
ReS2TIM: Reconstruct Syntactic Structures from Table Images

Wenyuan Xue∗, Qingyong Li∗, Dacheng Tao†
∗Beijing Key Lab of Transportation Data Analysis and Mining, Beijing Jiaotong University, China

†UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, The University of Sydney, Australia
{wyxue17, liqy}@bjtu.edu.cn, dacheng.tao@sydney.edu.au

Abstract—Tables often represent densely packed but struc-
tured data. Understanding table semantics is vital for effective
information retrieval and data mining. Unlike web tables,
whose semantics are readable directly from markup language
and contents, the full analysis of tables published as images
requires the conversion of discrete data into structured infor-
mation. This paper presents a novel framework to convert a
table image into its syntactic representation through the rela-
tionships between its cells. In order to reconstruct the syntactic
structures of a table, we build a cell relationship network to
predict the neighbors of each cell in four directions. During the
training stage, a distance-based sample weight is proposed to
handle the class imbalance problem. According to the detected
relationships, the table is represented by a weighted graph that
is then employed to infer the basic syntactic table structure.
Experimental evaluation of the proposed framework using two
datasets demonstrates the effectiveness of our model for cell
relationship detection and table structure inference.

Keywords-layout analysis, table recognition, visual relation-
ship

I. INTRODUCTION

Data in a table is usually arranged in rows and columns

or even more complex configurations. Tables are widely

used for data presentation and analysis in all walks of

life, appearing in electronic documents, print media, hand-

written notes, web pages, computer software, traffic signs,

and many other places. It has recently been shown that

understanding table semantics on the web enhances the

quality and efficiency of web searching [1]–[3]. However,

in contrast to web tables, which are extracted from HTML

with syntactic information, the syntactic representation must

first be analyzed when using tables from images (Fig. 1).

The basic syntactic representation of a table contains the

number of rows and columns, and the coordinates of each

table cell. Then the syntactic information, combined with

Optical Character Recognition (OCR) results, is integrated

as semantic information that can be utilized for downstream

tasks such as data mining and question answering. The focus

of this study is the first stage: the syntactic representation
of table images.

High degree of intra-class variability is one of the most

challenging problems when analyzing the syntactic represen-

tation of table images. Tables are drawn in a great variety

of ways, including different layouts and the erratic use of

borders. Further, the diverse table contents can determine

Table Image Semantic
Information

Syntactic
Representation

The Focus of This Paper

{
 "2018":{
 "Mar":{
 "Percent change from preceding month":
 [0.4, 0.4, 0.3, 0.6, 0.6, 0.1, 0.2]
 "Percent change from month one year ago":
 [2.1, 2.0]
 }
 "Apr":{
 "Percent change from preceding month":
 [0.3, 0.3, 0.1, 0.5, 0.3, 0.2, 0.2]
 "Percent change from month one year ago":
 [2.0, 2.9]
 }
 ...
 }
}

"Table":{
 "Columns":5
 "Rows":13
 "Cells":[
 {"id":0
 "content":"2018"
 "multi-rows":1
 "multi-columns":5
 "start-row":0
 "start-column":0
 }
 {"id":1
 "content":"Mar."
 "multi-rows":1
 "multi-columns":1
 "start-row":1
 "start-column":0
 }
 ...

]
}

Source: Mobile
Cameras, Internet, ...

Application: Data Mining,
Question answering, ...

Figure 1: The focus of this paper. Before serving down-

stream tasks, table images from the internet or mobile

devices are converted to syntactic representation and then

integrated as semantic information.

different table structures, making it hard to define what a

table looks like or how the cells are organized.

There are two ways to depict the syntactic structure of ta-

bles. The first is to classify table cells into specific categories

[4], [5], e.g., ’column header’, ’row header’, and ’data’,

and then formalize the syntactic table structure analysis

as a classification problem. However, this method fails to

represent complex structures such as embedded headers. The

other approach is to utilize the visual features to distinguish

the row and column header hierarchy [6]–[8]. Most of these

methods rely on some format information (e.g., indentation,

boldness, and capitalization) directly extracted from PDF or

HTML files. However, it is more difficult to acquire such

cues from images.

