, relationships or consequences can be
referenced as drivers.

force

A force denotes any aspect of the problem that should be considered when solving it, such as requirements
the solution must ful�ll, constraints that must be considered and desirable properties the solution should
have.[1]

OpenID

OpenID is an open, decentralized standard for authenticating users which can be used for access control,
allowing users to log on to di�erent services with the same digital identity where these services trust the
authentication body. OpenID replaces the common login process that uses a login-name and a password,
by allowing a user to log in once and gain access to the resources of multiple software systems.

OPR

=Open Pattern Repository

pattern

In this document the term pattern refers to patterns and technologies. A pattern is a reusable solution to
a common problem that cannot be transformed into code directly. It is a reusable template for solving a
problem. The repository focuses on software pattern but allows any other kind of pattern too.
A technology like a framework, middleware or API can be described in an equal way compared to patterns
[2].
At least both descriptions de�ne a context, a problem and a solution.

repository

Within a repository the patterns are stored and maintained.

RUG

=University of Groningen

SEARCH

=Software Engineering and Architecture group

tag

Tags are keywords which are used to decorate a pattern with attributes similar to the technology that is
used in blog software. Tags are searchable and can limit search results. Unlike categories, tags are not
bound to any classi�cation and don't have to be related to patterns either. Tags could also group metadata
about the author or available artifacts like UML-diagram or Java-implementation. In conclusion tags are
not bound to any classi�cations or domains.

template

A template is a prede�ned structure of a pattern description that de�nes how the pattern will be captured.
For instance, if the problem will be described textural or if it is subdivided by a list of de�ned forces.
Depending on the structure of the template, the input mask of the user interface will be in�uenced.

wizard

A wizard is a user interface element, which leads the user through several steps in a speci�c sequence,
to perform a task. Sometimes it may be easier to perform tasks using a wizard, especially for complex
or infrequently performed tasks where the user is unfamiliar with the steps involved. Within the pattern
repository a wizard is used to simplify the process of adding a pattern.

1 Introduction

1 Introduction

1.1 Purpose

This document describes the requirements of the Open Pattern Repository (OPR), a publicly available
online repository for patterns and technologies (hereinafter:patterns). Although the OPR provides addi-
tional functionality for software patterns, the repository can be used for any kinds of patterns like analysis
patterns or organizational patterns.

The OPR is a project of the Software Engineering and Architecture Group (SEARCH) at the University
of Groningen (RUG).

This document addresses members of the pattern community, software engineering practitioners and sys-
tem developers.

It is structured and written according to the Recommended Practice for Software Requirements Speci�-
cations described in IEEE 830-1998[3].

1.2 Scope

The Open Pattern Repository will provide a publicly available online repository to store, browse,

search, update and delete patterns. It shall provide a user web interface that can be used to easily
contribute to the pattern repository, explore and search patterns along di�erent aspects,
but also to document design decisions and generate project speci�c documentation. Another
interface will be an online API which allows CASE-tools to integrate parts of the OPR functionality.
The OPR project members attach great importance to involve the pattern community in all phases of
the project.

Three main parts can be identi�ed:

• A component to manage patterns

• A tool to capture, document and explore pattern-related design decisions

• A component to con�gure and administer the OPR.

1.3 De�nitions, acronyms and abbreviations

Please refer to the glossary for a list of de�nitions, acronyms and abbreviations.

1.4 References

Please refer to the bibliography for a list of all documents referenced in this article.

1.5 Overview

Section 2 of this document provides a use case model. It does not state speci�c requirements. Instead it
describes the known actors and their interactions with the OPR from a high level view. It also lists factors
and assumptions, that a�ect the requirements stated in this document. Section 3 describes the proper
user requirements. Section 3.1 describes use case reports as major requirement speci�cation artifacts.
Section 3.2 captures requirements that are not included in the use cases.

1 - 34

2 Overall Description

2 Overall Description

The purpose of this section is to provide a brief description of the project and to describe known actors and
their interaction with the system. The section presents a high level view. For more detailed information,
please see the individual use case reports in the speci�c requirements.

2.1 Main Stakeholders of the OPR

Pattern Community Uses and shapes the information within the system by adding, changing, ex-
ploring and reviewing pattern descriptions. Furthermore, members of the pattern community give
feedback and might actively be involved in the development.

Software Architects Software architects use the repository to document their project related design
decisions and as a source of pattern knowledge to support them during the design process.

Developers Internship students are developing the OPR system. Developers include architects, testers
and quality engineers.

Administrators Must integrate the system into a network infrastructure. Their concern is, that the
system has an easy setup and causes no problems with existing systems.

2.2 Product perspective

Although several online repositories for patterns exist, the Open Pattern Repository project aims at
becoming a central searching point for pattern related information. By gathering feedback from the
pattern community, the following key concerns were identi�ed.

1. Community support: The repository should be open for contribution and should motivate users
to participate, in order to create a vivid community.

2. Functionality: It is important that the repository o�ers a good way to explore patterns. It has to
provide search functionality for patterns which incorporates all aspects of patterns (forces, context,
relations etc.). The repository should be context-aware that means that it should display related
patterns or categories. All in all it should support the process of making design decisions by �nding
appropriate patterns.

3. Usability: The repository must provide an intuitive interface, with main focus on the process of
adding, editing and �nding patterns.

4. Moderation: The repository should o�er a possibility for quality rating. Although everybody can
contribute pattern to the repository, there will di�erent means to rate and improve the quality of
the stored patterns.

5. Copyright: The repository focusses on content that is actively shared with the community, but it
will also o�er a way to deal with proprietary content and di�erent licensing models.

