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A new model for Polyatomic Gases with an arbitrary but fixed number of moments has been recently proposed and investigated
in the framework of Extended Thermodynamics; the arbitrariness of the number of moments is linked to a number 𝑁 and the
resulting model is called an 𝑁-Model. This model has been elaborated in order to take into account the entropy principle, the
Galilean relativity principle, and some symmetry conditions. It has been proved that the solution for all these conditions exists, but
it has not been written explicitly because hard notation is necessary; it has only been shown how the theory is self-generating in
the sense that if we know the closure of the𝑁-Model, then we will be able to find that of (𝑁 + 1)-Model. Up to now only a single
particular solution has been found in this regard. Instead of this, we find here a numberable set of exact solutions which hold for
every fixed number𝑁.

1. Introduction

Themodel for Polyatomic Gases considers for every number
𝑁 the following balance equations:
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and the resulting model is called an𝑁-Model.
Here 𝐹

𝑖
1
⋅⋅⋅𝑖
𝑛 represents the momentum-like hierarchy,

while 𝐺𝑖1 ⋅⋅⋅𝑖𝑚 represents the energy-like hierarchy; the quan-
tities with an index 𝑘 represent their fluxes, while 𝑃𝑖1 ⋅⋅⋅𝑖𝑛 and
𝑄
𝑖
1
⋅⋅⋅𝑖
𝑚 represent the production terms; for the conservation

laws of mass and momentum we have 𝑃 = 0 and 𝑃
𝑖
= 0,

while for the conservation of energy we have 𝑄 = 0.
This model represents a novelty with respect to the earlier

versions of ExtendedThermodynamics (ET) which used only
(1)
1
obtaining the important result to have a symmetric

hyperbolic system of partial differential equations, with finite
speed of propagation of shock waves and other important

properties. A very short list of significative articles in this
regard is given in [1–7]. These results constituted an impor-
tant improvement of themodels of OrdinaryThermodynam-
ics. A very significative article in this previous framework
is given in [8]. But ET was still not completely satisfactory
because it is too much restrictive also on the state function
relating the pressure 𝑝 to the mass density 𝜌 and energy
density 𝜖. This problem has been overcome in Extended
Thermodynamics of Polyatomic Gases by considering all
the balance equations (1) of which the first one is called
the “Mass-Block” of equations and the second is called the
“Energy-Block” of equations. See, for example, the articles
[9–16].

It has to be noted that in the literature here cited the
balance equations are not included in the𝑁-Model, but they
can be easily recovered with the theory of subsystems (see
[17]) by simply putting the Lagrange multiplier of the last
equation in the Mass-Block equal to zero. In [11, 12] it has
been shown that the wave speeds of the 𝑁-Model are the
same as those of monatomic gases; but this proof has been
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given with the kinetic equations which are only a subcase
of those of the macroscopic approach (in effect, the whole
closure here found is zero in the kinetic approach and only
parts (5) and (6) remains). In any case there is no problem for
what we have said at the beginning of this note. Moreover, a
priori the Bhatnagar-Gross-Krook equation (see the equation
before (14) in [10]) can be replaced by an infinite hierarchy
of balance equations for moments and only for practical
reasons some of them are eliminated; consequently, there
is no inconsistence if another of these balance equations is
eliminated in a second step with the theory of subsystems, as
said above.The𝑁-Model is here considered because it makes
(in the macroscopic approach) the decomposition of tensors
in nonconvective parts and in velocity dependent parts more
linear. In the kinetic approach this is simply a consequence of
the integrals, but in the macroscopic approach here followed
this decomposition must be justified in a straightforward
manner. In [11, 12] the (𝑀,𝑁)-system has been proposed
with 𝑁 ≤ 𝑀 − 1; but the macroscopic approach needs a
much heavier notation and this is simplified by the present
𝑁-Model without losing generality because, in any case, the
(𝑀,𝑁)-system can be recovered from the present one with
the theory of subsystems.

In (1) the independent variables are 𝐹𝑖1 ⋅⋅⋅𝑖𝑛 and 𝐺𝑖1 ⋅⋅⋅𝑖𝑚 ; the
quantities 𝐹𝑘𝑖1 ⋅⋅⋅𝑖𝑛 and 𝐺𝑘𝑖1 ⋅⋅⋅𝑖𝑚 are their corresponding fluxes.
The problem will be closed when we know the expressions
of 𝐹𝑘𝑖1 ⋅⋅⋅𝑖𝑁+2 and 𝐺

𝑘𝑖
1
⋅⋅⋅𝑖
𝑁 as functions of the independent

variables. Restrictions on their generality are obtained by
imposing the entropy principle, the Galilean relativity princi-
ple, and the symmetry conditions.These last ones express the
fact that each flux in (1) is equal to the independent variable
of the subsequent equation, except for the flux in the last
equation of the Mass-Block and for that in the last equation
of the Energy-Block; for these last fluxes we know only that
they are symmetric tensors.