This paper focuses on a fine-grained table recognition

problem, whose purpose is to predict the coordinates of each

table cell. We present a novel framework to achieve this

goal. Specifically, we first build a cell relationship network,

which merges the visual features and spatial features to

detect the neighbors of each table cell. A distance-based

sample weight is proposed to handle the class imbalance

749

2019 International Conference on Document Analysis and Recognition (ICDAR)

2379-2140/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDAR.2019.00125

problem encountered in the training stage. Then, according

to the detected relationships, a weighted graph is created to

infer the table syntactic structure. The proposed framework

is verified on two table datasets, and our results demonstrate

the effectiveness of the proposed model at detecting the

relationships between table cells and converting the table

image into its syntactic representation. The contributions of

this paper can be summarized as follows:

• We present a novel framework that combines cell

relationship detection and graph inference to convert

a table image into its syntactic representation.

• We devise a distance-based weight, which is applied to

deal with the class imbalance problem when training

the cell relationship network.

II. RELATED WORK

A. Table Structure Recognition

Early studies on table structure recognition started by

identifying the table boundary [9], [10]. Then, the methods

in [11], [12] further segment the table rows and columns.

Yildiz et al. [13] and Fang et al. [14] developed methods

to classify cells as either ‘data cells’ or ‘header cells’
representing the coarse-grained structure of a table. More

recent works [4], [5] have used deep-learning methods to

recognize table structure. More specifically, Schreiber et al.
[5] presented a deep learning-based solution for the identifi-

cation of rows, columns, and cells, where transfer learning is

performed by augmenting and fine-tuning a FCN semantic

segmentation model [15]. Nishida et al. [4] proposed a

combined RNN-CNN architecture to classify tables into six

types. Chen et al. [6] used tokens from the PDF file as

features to detect the hierarchical relationships between pairs

of rows, while Xue et al. [16] used a projection method to

segment two columns of interest in a table image. In contrast

to these previous works, we recognize the fine-grained table

structure from an image by inferring the specific coordinates

for each table cell.

B. Visual Relationship Detection

A visual relationship is usually characterized by a triplet

in the form of (s, r, o), where s, r, and o represent the

subject, relationship predicate, and object, respectively, e.g.,

(man, on, bicycle). Some previous methods [17]–[19] regard

each combination of (s, r, o) as a distinct class, but then

face difficulties when enumerating all possible combinations.

Recent works consider an alternative paradigm that separates

the object detection and relationship recognition. Lu et al.
[20] merged appearance features and a language prior as

the representation of a relational pair, and Dai et al. [21]

proposed a Deep Relational Network that exploits both

spatial configurations and statistical dependencies among the

relational triplets. Zhuang et al. [22] proposed a context-

aware interaction recognition framework, which can asso-

ciate the interaction with certain visual appearances in a

semantic space. The method of [23] integrates multiple

cues and designs a structural ranking loss to detect visual

relationships. Inspired by these works, our method detects

the relationships between pairs of table cells, which are then

used for the table structure inference.

III. THE PROPOSED FRAMEWORK

This section presents the proposed framework to recon-

struct the syntactic representation from a table image. The

approach starts with a cell relationship network (III-A) that

detects the neighbors for each table cell in four directions

(’Left’, ’Right’, ’Up’, and ’Down’)1. During the training

stage, we propose a type of sample weight based on the

distance between two cells to solve the class imbalance

problem. Finally, we describe the algorithm (III-B) that

infers the table structure on the graph created through the

detected neighbors.