A unique feature that the OPR provides, is a new approach to capture and archive design decisions.
Furthermore it provides a possibility to be integrated with CASE-tool. Respectively, it could be integrated
in any service or program.

2.3 User characteristics

User The common user is registered with the system. He uses the system to manage patterns and to
document his design decisions. The authentication is needed to associate patterns with an author
and to select a license model. Furthermore, it enables the user to make use of the Design Decision
Management.

Guest Basically, the guest uses the system to retrieve information about patterns. He will use the search
and browsing functionality to �nd the information he is looking for. However, some of the guests
will edit and add pattern descriptions. His motivation not to register is anonymity.

2 - 34

2 Overall Description

Moderator The moderator is a user with extended rights. He is familiar with pattern descriptions and
uses the system to ensure quality within the repository. He is concerned with reviewing pattern
descriptions and rating their quality.
In addition he is able to manage patterns on a higher level, like deleting a pattern or category.

Administrator The administrator manages the system, which includes user management and data
management.

The user groups of the system are hierarchical structured that means an administrator is at the same
time a guest, depending on the task he is doing (s. Figure 1).

Figure 1: Inheritance of user rights

2.4 Product functions

According to the three parts identi�ed in section 1.2, the use case model is broken into packages. Ad-
ditionally the con�guration package contains overall con�guration use cases. The use cases presented in
this survey are high level use cases that are re�ned in the Speci�c Requirements section. Please refer to
Appendix A2 for a Traceability Matrix, that clari�es the relationships between high level use cases and
speci�c requirement use cases.

Figure 2: Use case packages

3 - 34

2 Overall Description

2.4.1 Package - Pattern Management

Figure 3: Relation of actors and use cases in package Pattern Management

Code: HLUC-1 Name: Add Pattern Package: Pattern Management

Description: In this use case the user adds a pattern. It is intended for guests and users. The
pattern descriptions are the basis of the OPR and represent the content. Every
pattern shall be represented by a name (e.g. Publish-and-Subscribe) and a description.

It shall be possible to declare at least the context, problem and solution. Furthermore,
it shall be possible to declare source, categories and tags but none of these values is

mandatory.
Furthermore it shall be possible to manage relationships with other patterns and to
associate artifacts with the pattern.

Due to copyright issues it shall be possible to add licensing and copyright information

for free text (description, solution etc.) and each artifact.
It shall be possible to add a pattern wizard-based or with a quick-add function. In both
cases the process should be simple and intuitive. The wizard shall provide di�erent
templates for di�erent types of patterns and technologies.

Re�ned by: SPUC-1.1 - Add Pattern wizard-based, SPUC-1.2 - Quick add Pattern
Version: 1 Author: cm

Table 1: HLUC-1 - Add Pattern

4 - 34

2 Overall Description

Code: HLUC-2 Name: Modify Pattern Package: Pattern Management

Description: In this use case the user modi�es a description. It is intended for guests and users.
Each modi�cation shall be stored in a new version and all previous versions shall
be available for comparison and backtracking. The system should display a preview
version at each time of modi�cation.

According to the licensing information the possibility for modi�cation of original

descriptions di�er. For instance if a restrictive license has been chosen, only the
author can modify the description. All other user have to add a new version based on
their own text. Please refer to Appendix A1.2 for further information.
Only authenticated users can select a restrictive license which prohibits the modi�ca-
tion.
On the other hand tagging of pattern is allowed by anyone. New tags for patterns are
not stored in a new version.

This use case also includes removal of a pattern.
Re�ned by: SPUC-2.1 - Modify Pattern, SPUC-2.2 - Propose to delete a Pattern, SPUC-2.3 -

Delete a Pattern
Version: 3 Author: cm, mv

Table 2: HLUC-2 - Modify Pattern

Code: HLUC-3 Name: Delete Pattern Package: Pattern Management

Description: In this use case the administrator removes a description.
Due to copyright issues it shall be possible to delete a pattern and all associated data,
as well as a speci�c version of a pattern or a speci�c artifact, irreversible.

Re�ned by: SPUC-3.1 - Remove Pattern irrevocable
Version: 1 Author: cm

Table 3: HLUC-3 - Delete Pattern

Code: HLUC-4 Name: Explore Patterns Package: Pattern Management

Description: In this use case the user can explore the patterns in the repository by browsing,
searching or viewing a pattern. It is intended for guests and users.
It shall be possible to browse the repository by category and to follow the relationships

between patterns. It should also be possible to browse not only by category but by
associated tags.

The system shall provide advanced search which scans for the name, description,

solution, context, problem and relationships. The average and maximum time to search
shall meet a speci�ed value.
It shall also be possible to enter a unique pattern identi�er to reach the pattern directly.
This is a convenient way for reaching pattern quickly.

Re�ned by: SPUC-4.1 - Browse Pattern, SPUC-4.2 - Search for Pattern, SPUC-4.3 - View Pattern,
SUPR-Q4, SUPR-Q5

Version: 1 Author: cm

Table 4: HLUC-4 - Explore Patterns

5 - 34

2 Overall Description

Code: HLUC-5 Name: Review a Pattern Package: Pattern Management

Description: In this use case the moderator reviews a description.
It shall be possible to review and rate a description for reasons of quality assurance.
Possible values are unreviewed, pending or reviewed. The ratings are used as an indi-
cator for the quality of the pattern description. All patterns that are initially added
have the status �unreviewed�.