The Entropy Principle, exploited through Liu’s Theorem
[18] and a bright idea conceived by Ruggeri and Strumia [19],
becomes equivalent to assuming the existence of Lagrange
Multipliers 𝜇

𝐴
and 𝜆

𝐵
which can be taken as independent

variables and, after that, we have
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(2)

which expresses all the moments in terms of only two
unknown functions, the 4-potential ℎ and ℎ𝑘. Their relation
with the entropy ℎ and its flux ℎ𝑘 is given by
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(3)

A nice consequence of (2) is that the field equations assume
the symmetric form. Another consequence of (2) is that
the above-mentioned symmetry conditions and the Galilean
relativity principle can be expressed as
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(4)

The equivalence of (4)
5
to the Galilean relativity principle is

proved in literature such as [13, 20, 21] and on Representation
Theorems such as that of [22].

In (5), (6), and (7) we report an already known particular
solution (see [23]) for the conditions (4). But it is not
the general solution; in fact, in the present article we will
exhibit a significative set of other solutions depending on
a numberable family of arbitrary single variable functions
𝑔
𝑖
(𝜆) and we report it in the next section, (8) and (9). It

is expressed through Taylor’s expansion around equilibrium
which is defined as the state where 𝜇

𝑖
1
⋅⋅⋅𝑖
𝑛

= 0, for 𝑛 =

1, . . . , 𝑁 + 2, and 𝜆
𝑖
1
⋅⋅⋅𝑖
𝑚

= 0, for 𝑚 = 1, . . . , 𝑁, so that the
only variables which are not zero at equilibrium are 𝜇 and 𝜆.
The first of these is the chemical potential, while 𝜆 = 1/2𝑇

with 𝑇 absolute temperature.
Obviously, also the velocity is nonvanishing at equilib-

rium; but if we use a decomposition in nonconvective parts
and in velocity dependent parts, we obtain the Lagrange
multiplier 𝜇

𝑖
of the momentum conservation law in terms of

the other Lagrange multipliers and we see that its velocity
independent part is zero at equilibrium. Moreover, from
the fact that the velocity independent parts of 𝜇

⋅⋅⋅
and 𝜆

⋅⋅⋅

are zero at equilibrium, it follows that they are zero also
as a whole, without decomposition; the only exceptions are
for the Lagrange multipliers of the mass and of the energy
conservation laws (see equation (25) of [21], e.g.).

The proof of the fact that (8) and (9) give a solution for (4)
is here split into two parts: the first one is reported in Section 3
and the second and final part is described in Section 4.

In conclusion, the sum of the solution reported in (5), (6),
and (7) and the present one reported in (8) and (9) is a more
general solution for our conditions.
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2. A Set of Exact Solutions for Conditions (4)

Before writing our solution we need an apparently compli-
cated notation.

To do the derivatives with respect to 𝜇
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we can now report from [23] the already known solution for
our conditions and it is
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But the above one is not the unique solution; in fact, by
using the same notation, we can now say that a more general
solution can be obtained by adding to (5) and (6) the
following expressions (8) and (9); that is,
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𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
odd

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

⋅
1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!
[

𝑁+2

∑

𝑖=1

𝑖𝑝
𝑖
+

𝑁

∑

𝑖=1

𝑖𝑟
𝑖
]!!

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖

]

⋅ 𝛿
(𝑘𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)
(𝜇)
𝑝
0

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

,

(9)

where 𝑔
𝑖
is a family of functions depending only on 𝜆 such

that 𝑔
𝑖
= 0 for 𝑖 < 0. Here we use only a letter 𝛿⋅⋅⋅ as
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a shortened symbol denoting the product of some 𝛿⋅⋅⋅ each
one with 2 indexes and with a final symmetrization over all
these indexes.

We note the following:

(i) If 𝑁 = 0, the function 𝑔 in the expression of ℎ𝑘
has index −2𝑝

0
− 𝑝
1
and consequently this 𝑔 may be

different from zero only if 𝑝
0
= 0 and 𝑝

1
= 0; but

in this case 𝑝
1
+ 2𝑝
2
is not odd. This fact implies that

ℎ
𝑘

= 0. Similarly, the function 𝑔 in the expression
of ℎ has index −2𝑝

0
− 𝑝
1
− 1 so that 𝑔 = 0 and

ℎ

= 0. This confirms the results of [24] for this case

𝑁 = 0, because in the sum of (8) and (9) and the
corresponding results (5) and (6) of [23] only these
last ones remain in the case𝑁 = 0.