A. Neighbor Cells Detection

A crucial step in our method is to represent the rela-

tionships between table cells. In this paper, the neighbor

position is taken as the relationship representation of a

pair of cells. The target of this section is to detect the

neighbors of a table cell in all four directions (’L’, ’R’,

’U’, and ’D’). Specifically, we use C to denote the set

of all cells with content bounding boxes. For each pair

{(ci, cj)|i �= j} ∈ C, ci represents the target cell and

cj is one of the possible neighbors around ci. The rela-

tionship between ci and cj is denoted as ri,j ∈ R, where

R = {’None’, ’L’, ’R’, ’U ’, ’D’}. ’None’ means that cj is

not a neighbor of ci. A deep cell relationship network is built

to detect all cells’ neighbors, which merges the deep visual

features and relative spatial features as the representation for

each relational pair of cells. During training and inference,

we assume that all content bounding boxes are observed

wherever they are acquired from the ground-truth or a text

detector. For each relational pair, the loss is multiplied by

a distance-based weight to optimize the training process.

Further details about the network are presented below.

Deep Cell Relationship Network: As illustrated in Fig.

2, given a table image with content bounding boxes, the cell

relationship network concatenates the deep visual features

and relative spatial features as the joint feature of a relational

pair. For the visual features, a spatial mask is first generated

to represent the table, which has the same pixel-level width

and height as the table area and all content bounding boxes

are filled with 255. Second, the mask goes through a VGG16

[24] network to obtain a group of feature maps that are then

separated for each table cell by a region of interest (RoI)

pooling [25]. The separated features are fed into two fully

connected layers to get the final deep visual features. We

use bi = (x1, y1, x2, y2) to denote the coordinates of the

1For convenience, the four directions will be abbreviated as ’L’, ’R’, ’U’,
and ’D’ in this paper.