Re�ned by: SPUC-5.1 - Review Pattern
Version: 1 Author: cm

Table 5: HLUC-5 - Review a Pattern

Code: HLUC-6 Name: De�ne a category Package: Pattern Management

Description: In this use case a user creates, deletes and edits categories. Users and guests are able
to create new categories but editing and deleting is restricted to moderators.

Categories are organized in a tree-like structure with the category �all� as the root.
A pattern could be a member of several categories.

While entering a new pattern, it is important that the system makes suggestions
about existing categories and motivates the user to use an existing category instead
creating a new one.

It should be possible to transfer a complete category or its contents to another category.

It shall be possible to delete a category. If a category is deleted its members will
automatically become a direct member of the parent category, only if it is not an
indirect member of the parent category at the same time (s. Appendix A3).

Re�ned by: SPUC-6.1 - Add Category, SPUC-6.2 - Edit Category, SPUC-6.3 - Remove Category,
SPUC-6.4 - Transfer Category

Version: 2 Author: cm, mv

Table 6: HLUC-6 - De�ne a category

2.4.2 Package - Con�guration

Figure 4: Relation of actors and use cases in package Con�guration

6 - 34

2 Overall Description

Code: HLUC-7 Name: Create an account Package: Pattern Management

Description: In this use case a guest creates a user account. The user has to �ll in mandatory infor-
mation like screen name, email address and password, but should have the possibility
to store further information like real name and contact information. After entering at
least the mandatory information the system validates the users input to avoid misuse.
This should be done by e-mail validation. As soon as the validation is successful the
user can log into the system as user.
It may be possible to log in with an OpenID.

Re�ned by: SPUC-7.1 - Create an account
Version: 2 Author: mv

Table 7: HLUC-7 - Create an account

Code: HLUC-8 Name: Manage users Package: Con�guration

Description: In this use case an OPR administrator con�gures user accounts and user rights. User
accounts can be accounts from OPR users, moderators or administrators. The account
can be moved into another user group like moderator or administrator.
This use case includes adding, browsing, changing and removing user accounts.

Re�ned by: SPUC-8.1 - Manage user rights
Version: 2 Author: mv

Table 8: HLUC-8 - Manage users

2.4.3 Package - Design Decision Management

Figure 5: Relation of actors and use cases in package Design Decision Management

7 - 34

2 Overall Description

Code: HLUC-9 Name: Document Design Decision Package: Design Decision Management

Description: In this use case an OPR user documents his design decision. The user has to
authenticate to the system in order to document. After starting the documentation
process the user is guided through a wizard based questionary to add his design

decision. The user has to choose a project for storing the design decision. Design
decisions are stored by referencing generic data from the pattern repository. This
makes the documentation of decisions easier and relieves the documenters work.
While processing, the system shall provide a possibility of storing links to external
�les, which help understanding the design decision and the rationale behind it.
These can be UML diagrams for example. Furthermore the system shall provide a
functionality to document the forces which led the user to his decision.

Architects shall be able to revoke design decisions. These could be done, when a better
solution to the problem has been discovered. Design decisions can not be removed from
the system in order to preserve architectural knowledge and decision rationale.

Re�ned by: SPUC-9.1 - Add design decision, SPUC-9.2 - Edit design decison, SPUC-9.3 - Revoke
design decision

Version: 3 Author: mv, cm

Table 9: HLUC-9 - Document Design Decision

Code: HLUC-10 Name: Explore Design Decisions Package: Design Decision Management

Description: In this use case an OPR user explores a design decision. The user has to authenticate
to the system and selects a project to see a list of his design decisions. After choosing
a design decision a detailed page shows up generated by information from the online

repository and links to stored �les. This page shows the stored drivers, as well
as a list of pattern which have a relationship. If desired the user may be able to
choose alternatives to his design decision. These are generated by the online repository.

The system should provide functionality to generate a printable document of design
decisions. As �le type a human readable and editable format like rich text format
shall be used . It should support PDF and may export the document as XML.

Re�ned by: SPUC-10.1 - Browse design decisions, SPUC-10.2 - View design decision, SPUC-10.3
- Generate Project Documentation

Version: 1 Author: mv

Table 10: HLUC-10 - Explore Design Decisions

Code: HLUC-11 Name: Manage Project Package: Design Decision Management

Description: In this use case an OPR user manages a project for organizing design decisions. De�n-
ing includes Adding, Editing and Removing a project. Design decisions are made dur-
ing software projects, hence they have a relation to a speci�c project. Each project
has a name and a description for unique identi�cation. Projects can be browsed and
list all containing design decisions. Additionally, the user shall be able to grant OPR
users access to his project.

Re�ned by: SPUC-11.1 - Add Project, SPUC-11.2 - Edit Project, SPUC-11.3 - Remove Project
Version: 2 Author: mv

Table 11: HLUC-11 - Manage Project

2.5 General contraints

• The complete software and documentation shall be published under GPL v3 license.

8 - 34

2 Overall Description

• The application shall be open for everyone. That means:

� Not restricted to any countries.

� Editable and Viewable by everyone.

� Does not require any special programs to use the OPR.

� Does not require registration costs.

� Is based on accepted web-standard.

� It is open source.

2.6 Assumptions and dependencies

none

9 - 34

3 Speci�c requirements

3 Speci�c requirements

3.1 Use Cases

3.1.1 Package - Pattern Management

Code: SPUC-1.1 Name: Add Pattern wizard-based Package: Pattern Management

Actors: Guest
Goal: User wants to add a pattern to repository.
Preconditions: -
Basic �ow:

1. This use case starts when the user selects Add Pattern

2. The user selects the template which he wants to use. The template de�nes the
available �elds, the accepted values and the �ow of the wizard.