(ii) If 𝑁 = 1, the function 𝑔 in the expression of ℎ𝑘 has
index −2𝑝

0
− 𝑝
1
+ 𝑝
3
+ 𝑟
1
and this is an odd number

because𝑝
1
+2𝑝
2
+3𝑝
3
+𝑟
1
must be odd. Consequently,

the index 𝑝
0
belongs to the interval [0, (−𝑝

1
+ 𝑝
3
+

𝑟
1
− 1)/2] if this is not the empty set. By taking into

account this fact we see that the sum of the solution
reported in (6) and the present expression (9) for the
case 𝑁 = 1 is the same as that in [24]. Similarly, the
function 𝑔 in the expression of ℎ has index −2𝑝

0
−

𝑝
1
+ 𝑝
3
+ 𝑟
1
− 1 and this is an odd number because

𝑝
1
+ 2𝑝
2
+ 3𝑝
3
+ 𝑟
1
must be even. Consequently, the

index𝑝
0
belongs to the interval [0, (−𝑝

1
+𝑝
3
+𝑟
1
−2)/2]

if this is not the empty set. By taking into account this
fact we see that the sum of our expression (8) and that
in (5) for the case𝑁 = 1 is the same as that in [24].

(iii) If𝑁 ≥ 2 our solution is completely new.

3. The New Solution (8) and (9) Satisfies (4)
1–4

In this section we prove that (8) and (9) are a solution for
(4)
1–4, putting off (4)

5
to Section 4:

(i) Let us substitute firstly (8) and (9) in (4)
1
.

We obtain for both sides the following expression:

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

𝑛+∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
odd

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!
[𝑛

+

𝑁+2

∑

𝑖=1

𝑖𝑝
𝑖
+

𝑁

∑

𝑖=1

𝑖𝑟
𝑖
]!!

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1+3−𝑛

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
+𝑛−2

]

⋅ 𝛿
(𝑘𝑖
1
⋅⋅⋅𝑖
𝑛
𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)
(𝜇)
𝑝
0

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

,

(10)

where we have taken into account that 𝜇
𝑖
1
⋅⋅⋅𝑖
𝑛

here is
denoted with 𝜇

𝐴
𝑛,1

or with 𝜇
𝐴
𝑛,2

and so on up to 𝜇
𝐴
𝑛,𝑝𝑛

.
Similarly, 𝜇

𝑘𝑖
1
⋅⋅⋅𝑖
𝑛

is denoted with 𝜇
𝐴
𝑛+1,1

or with 𝜇
𝐴
𝑛+1,2

and so on up to 𝜇
𝐴
𝑛+1,𝑝𝑛+1

. Consequently, the left hand
side of (4)

1
causes, with respect to expression (9), a

rise of one unity of the index 𝑝
𝑛
; similarly, the right

hand side of (4)
1
causes, with respect to expression

(8), a rise of one unity of the index 𝑝
𝑛+1

.

(ii) It is easy to verify that (9) satisfies (4)
2,4
.

(iii) By substituting (8) and (9) in (4)
3
in the case 𝑚 ≥ 1,

we obtain for both sides the following expression:

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

𝑚+∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
odd

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!
[𝑚

+

𝑁+2

∑

𝑖=1

𝑖𝑝
𝑖
+

𝑁

∑

𝑖=1

𝑖𝑟
𝑖
]!!

⋅
𝜕
1+𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆1+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1−𝑚

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
+𝑚
]

⋅ 𝛿
(𝑘𝑖
1
⋅⋅⋅𝑖
𝑚
𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)
(𝜇)
𝑝
0

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

,

(11)

where we have taken into account that 𝜆
𝑖
1
⋅⋅⋅𝑖
𝑚

here
is denoted with 𝜆

𝐵
𝑚,1

or with 𝜆
𝐵
𝑚,2

and so on up to
𝜆
𝐵
𝑚,𝑟𝑚

. Similarly, 𝜆
𝑘𝑖
1
⋅⋅⋅𝑖
𝑚

is denotedwith 𝜆
𝐵
𝑚+1,1

or with
𝜆
𝐵
𝑚+1,2

and so on up to 𝜆
𝐵
𝑚+1,𝑟𝑚+1

. Consequently, the
left hand side of (4)

3
with 𝑚 ≥ 1 causes, with respect

to expression (9), a rise of one unity of the index 𝑟
𝑚
;

similarly, the right hand side of (4)
3
with 𝑚 ≥ 1

causes, with respect to expression (8), a rise of one
unity of the index 𝑟

𝑚+1
.