750


~~~ ~~~

~~~ ~~~

~~~ ~~~

Text Detector
Or Ground-truth

Annotations

VGG16

RoI Pooling

Concatenation

cell-1 cell-2 cell-i

··· 

··· 

V
isual Feature

Spatial Feature

··· 

Up
Left cell_i Right

Down
None

Relational Pairs

Realigned Mask Source Image

Preprocessing

Bounding Boxes

··· 

Up Left None··· 

Features 
Extraction

Relationships
Classification

Figure 2: The cell relationship network architecture. The net-

work takes a realigned mask as the input, and concatenates

the visual and spatial features as the representation for each

table cell. Then, the features of any two cells are combined

to predict their neighbor relationship.

content bounding box for ci. The relative spatial feature is

represented as bi
′ = (x1

W , y1

H , x2

W , y2

H ), where W and H are

the width and height of the table image, respectively. The

visual feature and the spatial feature are concatenated as

the representation of a table cell. We fuse the features of

two table cells to predict the neighbor relationship, which

includes five categories: ’None’, ’Left’, ’Right’, ’Up’, and

’Down’.

Distance-based Sample Weight (DSW): During train-

ing, the learning process is susceptible to the class imbalance

problem. Consider for example a n × n table. If all table

cells have contents, the proportion of all relationship classes

is about {None : L : R : U : D = O(n4) : O(n2) :
O(n2) : O(n2)}. The number of negatives (’None’) is

much greater than the positives (’L’, ’R’, ’U’, and ’D’).

Two common ways to tackle this problem are data re-

sampling and cost-sensitive learning [26], [27]. Data re-

sampling tries to alter the data distribution by random under-

sampling or over-sampling. However, under-sampling will

make the classification boundaries vague, and replication-

based over-sampling usually causes overfitting. The latter

method aims to give more emphasis to minority classes.

Specifically, for neighbor cell detection, we find that the hard

negatives (neighbors in diagonals) and minority positives

(neighbors in the four directions) distribute around the target

cell. Therefore, a distance-based sample weight is proposed

for the loss of a pair of cells (ci, cj):{L′
(ri,j) = λi,j · L(ri,j)

λi,j = exp{−(
(x

′
j−x

′
i)

2·α
Wt

+
(y

′
j−y

′
i)

2·α
Ht

)}+ β
(1)

where L(ri,j) is the cross-entropy loss of the neighbor

relationship of ri,j ; λi,j is the proposed distance-based

sample weight (DSW); (x
′
i, y

′
i) and (x

′
j , y

′
j) are the central

point coordinates of ci and cj , respectively; Wt and Ht are

the width and height of the table area, respectively; and

α and β are two parameters that are set to 3.0 and 2.0

respectively in our experiments. As cj approaches ci in the

table, it becomes increasingly likely that cj is a neighbor of

ci or a hard negative. On this condition, the DSW assigns a

larger weight to the loss so that the learning process is not

dominated by majority negatives.

B. Table Structure Inference

The syntactic structure of a table includes the shape of the
table and the coordinates of each table cell. The coordinates

of ci can be denoted as si = (coli1, row
i
1,mci,mri), where

coli1 and rowi
1 represent the cell’s start column and start row.

mci and mri are the multi-column and multi-row attributes,

which represent the number of columns and rows occupied

by ci. We use (tRows, tCols) to denote the shape of a table,

which indicates the number of columns and rows in the table.

tRows can be obtained by calculating the maximum sum of

rowi
1 and mri. Similarly, tCols is the maximum sum of

coli1 and mci. In this section, a weighted graph is created

for table structure inference. Algorithm 1 summarizes the

whole process.

Graph Creation: We first create a graph based on

the detected neighbor relationships. Then mci and mri are

inferred from the graph, and in turn used to update the graph.

For one table cell ci, we use Ni ∈ N to denote the set of

all its detected neighbors. Each element nd
j ∈ Ni represents

that the jth table cell cj is a neighbor of ci in the direction

of d, where d ∈ { ’L’, ’R’, ’U ’, ’D’}. Then, a weighted

graph is created as G = (C,E), where C is the set of

all table cells. The edge of two table cells is denoted as

ei,j ∈ E, which represents the number of columns or rows

needed to move cj from its start row or start column to that

of ci. ei,j is initialized with 1 if nj ∈ Ni; otherwise, it

is set to 0. Then, the created G is used to infer the multi-

column attribute mci and the multi-row attribute mri. For

each table cell, we search the graph G along one of the four

directions to build a subtree. The searching along a branch

is stopped when the last cell in this branch has no neighbors