3. The user will be led by the wizard through the steps. The name, context,

problem, solution and licensing information shall be �lled in �rst, so that it is
possible to �nish the wizard at any time. Furthermore it shall be possible to
navigate forth and back through the steps. It is mandatory that the system
checks the validity of all data before the user moves on to the next step and
informs him about the con�ict. However, the wizard should not preclude the

user from navigating but instead it should display a summary of con�icts.

The wizard will ask amongst others for source, categories, tags, artifacts and
relationships to other patterns. A relationship could be a variant, alternative
or combination.

4. The user select �nish. The system displays a summary of the pattern.

5. The user con�rms the pattern.

6. The system stores the pattern as the �rst version and establishes all links to
other patterns.

A larger version of the illustration can be found in Figure 6
Variations: -
Postconditions: -
Version: 3 Author: cm, mv

Table 12: SPUC-1.1 - Add Pattern wizard-based

10 - 34

3 Speci�c requirements

Code: SPUC-1.2 Name: Quick add Pattern Package: Pattern Management

Actors: Guest
Goal: User wants to add patterns to the repository
Preconditions: -
Basic �ow:

1. This use case starts when the user selects Quick add Pattern

2. The user selects the template which he wants to use. The template de�nes the
available �elds.

3. The system displays a single form with all �elds. The form o�ers support for
copy&paste.

4. The user �lls the form.

5. The user selects �nish. The system displays a summary of the pattern.

6. The user con�rms the pattern.

7. The system stores the pattern as the �rst version.

Variations: A registered user should have the possibility of storing an un�nished pattern at any
time.

Postconditions: -
Version: 3 Author: mv, cm

Table 13: SPUC-1.2 - Quick add Pattern

Code: SPUC-2.1 Name: Modify Pattern Package: Pattern Management

Actors: Guest
Goal: User wants to modify a pattern.
Preconditions: -
Basic �ow:

1. This use case starts when the user selects Edit pattern.

2. The system displays the pattern in an editable form.

3. The user changes the data and select �nish. During his changes the user should
have the possibility to preview his changes in a detailed view as mentioned in
SPUC-4.3 - View Pattern.

4. The system validates the user input and creates a new version. The previous
version will be archived.

Variations:

2.1 If the pattern has been published with a restrictive license and the editor is
not the author of the pattern. The system displays a blank form and informs
the user that he's not allowed to use the previous version as a basis due to
copyright restrictions. The �ow continues with step 3.

Postconditions: The pattern description changed.
Version: 3 Author: cm, mv

Table 14: SPUC-2.1 - Modify Pattern

11 - 34

3 Speci�c requirements

Code: SPUC-2.2 Name: Propose to delete a Pattern Package: Pattern Management

Actors: Guest
Goal: User wants to make a proposal to delete a pattern because it is obsolete or duplicated
Preconditions: -
Basic �ow:

• This use case starts when the selects Propose for delete at the pattern he wants
to delete.

• The system prompts the user to enter a reason. It also o�ers a list of prede�ned
reason such as duplicate, obsolete.

• The user con�rms to propose the pattern for deletion.

• The system stores the proposal and displays a success message.

Variations: -
Postconditions: The Pattern is proposed for deletion.
Version: 1 Author: cm

Table 15: SPUC-2.2 - Propose to delete a Pattern

Code: SPUC-2.3 Name: Delete a Pattern Package: Pattern Management

Actors: Moderator
Goal: Moderator deletes a proposed pattern.
Preconditions: -
Basic �ow:

• This use case starts when the user selects Proposed patterns.

• The systems displays a list of pattern that were proposed for deletion. A
summary of each pattern along with the reason is displayed.

• The user selects acceppt or refuse for each pattern and select process proposals.

• The system displays a list of patterns that will be deleted and prompts the
user to con�rm. The patterns are only marked as deleted and will no longer
show up in the repository. However, the administrator can reactivate them at
any time.

• The user con�rms and the systems marks the pattern as deleted.

Variations: -
Postconditions: The Pattern is deleted.
Version: 1 Author: cm

Table 16: SPUC-2.3 - Delete a Pattern

12 - 34

3 Speci�c requirements

Code: SPUC-3.1 Name: Remove Pattern irrevocable Package: Pattern Management

Actors: Administrator
Goal: Administrator wants to remove a pattern irreversible from the repository. For ex-

ample because of copyright violations.
Preconditions: Authenticated user is administrator
Basic �ow:

1. This use case starts when the administrator selects Remove Pattern on the
pattern he wants to be removed.

2. The system asks, if the whole content should be removed or only parts of it
like the description, forces, context, solution, artifacts etc..

3. The administrator makes his selection and selects Remove.

4. The system prompts the administrator to con�rm his choice.

5. The administrator con�rms his choice.

6. The system removes the selected parts of the stored pattern.

Variations: -
Postconditions: A pattern or parts of it are removed.
Version: 1 Author: mv

Table 17: SPUC-3.1 - Remove Pattern irrevocable

Code: SPUC-3.2 Name: Remove a version of a Pattern Package: Pattern Management

Actors: Administrator
Goal: The administrator wants to remove a speci�c version of a pattern from the repository.
Preconditions: Authenticated user is administrator
Basic �ow:

1. This use case starts when the administrator selects View Pattern Versions on
a pattern he wants to be removed

2. The system provides an overview of the pattern versions.

3. The administrator selects one or more pattern versions for deletion and con-
�rms with Remove Versions.

4. The system asks for each version, if the whole content should be removed or
only parts of it like the description, forces, context, solution, artifacts etc..