(iv) Let us conclude substituting (8) and (9) into (4)
3
in

the case𝑚 = 0.
We have the same situation of the above case for its
right hand side, while for its left hand side we have
to take simply the derivative of (9) with respect to 𝜆.
More precisely, we obtain for both sides the following
expression:

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
odd

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

⋅
1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!
[

𝑁+2

∑

𝑖=1

𝑖𝑝
𝑖
+

𝑁

∑

𝑖=1

𝑖𝑟
𝑖
]!!
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⋅
𝜕
1+𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆1+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖

]

⋅ 𝛿
(𝑘𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)
(𝜇)
𝑝
0

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

.

(12)

This concludes our proof that (4)
1–4 are satisfied by (8) and

(9). In the next section we will consider (4)
5
.

4. The New Solution (8) and (9) Satisfies (4)
5

First of all we note that (4)
5
can be rewritten as

𝑁+1

∑

𝑛=0

𝜕ℎ


𝜕𝜇
𝑘𝑗
1
⋅⋅⋅𝑗
𝑛

(𝑛 + 1) 𝜇
𝑖𝑗
1
⋅⋅⋅𝑗
𝑛

+
𝜕ℎ


𝜕𝜇
𝑘𝑖

2𝜆

+

𝑁−1

∑

𝑠=0

2𝜆
𝑗
1
⋅⋅⋅𝑗
𝑠+1

𝜕ℎ


𝜕𝜇
𝑘𝑗
1
⋅⋅⋅𝑗
𝑠+1
𝑖

+

𝑁−1

∑

𝑠=0

𝜕ℎ


𝜕𝜆
𝑘ℎ
1
⋅⋅⋅ℎ
𝑠

(𝑠 + 1) 𝜆
𝑖ℎ
1
⋅⋅⋅ℎ
𝑠

+ ℎ

𝛿
𝑘𝑖
= 0.

(13)

(i) After that, we note that the first term of this relation
thanks to (8) becomes

𝑁+1

∑

𝑛=0

(𝑛 + 1) 𝜇
𝑖𝑗
1
⋅⋅⋅𝑗
𝑛

𝜕ℎ


𝜕𝜇
𝑘𝑗
1
⋅⋅⋅𝑗
𝑛

=

𝑁+1

∑

𝑛=0

(𝑛 + 1) 𝑝
𝑛+1

⋅

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
even

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!

⋅

[1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖
]!!

1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
]

⋅ (𝜇)
𝑝
0

⋅ 𝛿
𝑗
𝑛+1
𝑖
𝛿
(𝑘𝑗
1
⋅⋅⋅𝑗
𝑛
𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑛+1,1
⋅⋅⋅𝐴
𝑛+1,𝑝𝑛+1−1

⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)
⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑛+1,𝑝𝑛+1−1

𝜇
𝑗
1
⋅⋅⋅𝑗
𝑛+1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

⋅ 𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

,

(14)

because the derivation causes a presence of the fac-
tor 𝑝

𝑛+1
and the substitution of 𝜇

𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑛+1,𝑝𝑛+1

with
𝜇
𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑛+1,𝑝𝑛+1−1

and the new free indexes 𝑘𝑗
1
⋅ ⋅ ⋅ 𝑗
𝑛
in

the expression of 𝛿⋅⋅⋅; moreover, we have also substituted
𝜇
𝑖𝑗
1
⋅⋅⋅𝑗
𝑛

with 𝜇
𝑗
1
⋅⋅⋅𝑗
𝑛+1

𝛿
𝑗
𝑛+1
𝑖. Now in the resulting expression

we can insert a symmetrization over all the indexes of
the set 𝑗

1
⋅ ⋅ ⋅ 𝑗
𝑛+1

𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝐴
𝑛+1,𝑝

𝑛+1
−1

because that expression
remains the same if we exchange two of these indexes.
This fact is evident if the two indexes are taken between
𝑗
1
⋅ ⋅ ⋅ 𝑗
𝑛+1