in the searching direction or it has multiple neighbors in the

opposite direction. After the four subtrees have been built,

mci and mri can be represented as:{
mci = max (wd|d ∈ {’U ’, ’D’})
mri = max (wd|d ∈ {’L’, ’R’}) (2)

751



Depth: 1
Max-Width:1

(a) Up-subTree.

Depth: 4
Max-Width:2

(b) Down-subTree.

Figure 3: Multi-column attribute inference. Depth-first

searching is applied in the (a) ’U ’ and (b) ’D’ directions

to build subtrees for the target cell. The maximum width

of up-subtree and down-subtree determines the number of

columns occupied by the target cell.

where wd is the maximum width of the subtree built in

the direction d. Fig. 3 gives an example of multi-column

inference to help understand this process.

In Fig. 3a, the target cell (dark blue) has only one neighbor

cell in the ’U ’ direction, and this sole neighbor cell does not

have any other neighbors in this direction. Therefore, the

up-subtree built from the target cell only has one node. In

Fig. 3b, a similar process is applied in the ’D’ direction to

build the down-subtree, whose depth and maximum width

are 4 and 2, respectively. Finally, we choose the maximum

width of the up-subtree and down-subtree as the number of

columns occupied by the target cell. If a cell occupies more

than one column or row, it may need more steps to move

its neighbor cells to its start row or column. The edges ei,j
and ej,i in the graph G thus need to be updated as:

ej,i = ei,j =

{
mci, if nd

j ∈ Ni and d ∈ {’R’}
mri, if nd

j ∈ Ni and d ∈ {’D’} (3)

Cell Location: After inferring mci and mri, col
i
1 and

rowi
1 are located via two steps: finding table headers and

calculating the distances from cells to table headers.

First, we search the graph G to select cells with no

neighbors in the ’L’ and ’U ’ directions as the candidate

row and column headers, respectively. For each row header

candidate, its up- and down-subtree are built as described

above. A candidate will be filtered if a table cell in its up-

subtree or down-subtree has left neighbors but the neighbors

are not included in the two subtrees. A similar process can

be applied to filter the column headers.

We then use Dijkstra’s algorithm to calculate the shortest

path from a table cell to each column or row header. Among

all of the paths from the target cell to column or row headers,

the longest distance is selected as the start row (rowi
1) or

start column (coli1) because the distance may be shortened

if a cell with multiple columns or rows exists in the path.

rh 2 c t

rh 1
ch 1

11

rh2 ct
0

1
0

ct

rh1

(a) Distances from the target
cell to row headers.

c t

ch 1

ch2

1

1

1
003

ct

ch2ch1

ct

(b) Distances from the target
cell to column headers.

Figure 4: Cell localization. Calculation of the distances from

a target cell to the (a) row and (b) column headers.

In Fig. 4a, two paths from the dark cell ct to the row

headers (rh1, rh2) are marked in red and green, respectively.

The red path (ct → rh2) goes through a left-neighbor of the

cell ct to the row header rh2. The distance of this path is

the sum of the two edges (i.e., 2). The green path (ct →
rh1) first heads upward two cells, and then turns left to the

target row header rh1. As only the horizontal distance is

of interest when finding the distance to the row header, the

edges traversed in the vertical direction are not considered.

Therefore, the distance of the green path is only one (the

edges are calculated according to Eq. 3). Because a cell in

the green path spans multiple columns, the distance is shorter

than that of the red path. The longest distance from ct to

row headers is chosen as the column coordinate colt1. An

example of how to calculate the row coordinate is shown in

Fig. 4b.

IV. EXPERIMENTS

A. Dataset and Metrics

Chinese Medical Documents Dataset (CMDD) [16].
The CMDD is an image dataset of medical laboratory

reports containing 238 documental images, each including

two tables. The first table lists a patient’s information in

five rows and four columns. The second table reports the

details of test results, which consists of n(n ≥ 1) rows and

six columns. Some of the cells in the second table may be

empty. The tables are divided into 80% for training and 20%

for testing.

ICDAR 2013 Table Competition Dataset [28]. The

ICDAR 2013 table dataset consists of 67 PDF documents

with 156 tables, which were collected from the internet.

This dataset can be divided into two categories: the US set

and the EU set. The tables are in different styles and from

various domains. The US set has more non-ruled tables and

complex header structures than the EU set. Because this

paper focuses on table reconstruction from images, all PDF