5. The administrator makes his selection and selects Remove.

6. The system prompts the administrator to con�rm his choice.

7. The administrator con�rms his choice.

8. The system removes the selected parts of the stored pattern versions or selected
artifacts.

Variations: -
Postconditions: One or several patterns or parts of them are removed.
Version: 1 Author: mv

Table 18: SPUC-3.2 - Remove a version of a Pattern

13 - 34

3 Speci�c requirements

Code: SPUC-4.1 Name: Browse Pattern Package: Pattern Management

Actors: Guest
Goal: User wants to browse the pattern repository
Preconditions: -
Basic �ow:

1. This use case starts when the user selects browse.

2. The system provides an overview of pattern categories and tags. The system
may provide a tag-cloud for simpli�ed navigation.

3. The user selects one ore more of these subdivisions. The system should provide
a list view of these subdivisions. The system may also provide a tree-like
structure for browsing the subdivisions.

4. The system provides the results which match the parameters.

Variations: -
Postconditions: The user found the pattern he wants to take a look at.
Version: 4 Author: mv, cm

Table 19: SPUC-4.1 - Browse Pattern

Code: SPUC-4.2 Name: Search for Pattern Package: Pattern Management

Actors: Guest
Goal: The user wants to search for a pattern.
Preconditions: -
Basic �ow:

1. This use case starts when the user selects Search Pattern.

2. The system displays a search form and prompts the user to enter his search
data.

3. The user adds the search values he is looking for. It shall be possible to search
all properties of a pattern.

4. The user selects Search.

5. The system displays matching pattern.

Variations:

5.1 If no matching patterns were found the system informs the user and prompts to
change the search conditions. The system may provide a collection of patterns
with the closest match of search parameters.

Postconditions: -
Version: 2 Author: mv, cm

Table 20: SPUC-4.2 - Search for Pattern

14 - 34

3 Speci�c requirements

Code: SPUC-4.3 Name: View Pattern Package: Pattern Management

Actors: Guest
Goal: The user wants to view a speci�c pattern.
Preconditions: -
Basic �ow:

1. This use case starts when the user has searched for a pattern or browsed a
pattern.

2. The user selects View Pattern.

3. The system provides an overview of the description and artifacts. It shall be
possible to see patterns which have relationships to the current pattern and
switch to them easily. The system displays the newest version of the pattern
but in the case that an older version has been reviewed it will inform the user
that a previous version has been reviewed along with the rating.

Variations:

1.1 This use case starts when the user enter a unique pattern ID.

1.2 The system looks up the pattern and displays the pattern. The �ow continues
with step 3.

3.1 The user wants to see another version of the pattern and selects Show Pattern

History.

3.2 The system provides a versioning overview of the current pattern. It may also
provide authors comments on the di�erent versions, since this facilitates the
�nding of a speci�c pattern version.

Postconditions: The user sees a pattern with its related description and artifacts.
Version: 3 Author: mv, cm

Table 21: SPUC-4.3 - View Pattern

15 - 34

3 Speci�c requirements

Code: SPUC-5.1 Name: Review Pattern Package: Pattern Management

Actors: Moderator
Goal: The moderator wants to review and rate a pattern description.
Preconditions: Authenticated user is moderator
Basic �ow:

1. This use case starts when the moderator views a pattern. See use case SPUC-
4.3 - View Pattern.

2. The moderator reads the content of the description and �gures out its quality.
All new added patterns have the rating status unreviewed.

3. The moderator selects one of the reviewing status pending or reviewed. Pending
means that the description or artifacts do not match the quality standards. In
this case the moderator could edit the pattern on his own (if this is possible).
Communication between the reviewer and the author of the pattern is not
within the scope of the system.

4. The system saves the changed rating status and informs the moderator.

Variations: -
Postconditions: A pattern is rated.
Version: 3 Author: mv, cm

Table 22: SPUC-5.1 - Review Pattern

Code: SPUC-6.1 Name: Add Category Package: Pattern Management

Actors: User
Goal: The user wants to add a category
Preconditions: -
Basic �ow:

1. This use case starts when the user selects Add Category.

2. The user enters the name and chooses a parent category.

3. The user selects Add.

4. The system searches for categories with the same name.

5. The system stores the category.

Variations:

4.1 If the system �nds a category with a similar name it displays a list of the found
patterns.

4.2 The system shows a dialog that a similar pattern already exists and asks the
user if he really wants to add the category.

Postconditions: A category has been added.
Version: 1 Author: mv, cm

Table 23: SPUC-6.1 - Add Category

16 - 34

3 Speci�c requirements

Code: SPUC-6.2 Name: Edit Category Package: Pattern Management

Actors: Moderator
Goal: The moderator wants to edit a category
Preconditions: Authenticated user is moderator
Basic �ow:

1. This use case starts when the user selects Manage Categories.

2. The system displays a list of categories in a tree-like order.

3. The user selects the category he wants to change.

4. The system displays the category name in an editable form.

5. The user changes the name and selects Change.

6. The system stores the change.

Variations: -
Postconditions: A category has been modi�ed.
Version: 1 Author: mv, cm

Table 24: SPUC-6.2 - Edit Category

Code: SPUC-6.3 Name: Remove Category Package: Pattern Management

Actors: Moderator
Goal: The moderator wants to remove a category
Preconditions: Authenticated user is moderator
Basic �ow:

1. This use case starts when the user selects Manage Categories.

2. The system displays a list of categories in a tree-like order.

3. The user selects the category he wants to remove.

4. The system asks for con�rmation.

5. The user con�rms the deletion.

6. The system removes the category. If the category contains patterns these get
automatically assigned to the parent category.