; for the proof in the other cases, let us consider the
shortened expression 𝛿

𝑗
𝑛+1
𝑖
𝛿
(𝑘𝑗
1
⋅⋅⋅𝑗
𝑛
𝑘
1
⋅⋅⋅𝑘
𝑛
𝑘
𝑛+1
⋅⋅⋅ )
𝜇
𝑗
1
⋅⋅⋅𝑗
𝑛+1

𝜇
𝑘
1
⋅⋅⋅𝑘
𝑛+1

;
here we can exchange the names of the indexes 𝑗

⋅
with

those of 𝑘
⋅
, so that the above shortened expression becomes

𝛿
𝑘
𝑛+1
𝑖
𝛿
(𝑘𝑘
1
⋅⋅⋅𝑘
𝑛
𝑗
1
⋅⋅⋅𝑗
𝑛
𝑗
𝑛+1
⋅⋅⋅ )
𝜇
𝑘
1
⋅⋅⋅𝑘
𝑛+1

𝜇
𝑗
1
⋅⋅⋅𝑗
𝑛+1

.
Now we can exchange the indexes 𝑘

1
⋅ ⋅ ⋅ 𝑘
𝑛
with the

indexes 𝑗
1
⋅ ⋅ ⋅ 𝑗
𝑛
in the expression of 𝛿(𝑘𝑘1 ⋅⋅⋅𝑘𝑛𝑗1⋅⋅⋅𝑗𝑛𝑗𝑛+1⋅⋅⋅ ) because

this is a symmetric tensor.
We obtain 𝛿𝑘𝑛+1𝑖𝛿(𝑘𝑗1 ⋅⋅⋅𝑗𝑛𝑘1 ⋅⋅⋅𝑘𝑛𝑗𝑛+1⋅⋅⋅ )𝜇

𝑘
1
⋅⋅⋅𝑘
𝑛+1

𝜇
𝑗
1
⋅⋅⋅𝑗
𝑛+1

. By com-
paring this result with the expression which we started from,
it is the same if we had exchanged the indexes 𝑗

𝑛+1
and

𝑘
𝑛+1

. This completes the proof of the fact that expression
(14) remains the same if we exchange two indexes of the
set 𝑗
1
⋅ ⋅ ⋅ 𝑗
𝑛+1

𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝐴
𝑛+1,𝑝

𝑛+1
−1
; so we can insert there a

symmetrization over those indexes and (14) becomes

𝑁+1

∑

𝑛=0

(𝑛 + 1) 𝜇
𝑖𝑗
1
⋅⋅⋅𝑗
𝑛

𝜕ℎ


𝜕𝜇
𝑘𝑗
1
⋅⋅⋅𝑗
𝑛

=

𝑁+1

∑

𝑛=0

(𝑛 + 1) 𝑝
𝑛+1

⋅

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
even

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!

⋅

[1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖
]!!

1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
]

⋅ (𝜇)
𝑝
0

⋅ 𝛿
𝑗
𝑛+1
𝑖
𝛿
(𝑘𝑗
1
⋅⋅⋅𝑗
𝑛
𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑛+1,1
⋅⋅⋅𝐴
𝑛+1,𝑝𝑛+1−1

⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑛+1,𝑝𝑛+1−1

𝜇
𝑗
1
⋅⋅⋅𝑗
𝑛+1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

⋅ 𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

,

(15)



6 Advances in Mathematical Physics

where underlined indexes denote symmetrization over
these indexes. Now we observe that (𝑛 + 1)𝑝

𝑛+1
is exactly

the number of the indexes of the set 𝑗
1
⋅ ⋅ ⋅ 𝑗
𝑛+1

𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝐴
𝑛+1,𝑝

𝑛+1
−1

and that, thanks to the summation ∑
𝑁+1

𝑛=0
,

the index near 𝑖 in 𝛿
𝑗
𝑛+1
𝑖 can be every index of the set

𝐴
1,1
⋅ ⋅ ⋅ 𝐴
1,𝑝
1

⋅ ⋅ ⋅ 𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝐴
𝑛+1,𝑝

𝑛+1

⋅ ⋅ ⋅ 𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝐴
𝑁+2,𝑝

𝑁+2

.
These facts allow rewriting (15) as

𝑁+1

∑

𝑛=0

(𝑛 + 1) 𝜇
𝑖𝑗
1
⋅⋅⋅𝑗
𝑛

𝜕ℎ


𝜕𝜇
𝑘𝑗
1
⋅⋅⋅𝑗
𝑛

= [

𝑁+1

∑

𝑛=0

(𝑛 + 1) 𝑝
𝑛+1

] ⋅

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
even

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!

⋅

[1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖
]!!

1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
]

⋅ (𝜇)
𝑝
0

⋅ 𝛿
𝑗
𝑛+1
𝑖
𝛿
(𝑘𝑗
1
⋅⋅⋅𝑗
𝑛
𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑛+1,1
⋅⋅⋅𝐴
𝑛+1,𝑝𝑛+1−1

⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑛+1,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑛+1,𝑝𝑛+1−1

𝜇
𝑗
1
⋅⋅⋅𝑗
𝑛+1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

⋅ 𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

.