files are converted to images prior to experimentation. Only

752



Algorithm 1: Table Structure Inference

Input: N , the neighbor relationships set.

C, the cells set.

Output: S, the coordinates set for all cells.

(tRows, tCols), the shape of table.

1 G = (C,E); S // Initialization.
2 for ci ∈ C do
3 mci = 1,mri = 1
4 for d ∈ {’L’, ’R’, ’U ’, ’D’} do
5 subTree, width = BuildTree(G, ci, d)
6 if d ∈ {’L’, ’R’} then
7 mri = Max(mri, width)

8 else
9 mci = Max(mci, width)

10 S = S.update(mci,mri)
11 G = G.update(mci,mri)

12 rowHeaders = list(), colHeaders = list()
13 for Ni ∈ N do
14 if Count(n’L’

j ∈ Ni) == 0 then
15 rowHeaders.append(ci)

16 if Count(n’U ’
j ∈ Ni) == 0 then

17 colHeaders.append(ci)

18 rowHeaders = Filter(rowHeaders)
19 colHeaders = Filter(colHeaders)
20 tRows = 0, tCols = 0
21 for ci ∈ C do

/* Distances to row headers (RH)
and column headers (CH). */

22 disToRH = list(), disToCH = list()
23 for cj ∈ rowHeaders do
24 minPath = Dijkstra(G, ci, cj)
25 disToRH.append(Dis(G,minPath))

26 for cj ∈ colHeaders do
27 minPath = Dijkstra(G, ci, cj)
28 disToCH.append(Dis(G,minPath))

29 rowi
1 = Max(disToCH)

30 coli1 = Max(disToRH)
31 S = S.update(coli1, row

i
1)

32 tRows = Max(tRows, rowi
1 +mri)

33 tCols = Max(tCols, coli1 +mci)

34 return S, (tRows,tCols)

50% of the tables are used for training to ensure sufficient

samples for evaluation.

Following the text detection workflow, only cells con-

taining data are annotated with bounding boxes and cell

coordinates, meaning that empty cells are unannotated.

We evaluate the proposed method in two ways: neigh-

Table I: Results of neighbor relationship detection.

CMDD ICDAR 2013 Dataset
Method Precision Recall Precision Recall
Projection 0.979 0.987 0.157 0.666
Ours(RUS) 0.868 0.997 0.795 0.547
Ours(CW) 0.962 0.992 0.822 0.412
Ours(DSW) 0.999 0.997 0.926 0.447
Ours(DSW+RUS) ∼ ∼ 0.734 0.747

bor relationship detection and cell location inference.

Neighbor relationship detection follows the metrics used in

[28]. The prediction of the deep cell relationship network is

presented as a tuple (ci, cj , ri,j), which is compared to the

ground truth by using precision and recall measures. For

cell location inference, a table cell coordinate is represented

as (col1, row1,mc,mr) in our method. We transform this

representation into (col1, row1, col2, row2) as in ICDAR

2013 table dataset, where col2 = col1 + mc and row2 =
row1 + mr. The accuracy of the four coordinate values is

calculated as the metric of cell location inference metric. We

also denote cell-loc as the accuracy of all these four values

being predicted correctly for a table cell.

B. Implementation Details

For neighbor cells detection, we fork the architecture in

[23] to build our neural network. The network is trained

with the RMSprop optimizer, and the learning rate is set to

0.00005. In theory, given a table with n cells, the proposed

model can output all the detection results for n(n − 1)
relational pairs. However, GPU memory requirements rise

dramatically as n increases. So, the relational instances

are split into multiple batches for training and testing.

When training on ICDAR 2013 table dataset, the model is

initialized with the parameters trained on CMDD because

of the insufficient data and diverse styles in ICDAR 2013

table dataset.

C. Comparative Results

We first compare the proposed DSW with the methods

of projection [16], random under-sampling (RUS) and class

weight (CW) [29] on CMDD. The realigned mask in Section

III-A is directly treated as the input of the projection

method because we assume that content bounding boxes

are observed before experiments. The result of projection is

postprocessed by a median and Gaussian filter, respectively.

The proportion of negatives and positives in CMDD is about

95 : 5. For the RUS, redundant negatives are randomly

deleted to keep the proportion no more than 2 : 1. According

to the proportion of five cell relationship classes (None, L,

R, U, D), the CW is set to 0.6 : 1.0 : 1.0 : 1.2 : 1.2. As

shown in Table I, the RUS can result in a high recall by

deleting redundant negatives. However, some hard samples

are inevitably removed. Rather than only paying attention to

minority positives like the CW, the proposed DSW also gives

753



Table II: Results of cell location inference.

CMDD
Method cell-loc row1 row2 col1 col2
Projection 0.957 0.976 0.975 0.976 0.976
Ours 0.999 0.999 0.999 0.999 0.999

ICDAR 2013 Dataset
Method cell-loc row1 row2 col1 col2
Projection 0.031 0.096 0.099 0.141 0.142
Ours(RUS) 0.015 0.089 0.091 0.135 0.131
Ours(CW) 0.020 0.101 0.099 0.118 0.113
Ours(DSW) 0.015 0.053 0.064 0.166 0.163
Ours(DSW+RUS) 0.019 0.111 0.119 0.164 0.145