Variations: -
Postconditions: A category has been removed.
Version: 1 Author: mv, cm

Table 25: SPUC-6.3 - Remove Category

17 - 34

3 Speci�c requirements

Code: SPUC-6.4 Name: Transfer Category Package: Pattern Management

Actors: Moderator
Goal: The moderator wants to transfer a category
Preconditions: Authenticated user is moderator
Basic �ow:

1. This use case starts when the user selects Manage Categories.

2. The system displays a list of categories in a tree-like order.

3. The user selects the category he wants to transfer.

4. The system asks if the pattern within the category should be transferred or
the category itself.

5. The user selects the new parent category.

6. The system transfers the category.

Variations: -
Postconditions: A category has been transferred.
Version: 3 Author: mv, cm

Table 26: SPUC-6.4 - Transfer Category

18 - 34

3 Speci�c requirements

3.1.2 Package - Con�guration

Code: SPUC-7.1 Name: Create an account Package: Pattern Management

Actors: Guest
Goal: A guest user wants to create an OPR account.
Preconditions: -
Basic �ow:

1. This use case starts when the user selects Create User Account.

2. The system displays a form which has to be �lled with at least screen name,

email address and password. Other possible information could be real name,

postal address, telephone number etc..

3. The user enters his data and selects Create.

4. The system validates the email address for correctness and stores the user
information. The email validation should be safer, for example by sending an
con�rmation email to the entered address to validate the user.

5. The system should send an email with an activation key. The user has to enter
this key in order to activate his account and verify the correctness of his email
address.

6. The system informs the user of the account creation.

7. The user can log into the system using his credentials.

Variations:

0.1 It may also be possible to log into the system using the OpenID system. This
would simplify the legitimation process and make registering more convenient
for the user.

Postconditions: The user has an OPR account and is able to login into the system.
Version: 1 Author: mv

Table 27: SPUC-7.1 - Create an account

19 - 34

3 Speci�c requirements

Code: SPUC-8.1 Name: Manage user rights Package: Con�guration

Actors: Administrator
Goal: The administrator wants to change users permissions.
Preconditions: Authenticated user is administrator, User has no special permissions within the OPR
Basic �ow:

1. This use case starts when the administrator selects manage user right for a
speci�c user.

2. The system displays an overview of the user account. Possible user rights to
be set are Moderator and Administrator.

3. The administrator sets or changed the desired user rights and selects Save.

4. The system saves the changes and displays, that the changes were successful.

Variations: -
Postconditions: An user has new permissions.
Version: 1 Author: mv

Table 28: SPUC-8.1 - Manage user rights

3.1.3 Package - Design Decision Management

Code: SPUC-9.1 Name: Add design decision Package: Design Decision Management

Actors: Authenticated user
Goal: A user wants to document a design decision
Preconditions: User is authenticated
Basic �ow:

1. This use case starts when the user selects Add Design Decision.

2. The user selects the project.

3. The user will be led by a wizard through the steps. He has to select which
pattern he used within the design decision and which forces lead him to his
decision. The user shall be able to link to speci�c artifacts, which help to
understand the decision of the architect. These links are text�elds that does
not limit the type of the linkage. For example it can refer to a �le of the users
intranet or an internet url. It should also be possible to store revisions of �les
or �les, that were a�ected by the design decision. Furthermore, the wizard
will ask for context, assumptions, related requirements and time time when
decision has been made. It shall be possible to abort the wizard at any time

during the documentation phase to improve the users convenience.

4. After the design decision has been documented successfully the user sees an
overview of his stored design decisions.

Variations:

2.1 If the user decides to abort the wizard, he should have the possibility to con-
tinue at a later point.

Postconditions: A design decision is documented.
Version: 2 Author: mv,cm

Table 29: SPUC-9.1 - Add design decision

20 - 34

3 Speci�c requirements

Code: SPUC-9.2 Name: Edit design decison Package: Design Decision Management

Actors: Authenticated user
Goal: A user wants to edit a stored design decision
Preconditions: User is authenticated, User has stored design decisions
Basic �ow:

1. This use case starts when the user selects Design Decision Management.

2. The system presents the user's stored design decisions.

3. The user chooses a design decision and selects Edit.

4. The system shows a detailed editable view of the design decision.

5. The user changes the design decision to match his needs.

6. The user selects Save.

7. The system saves the changes to the design decision and informs the user about
the successful change.

Variations: -
Postconditions: A design decision is edited.
Version: 1 Author: mv

Table 30: SPUC-9.2 - Edit design decison

Code: SPUC-9.3 Name: Revoke design decision Package: Design Decision Management

Actors: Authenticated user
Goal: A user wants to revoke a design decision
Preconditions: User is authenticated, User has stored design decisions
Basic �ow:

1. This use case starts when the user selects Design Decision Management.

2. The system presents the user's stored design decisions.

3. The user chooses a design decision and selects Revoke.

4. The user has to enter a reason for the revocation.

5. The system displays a warning and claims for an acknowledgement.

6. The user con�rms the message.

7. The system marks the design decision as revoked.

Variations: -
Postconditions: A design decision is revoked
Version: 2 Author: mv,cm

Table 31: SPUC-9.3 - Revoke design decision

21 - 34

3 Speci�c requirements

Code: SPUC-10.1 Name: Browse design decisions Package: Design Decision Management

Actors: Authenticated user
Goal: A user wants to browse his design decisions
Preconditions: User is authenticated, User has stored design decisions
Basic �ow:

1. This use case starts when the user is logged into the system.

2. The user selects a project

3. The system presents the design decisions that are associated with the project.

Variations: -
Postconditions: -
Version: 2 Author: mv,cm

Table 32: SPUC-10.1 - Browse design decisions

Code: SPUC-10.2 Name: View design decision Package: Design Decision Management

Actors: Authenticated user
Goal: A user wants to take a look at a design decision
Preconditions: User is authenticated, User has stored design decisions
Basic �ow:

1. This use case starts when the user selects Show Design Decision on one of the
stored design decisions.

2. The system provides an overview of the design decision. This overview shall
provide a clean and good view of the design decisions. The system shall also
provide alternatives to the chosen design decision as well as outline the quality
attributes and consequences of the current design decision. Furthermore it
shall be possible to see patterns which provide a good combination with the
design decision.