(16)

(ii) For the fourth term of (13) we can do similar passages
(the difference is that we have 𝜆

⋅⋅⋅
instead of 𝜇

⋅⋅⋅
, 𝑁 − 2

instead of 𝑁, and 𝑠 instead of 𝑛); in this way that term
becomes

𝑁−1

∑

𝑠=0

(𝑠 + 1) 𝜆
𝑖ℎ
1
⋅⋅⋅ℎ
𝑠

𝜕ℎ


𝜕𝜆
𝑘ℎ
1
⋅⋅⋅ℎ
𝑠

= [

𝑁−1

∑

𝑠=0

(𝑠 + 1) 𝑟
𝑠+1
] ⋅

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
even

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!

⋅

[1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖
]!!

1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
]

⋅ (𝜇)
𝑝
0

⋅ 𝛿
ℎ
𝑠+1
𝑖
𝛿
(𝑘ℎ
1
⋅⋅⋅ℎ
𝑠
𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑠+1,1
⋅⋅⋅𝐵
𝑠+1,𝑟𝑠+1−1

⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

⋅ 𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑠+1,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑠+1,𝑟𝑠+1−1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

.

(17)

(iii) If we look at the last term of (13), we see that it can be
written together with (16) and (17) and they become

𝑁+1

∑

𝑛=0

𝜕ℎ


𝜕𝜇
𝑘𝑗
1
⋅⋅⋅𝑗
𝑛

(𝑛 + 1) 𝜇
𝑖𝑗
1
⋅⋅⋅𝑗
𝑛

+

𝑁−1

∑

𝑠=0

𝜕ℎ


𝜕𝜆
𝑘ℎ
1
⋅⋅⋅ℎ
𝑠

(𝑠 + 1)

⋅ 𝜆
𝑖ℎ
1
⋅⋅⋅ℎ
𝑠

+ ℎ

𝛿
𝑘𝑖
= [1 +

𝑁+1

∑

𝑛=0

(𝑛 + 1) 𝑝
𝑛+1

+

𝑁−1

∑

𝑠=0

(𝑠 + 1) 𝑟
𝑠+1
] ⋅

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
even

1

𝑝
0
!

1

𝑝
1
!

⋅ ⋅ ⋅
1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!
⋅

[1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖
]!!

1 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
] (𝜇)
𝑝
0

⋅ 𝛿
𝑘𝑖
𝛿
(𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

,

(18)

where also the index 𝑘has been put under the symmetrization
and we recall that a property of symmetrization is 𝛿𝑖𝑘𝛿(⋅⋅⋅) =
𝛿
𝑖𝑘
𝛿
⋅⋅⋅
= 𝛿
(𝑖𝑘⋅⋅⋅ ). We note that the coefficient in square bracket

at the beginning of the right hand side of (18) has become
equal to the denominator of the half factorial of that right
hand side.

(iv) For the second term of (13), we can use (8) and the
derivation causes someway the rising of one unity of the index
𝑝
2
; the result is
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𝜕ℎ


𝜕𝜇
𝑘𝑖

2𝜆 = 2𝜆

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
even

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!

⋅ ⋅ ⋅
1

𝑟
𝑁
!
⋅ [1 +

𝑁+2

∑

𝑖=1

𝑖𝑝
𝑖
+

𝑁

∑

𝑖=1

𝑖𝑟
𝑖
]!!

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖
+1

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
] (𝜇)
𝑝
0

⋅ 𝛿
(𝑘𝑖𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

.

(19)

(v)There remains considering the third term of (13); for it
we can use (8) and the derivation causes someway the rising
of one unity of the index 𝑝

𝑠+3
; in this way it becomes

𝑁−1

∑

𝑠=0

2𝜆
𝑗
1
⋅⋅⋅𝑗
𝑠+1

𝜕ℎ


𝜕𝜇
𝑘𝑗
1
⋅⋅⋅𝑗
𝑠+1
𝑖

=

𝑁−1

∑

𝑠=0

2𝜆
𝑗
1
⋅⋅⋅𝑗
𝑠+1

⋅

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

𝑠+3+∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
even

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!

⋅ ⋅ ⋅
1

𝑟
𝑁
!
⋅

[𝑠 + 4 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖
]!!

𝑠 + 4 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

−𝑠+∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅ 𝑔
𝑠+1+∑

𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
] (𝜇)
𝑝
0

⋅ 𝛿
(𝑘𝑗
1
⋅⋅⋅𝑗
𝑠+1
𝑖𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

.