more weight to hard samples, and achieves the highest recall

(0.997) and precision (0.999). Furthermore, to evaluate the

performance of our method for cell location inference, we

compare it with the projection method. The results presented

in Table II show that the proposed method can effectively

infer the cell location according to the neighbor relationships

between cells.

We next conduct experiments on ICDAR 2013 table

dataset to evaluate the performance of the proposed method

on more complex data. This dataset has twice the number

of negatives than CMDD with an equivalent number of

positives. So, referring the configuration of CMDD, the

CW is changed to 0.4 : 1.0 : 1.0 : 1.2 : 1.2. Because

ICDAR 2013 table dataset contains more complex samples,

the proportion of negatives and positives for the RUS is

maintained at no more than 40 : 1 according to experi-

ments. The DSW parameters are the same as those used

on CMDD. The results of neighbor relationship detection in

Table I show that the proposed method achieves the highest

precision of all methods tested. However, not all methods

perform well at recall. Then, we apply DSW and RUS

simultaneously, which balances the precision and recall. The

cell location inference results in Table II show that the DSW

can significantly improve the accuracy of col1 and col2.

When both DSW and RUS are applied, the accuracy of row1

and row2 is maximized. However, the projection method

attains the highest accuracy on cell-loc.

D. Discussion

Why is the cell location accuracy so low on ICDAR
dataset, even with high precision and recall of neighbor cells
detection: Most tables in ICDAR 2013 table dataset have

different styles and complex structure compared to the tables

in CMDD, as shown in Fig. 5. The model is hardly trained

to convergence with insufficient data. On the other hand,

the location inference for one cell depends on other cells.

For example, if the only column header cell gets a false

prediction, the remaining cells will be assigned the incorrect

coordinates. However, like CMDD, when the precision and

recall for neighbor cells detection approaches to 1.0, the cell

location accuracy will also improve significantly.

(a)

(b)

Figure 5: Example table images from (a) CMDD and (b)

ICDAR 2013 table dataset.

What is the weakness of the proposed method: When

the table is sparse, some cells may have no other neighbor

cells around them. So, these cells cannot connect with

others when creating the graph from detected neighbor

relationships. This is also a drawback of the evaluation

[28] for table structure recognition, in which the neighbor

relationship between two adjacent blank cells, or a content

cell and a blank cell, are not considered.

V. CONCLUSION

This paper presents a novel framework to convert a table

image into its syntactic representation. Specifically, given

a table image with content bounding boxes, a deep cell

relationship network is built to detect neighbors for each

table cell. During the training stage, a distance-based sample

weight is proposed to deal with the class imbalance problem.

According to the detected relationships, a weighted graph is

created to connect the table cells. By searching this graph,

we infer the syntactic table structure: the shape of the

table and the coordinates of each table cell. Experimental

evaluation of the proposed method on two datasets demon-

strates that it can effectively detect the neighbor relationships

and infer the location for each table cell. We will explore

methods to deal with more complex table structures in future

studies.

REFERENCES

[1] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu,
G. Miao, and C. Wu, “Recovering semantics of tables on the
web,” in Proceedings of the VLDB Endowment, vol. 4, no. 9,
2011, pp. 528–538.

[2] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu, “Understanding
tables on the web,” in International Conference on Concep-
tual Modeling, 2012, pp. 141–155.

754



[3] T. T. Nguyen, Q. V. H. Nguyen, M. Weidlich, and K. Aberer,
“Result selection and summarization for web table search,”
in Proceedings of the 31st International Conference on Data
Engineering (ICDE). IEEE, 2015, pp. 231–242.

[4] K. Nishida, K. Sadamitsu, R. Higashinaka, and Y. Matsuo,
“Understanding the semantic structures of tables with a hybrid
deep neural network architecture.” in Proceedings of the 29th
AAAI Conference on Artificial Intelligence, 2017, pp. 168–
174.

[5] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed,
“Deepdesrt: Deep learning for detection and structure recog-
nition of tables in document images,” in Proceedings of the
14th International Conference on Document Analysis and