Variations: -
Postconditions: -
Version: 1 Author: mv

Table 33: SPUC-10.2 - View design decision

22 - 34

3 Speci�c requirements

Code: SPUC-10.3 Name: Generate Project Documentation Package: Design Decision Management

Actors: Authenticated user
Goal: The user wants to generate a printable documentation
Preconditions: User is authenticated
Basic �ow:

1. This use case starts when the user selects a project.

2. The user select generate documentation

3. The system displays a form with exporting options like �letype and �lename.

4. The user select generate.

5. The system generates the documentation. The document will start with the
project name as a header and then lists the design decision in chronologic
order.

6. The system o�ers the document as a download.

Variations: -
Postconditions: A project speci�c documentation has been generated.
Version: 1 Author: cm

Table 34: SPUC-10.3 - Generate Project Documentation

Code: SPUC-11.1 Name: Add Project Package: Design Decision Management

Actors: Authenticated user
Goal: The user wants to add a project to store design decisions.
Preconditions: User is authenticated
Basic �ow:

1. This use case starts when the user selects Add Project

2. The system displays a form where the user can add a name and a description
for the project.

3. The user enters his information on project name and optional description.
The user shall also have the possibility to give other authenticated users of the
OPR access to a project. Thus other users, for example architects, who have
to maintain a system can take a look at the previous design decisions.

4. The user selects Save.

5. The system stores the project information.

Variations: -
Postconditions: A project for storing design decisions has been created.
Version: 2 Author: mv

Table 35: SPUC-11.1 - Add Project

23 - 34

3 Speci�c requirements

Code: SPUC-11.2 Name: Edit Project Package: Design Decision Management

Actors: Authenticated user
Goal: The user wants to change a projects properties.
Preconditions: User is authenticated
Basic �ow:

1. This use case starts when the user selects Edit Project.

2. The system displays the stored project information (name and description).

3. The user edits the name, description and allowed users.

4. The user selects Save.

5. The system stores the changes data.

Variations: -
Postconditions: Name, description and allowed users for a project have been changed.
Version: 1 Author: mv

Table 36: SPUC-11.2 - Edit Project

Code: SPUC-11.3 Name: Remove Project Package: Design Decision Management

Actors: Authenticated user
Goal: The user wants to remove a project.
Preconditions: User is authenticated
Basic �ow:

1. This use case starts, when the user selects Remove Project.

2. The system prompts the user if he wants to delete the whole project with its
stored design decisions or only the project.

3. The user selects Remove design decisions too.

4. The system removes the project and all containing design decisions.

5. The system noti�es, that the project has been deleted.

Variations:

3.1 The user selects Only remove project.

3.2 The system removes the project.

3.3 The �ow continues at step 5.

Postconditions: A whole project with its containing design decisions has been deleted.
Version: 1 Author: mv

Table 37: SPUC-11.3 - Remove Project

24 - 34

3 Speci�c requirements

3.2 Supplementary Requirements

3.2.1 Interface Requirements

Code: SUPR-I1 Description: The application shall provide a web interface which can
be accessed by any web browser without the need for
plugins.

Version: 3 Author: cm, mv

Table 38: SUPR-I1

Code: SUPR-I2 Description: The application shall provide webservices. The webser-
vices do not provide all functionality. It supports pat-
tern management, but does not support design decisions
management and con�guration. In detail it shall support
SPUC-1.2 - Quick add Pattern, SPUC-2.1 - Modify Pat-
tern, SPUC-2.2 - Propose to delete a Pattern, SPUC-4.1
- Browse Pattern, SPUC-4.3 - View Pattern

Version: 2 Author: cm

Table 39: SUPR-I2

3.2.2 Software System Attributes

3.2.3 Usability

These are the usability requirements identi�ed for the OPR. For an detailed description about veri�abil-
ity, goals and measurement please refer to Appendix A5

Understandibility

Code: SUPR-Q1 Description: The Interface elements should be easy to understand
Version: 1 Author: cm

Table 40: SUPR-Q1

Learnability

Code: SUPR-Q2 Description: The help should be context sensitive and explain how to
achieve common tasks.

Version: 1 Author: cm

Table 41: SUPR-Q2

Code: SUPR-Q3 Description: The system should be easy to learn.
Version: 1 Author: cm

Table 42: SUPR-Q3

Operability

25 - 34

3 Speci�c requirements

Code: SUPR-Q4 Description: The interface actions and elements should be consistent.
Version: 1 Author: cm

Table 43: SUPR-Q4

Code: SUPR-Q5 Description: Error messages should explain how to recover from the
error.

Version: 1 Author: cm

Table 44: SUPR-Q5

Code: SUPR-Q6 Description: Actions which cannot be undone should ask for con�rma-
tion.