(20)

In this expression, we can substitute 𝜆
𝑗
1
⋅⋅⋅𝑗
𝑠+1

with 𝜆
𝐵
𝑠+1,𝑟𝑠+1+1

and 𝑗
1
⋅ ⋅ ⋅ 𝑗
𝑠+1

with 𝐵
𝑠+1,𝑟
𝑠+1
+1
; moreover, we substitute

1/(𝑟
𝑠+1
!) with (𝑟

𝑠+1
+ 1)/(𝑟

𝑠+1
+ 1)! and, after that, decrease

𝑟
𝑠+1

of one unity (which is equivalent to a change of index).
So this expression becomes

𝑁−1

∑

𝑠=0

2𝜆
𝑗
1
⋅⋅⋅𝑗
𝑠+1

𝜕ℎ


𝜕𝜇
𝑘𝑗
1
⋅⋅⋅𝑗
𝑠+1
𝑖

=

𝑁−1

∑

𝑠=0

2𝑟
𝑠+1

⋅

0⋅⋅⋅∞

∑

𝑝
0
,...,𝑝
𝑁+2
,𝑟
1
,...,𝑟
𝑁

2+∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
even

1

𝑝
0
!

1

𝑝
1
!
⋅ ⋅ ⋅

1

𝑝
𝑁+2

!

1

𝑟
1
!

1

𝑟
2
!
⋅ ⋅ ⋅

1

𝑟
𝑁
!

⋅

[3 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖
]!!

3 + ∑
𝑁+2

𝑖=1
𝑖𝑝
𝑖
+ ∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅
𝜕
−1+𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆−1+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

1

2𝜆
)

1+∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
] (𝜇)
𝑝
0

⋅ 𝛿
(𝑘𝑖𝐴
1,1
⋅⋅⋅𝐴
1,𝑝1
⋅⋅⋅𝐴
𝑁+2,1
⋅⋅⋅𝐴
𝑁+2,𝑝𝑁+2

𝐵
1,1
⋅⋅⋅𝐵
1,𝑟1
⋅⋅⋅𝐵
𝑁,1
⋅⋅⋅𝐵
𝑁,𝑟𝑁
)

⋅ 𝜇
𝐴
1,1

⋅ ⋅ ⋅ 𝜇
𝐴
1,𝑝1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,1

⋅ ⋅ ⋅ 𝜇
𝐴
𝑁+2,𝑝𝑁+2

𝜆
𝐵
1,1

⋅ ⋅ ⋅ 𝜆
𝐵
1,𝑟1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,1

⋅ ⋅ ⋅ 𝜆
𝐵
𝑁,𝑟𝑁

.

(21)

It is true that with change of index we have in the summation
the extra term with 𝑟

𝑠+1
= 0; but it does not effect the result

for the presence of the coefficient 𝑟
𝑠+1

.
If we look at the expressions (18), (19), and (21) we

conclude that to prove (13) it is sufficient that the following
relation holds:

𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
]

+ 2𝜆
𝜕
𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁
[(

−1

2𝜆
)

1+∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

⋅ 𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
] +

𝑁−1

∑

𝑠=0

2𝑟
𝑠+1

𝜕
−1+𝑟
1
+𝑟
2
+⋅⋅⋅+𝑟

𝑁

𝜕𝜆−1+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑁

⋅ [(
−1

2𝜆
)

1+∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖

𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
]

= 0,

(22)

and to prove this relation it is sufficient to prove that

𝜕
𝑟

𝜕𝜆𝑟
𝜗 + 2𝜆

𝜕
𝑟

𝜕𝜆𝑟
(
−1

2𝜆
𝜗) + 2𝑟

𝜕
−1+𝑟

𝜕𝜆−1+𝑟
(
−1

2𝜆
𝜗) = 0, (23)

where we have put 𝑟 = 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑁
and 𝜗 =

(−1/2𝜆)
∑
𝑁+2

𝑖=0
(3−𝑖)𝑝

𝑖
−∑
𝑁

𝑖=1
𝑖𝑟
𝑖𝑔
∑
𝑁+2

𝑖=0
(𝑖−2)𝑝

𝑖
+∑
𝑁

𝑖=1
𝑖𝑟
𝑖
−1
.

Obviously, (23) is an identity because we have

𝜕
𝑟

𝜕𝜆𝑟
𝜗 =

𝜕
𝑟

𝜕𝜆𝑟
(−2𝜆

−1

2𝜆
𝜗)

= −2𝜆
𝜕
𝑟

𝜕𝜆𝑟
(
−1

2𝜆
𝜗) − 2𝑟

𝜕
−1+𝑟

𝜕𝜆−1+𝑟
(
−1

2𝜆
𝜗) .