Recognition (ICDAR). IEEE, 2017, pp. 1162–1167.

[6] X. Chen, L. Chiticariu, M. Danilevsky, A. Evfimievski, and
P. Sen, “A rectangle mining method for understanding the
semantics of financial tables,” in Proceedings of the 14th
International Conference on Document Analysis and Recog-
nition (ICDAR). IEEE, 2017, pp. 268–273.

[7] Z. Chen and M. Cafarella, “Automatic web spreadsheet data
extraction,” in Proceedings of the 3rd International Workshop
on Semantic Search over the Web. ACM, 2013, p. 1.

[8] ——, “Integrating spreadsheet data via accurate and low-
effort extraction,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 2014, pp. 1126–1135.

[9] Y. Liu, P. Mitra, and C. L. Giles, “Identifying table boundaries
in digital documents via sparse line detection,” in Proceedings
of the 17th International Conference on Information and
Knowledge Management. ACM, 2008, pp. 1311–1320.

[10] Y. Liu, K. Bai, P. Mitra, and C. L. Giles, “Improving the
table boundary detection in pdfs by fixing the sequence error
of the sparse lines,” in Proceedings of the 10th International
Conference on Document Analysis and Recognition (ICDAR).
IEEE, 2009, pp. 1006–1010.

[11] B. Coüasnon and A. Lemaitre, “Recognition of tables and
forms,” in Handbook of Document Image Processing and
Recognition. Springer, 2014, pp. 647–677.

[12] S. Seth and G. Nagy, “Segmenting tables via indexing of
value cells by table headers,” in Proceedings of the 12th Inter-
national Conference on Document Analysis and Recognition
(ICDAR). IEEE, 2013, pp. 887–891.

[13] B. Yildiz, K. Kaiser, and S. Miksch, “pdf2table: A method to
extract table information from pdf files,” in Proceedings of the
2nd Indian International Conference on Artificial Intelligence,
2005, pp. 1773–1785.

[14] J. Fang, P. Mitra, Z. Tang, and C. L. Giles, “Table header
detection and classification,” in Proceedings of the 24th AAAI
Conference on Artificial Intelligence, 2012, pp. 599–605.

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the
International Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2015, pp. 3431–3440.

[16] W. Xue, Q. Li, Z. Zhang, Y. Zhao, and H. Wang, “Table
analysis and information extraction for medical laboratory
reports,” in Proceedings of the 4th International Conference
on Cyber Science and Technology. IEEE, 2018, pp. 193–199.

[17] M. A. Sadeghi and A. Farhadi, “Recognition using visual
phrases,” in Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE,
2011, pp. 1745–1752.

[18] P. Das, C. Xu, R. F. Doell, and J. J. Corso, “A thousand frames
in just a few words: Lingual description of videos through
latent topics and sparse object stitching,” in Proceedings of
the International Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2013, pp. 2634–2641.

[19] S. K. Divvala, A. Farhadi, and C. Guestrin, “Learning ev-
erything about anything: Webly-supervised visual concept
learning,” in Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE,
2014, pp. 3270–3277.

[20] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei, “Visual
relationship detection with language priors,” in Proceedings of
European Conference on Computer Vision (ECCV). Springer,
2016, pp. 852–869.

[21] B. Dai, Y. Zhang, and D. Lin, “Detecting visual relation-
ships with deep relational networks,” in Proceedings of the
International Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017, pp. 3298–3308.

[22] B. Zhuang, L. Liu, C. Shen, and I. Reid, “Towards context-
aware interaction recognition for visual relationship detec-
tion,” in Proceedings of the International Conference on
Computer Vision (ICCV). IEEE, 2017, pp. 589–598.

[23] K. Liang, Y. Guo, H. Chang, and X. Chen, “Visual relation-
ship detection with deep structural ranking,” in Proceedings
of the 30th AAAI Conference on Artificial Intelligence, 2018.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[25] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in
Proceedings of the Advances in Neural Information Process-
ing Systems (NIPS), 2015, pp. 91–99.

[26] C. Huang, Y. Li, C. Change Loy, and X. Tang, “Learning deep
representation for imbalanced classification,” in Proceedings
of the International Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2016, pp. 5375–5384.

[27] H. He and E. A. Garcia, “Learning from imbalanced data,”
IEEE Transactions on Knowledge & Data Engineering, no. 9,
pp. 1263–1284, 2008.

[28] M. Göbel, T. Hassan, E. Oro, and G. Orsi, “Icdar 2013
table competition,” in Proceedings of the 12th International
Conference on Document Analysis and Recognition (ICDAR).
IEEE, 2013, pp. 1449–1453.

[29] A. More, “Survey of resampling techniques for improving
classification performance in unbalanced datasets,” arXiv
preprint arXiv:1608.06048, 2016.

755