Version: 1 Author: cm

Table 45: SUPR-Q6

Attractiveness

Code: SUPR-Q7 Description: The screen layout and color should be appealing
Version: 1 Author: cm

Table 46: SUPR-Q7

3.2.4 Reliability

Code: SUPR-Q8 Description: The system shall guarantee a data integrity of 100%
Version: 1 Author: cm

Table 47: SUPR-Q8

Code: SUPR-Q9 Description: The system shall guarantee a recoverability of 100%
Version: 1 Author: cm

Table 48: SUPR-Q9

3.2.5 Performance

Code: SUPR-Q10 Description: The average time to receive search results shall be 2,5
seconds.

Version: 2 Author: cm, mv

Table 49: SUPR-Q10

26 - 34

3 Speci�c requirements

Code: SUPR-Q11 Description: The maximum time to receive search results shall be 5,0
seconds.

Version: 2 Author: cm, mv

Table 50: SUPR-Q11

3.2.6 Extensibility

Code: SUPR-Q12 Description: The system shall provide mechanisms for expand-
ing/enhancing the system with new capabilities without
having to make major changes to the system infrastruc-
ture.

Version: 1 Author: cm

Table 51: SUPR-Q12

3.2.7 Availability

Code: SUPR-Q13 Description: The system shall be designed in such a way that the in-
tended period of operation is above 99.9%. This corre-
sponds roughly to 9 hours downtime within a year.

Version: 3 Author: cm, mv

Table 52: SUPR-Q13

3.2.8 Scalability

Code: SUPR-Q14 Description: The system shall be scalable in the amount of patterns
that can be stored in the repository.

Version: 1 Author: cm

Table 53: SUPR-Q14

Code: SUPR-Q15 Description: The system shall be scalable in the amount of concur-
rent users that are retrieving and updating data from the
repository.

Version: 1 Author: cm

Table 54: SUPR-Q15

3.2.9 Portability

Code: SUPR-Q16 Description: The system shall be portable to any major operating sys-
tem and server operating system without recompiling the
sources.

Version: 1 Author: cm

Table 55: SUPR-Q16

27 - 34

3 Speci�c requirements

3.2.10 Security

Code: SUPR-Q17 Description: Password shall not be displayed in plain text.
Version: 1 Author: cm

Table 56: SUPR-Q17

Code: SUPR-Q18 Description: Administrative actions like account managing shall be
logged.

Version: 1 Author: cm

Table 57: SUPR-Q18

Code: SUPR-Q19 Description: All pattern modi�cations shall log author, time, date and
IP

Version: 1 Author: cm

Table 58: SUPR-Q19

Code: SUPR-Q20 Description: Login information shall be transfered encrypted.
Version: 1 Author: mv

Table 59: SUPR-Q20

28 - 34

References

References

[1] F. Buschman, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal. Pattern-Oriented Software

Architecture - A system of patterns. Number 0-471-95869-8. Wiley, 1996.

[2] M. de Jong. Identify and preserve reusable architectural knowledge from technologies. Technical
report, University of Groningen.

[3] IEEE. Recommended practice for software requirements speci�cations. Technical report, IEEE, 1998.

29 - 34

Appendix

A1 Copyright handling

A1.1 Add pattern description

A1.2 Edit pattern description

30

A2 Traceability matrix

H
LU

C
-1

H
LU

C
-2

H
LU

C
-3

H
LU

C
-4

H
LU

C
-5

H
LU

C
-6

H
LU

C
-7

H
LU

C
-8

H
LU

C
-9

H
LU

C
-10

H
LU

C
-11

S
P
U
C
-1.1

S
P
U
C
-1.2

S
P
U
C
-2.1

S
P
U
C
-2.2

S
P
U
C
-2.3

S
P
U
C
-3.1

S
P
U
C
-3.2

S
P
U
C
-4.1

S
P
U
C
-4.2

S
P
U
C
-4.3

S
P
U
C
-5.1

S
P
U
C
-6.1

S
P
U
C
-6.2

S
P
U
C
-6.3

S
P
U
C
-6.4

S
P
U
C
-7.1

S
P
U
C
-8.1

S
P
U
C
-9.1

S
P
U
C
-9.2

S
P
U
C
-9.3

S
P
U
C
-10.1

S
P
U
C
-10.2

S
P
U
C
-10.3

S
P
U
C
-11.1

S
P
U
C
-11.2

S
P
U
C
-11.3

XX
XXX

XX
XXX

X
XXXX

X
X

XXX
XXX

XXX

31

A3 Category tree

32

A4 Outlines

Figure 6: Add Pattern

Figure 7: View Pattern

33

A5 Usability Measurement Matrix

Req. Instruments Unit Current Worst Planned Best Observed
SUPR-Q1 Observation points 0 75 90 100 -
SUPR-Q2
SUPR-Q3
SUPR-Q4
SUPR-Q5
SUPR-Q6
SUPR-Q7

34

	Contents
	List of figures
	List of tables
	Glossary
	Introduction
	Purpose
	Scope
	Definitions, acronyms and abbreviations
	References
	Overview
	Overall Description
	Main Stakeholders of the OPR
	Product perspective
	User characteristics
	Product functions
	Package - Pattern Management
	Package - Configuration
	Package - Design Decision Management

	General contraints
	Assumptions and dependencies

	Specific requirements
	Use Cases
	Package - Pattern Management
	Package - Configuration
	Package - Design Decision Management

	Supplementary Requirements
	Interface Requirements
	Software System Attributes
	Usability
	Reliability
	Performance
	Extensibility
	Availability
	Scalability
	Portability
	Security

	Bibliography
	Appendix
	Copyright handling
	Add pattern description
	Edit pattern description
	Traceability matrix
	Category tree
	Outlines
	Usability Measurement Matrix