(24)

This concludes all the arguments which we had to prove.
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5. Conclusions

We conclude that, in the particular case𝑁 = 0, we obtain the
11 moments’ model and the solution here indicated is exactly
that already obtained in literature with the macroscopic
approach. In the case 𝑁 = 1 we have that the present one
is a particular solution for that already known in literature.
So we have seen how it transfers itself also to higher values
of 𝑁. In this way we are approaching the goal to obtain the
most general solution and this will be the object of a future
research.

Competing Interests

The authors declare that they have no competing interests.

References

[1] I.-S. Liu and I. Müller, “Extended thermodynamics of classical
and degenerate ideal gases,” Archive for Rational Mechanics and
Analysis, vol. 83, no. 4, pp. 285–332, 1983.

[2] I.-S. Liu, I. Müller, and T. Ruggeri, “Relativistic thermodynam-
ics of gases,” Annals of Physics, vol. 169, no. 1, pp. 191–219, 1986.

[3] I. Müller and T. Ruggeri, Rational Extended Thermodynamics,
Springer Tracts in Natural Philosophy, Springer, New York, NY,
USA, 2nd edition, 1998.

[4] I. Müller, “Entropy and energy,-a universal competition,”
Entropy, vol. 10, no. 4, pp. 462–476, 2008.

[5] M. C. Carrisi, “Amacroscopic solution for amodel suggested by
the non relativistic limit of relativistic extended thermodynam-
ics,” International Journal of Pure and Applied Mathematics, vol.
67, no. 3, pp. 291–325, 2011.

[6] M. C. Carrisi and S. Pennisi, “Extended thermodynamics of
charged gases with many moments: an alternative closure,”
Journal ofMathematical Physics, vol. 54, no. 9, Article ID 093101,
15 pages, 2013.

[7] M.C.Carrisi, A. Farci,M.Obounou, and S. Pennisi, “Relativistic
extended thermodynamics from the Lagrangian view-point,”
Ricerche di Matematica, vol. 64, no. 2, pp. 357–376, 2015.

[8] A. Atangana and B. S. T. Alkahtani, “Analysis of the Keller-Segel
model with a fractional derivative without singular kernel,”
Entropy, vol. 17, no. 6, pp. 4439–4453, 2015.

[9] T. Arima, S. Taniguchi, T. Ruggeri, andM. Sugiyama, “Extended
thermodynamics of dense gases,” Continuum Mechanics and
Thermodynamics, vol. 24, no. 4–6, pp. 271–292, 2012.

[10] T. Arima, S. Taniguchi, T. Ruggeri, andM. Sugiyama, “Extended
thermodynamics of real gases with dynamic pressure: an
extension of Meixner’s theory,” Physics Letters A, vol. 376, no.
44, pp. 2799–2803, 2012.

[11] T. Arima, A. Mentrelli, and T. Ruggeri, “Molecular extended
thermodynamics of rarefied polyatomic gases and wave veloci-
ties for increasing number of moments,” Annals of Physics, vol.
345, pp. 111–140, 2014.

[12] T. Ruggeri and M. Sugiyama, Rational extended thermodynam-
ics beyond the monatomic gas, Springer, Berline, Germany, 2015.

[13] M. C. Carrisi and S. Pennisi, “An 18 moments model for
dense gases: entropy and Galilean relativity principles without
expansions,” Entropy, vol. 17, no. 1, pp. 214–230, 2015.

[14] M. C. Carrisi and S. Pennisi, “Extended thermodynamics for
dense gases up to whatever order,” International Journal of Non-
Linear Mechanics, vol. 77, pp. 74–84, 2015.

[15] M. C. Carrisi, R. Enoh Tchame, M. Obounou, and S. Pennisi,
“Extended thermodynamics for dense gases up to whatever
order and with only some symmetries,” Entropy, vol. 17, no. 10,
pp. 7052–7075, 2015.

[16] M. C. Carrisi, S. Pennisi, T. Ruggeri, and M. Sugiyama,
“Extended thermodynamics of dense gases in the presence of
dynamic pressure,” Ricerche di Matematica, vol. 64, no. 2, pp.
403–419, 2015.

[17] G. Boillat and T. Ruggeri, “Hyperbolic principal subsystems:
entropy convexity and subcharacteristic conditions,”Archive for
Rational Mechanics and Analysis, vol. 137, no. 4, pp. 305–320,
1997.

[18] I.-S. Liu, “Method of Lagrangemultipliers for exploitation of the
entropy principle,”Archive for Rational Mechanics and Analysis,
vol. 46, pp. 131–148, 1972.

[19] T. Ruggeri and A. Strumia, “Main field and convex covariant
density for quasi-linear hyperbolic systems. Relativistic fluid
dynamics,” Annales de l’Institut Henri Poincaré, vol. 34, no. 1,
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