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This paper is the second in a series of papers considering symmetry properties of bosonic quantum systems over 2D graphs, with
continuous spins, in the spirit of the Mermin-Wagner theorem. In the model considered here the phase space of a single spin
is H

1
= L

2
(𝑀), where 𝑀 is a 𝑑-dimensional unit torus 𝑀 = R𝑑

/Z𝑑 with a flat metric. The phase space of 𝑘 spins is H
𝑘
=

Lsym
2

(𝑀

𝑘
), the subspace of L

2
(𝑀

𝑘
) formed by functions symmetric under the permutations of the arguments. The Fock space H

= ⊕
𝑘=0,1,...

H
𝑘
yields the phase space of a system of a varying (but finite) number of particles. We associate a spaceH ≃ H(𝑖) with

each vertex 𝑖 ∈ Γ of a graph (Γ,E) satisfying a special bidimensionality property. (Physically, vertex 𝑖 represents a heavy “atom”
or “ion” that does not move but attracts a number of “light” particles.) The kinetic energy part of the Hamiltonian includes (i)
−Δ/2, the minus a half of the Laplace operator on 𝑀, responsible for the motion of a particle while “trapped” by a given atom,
and (ii) an integral term describing possible “jumps” where a particle may join another atom. The potential part is an operator of
multiplication by a function (the potential energy of a classical configuration) which is a sum of (a) one-body potentials 𝑈(1)

(𝑥),
𝑥 ∈ 𝑀, describing a field generated by a heavy atom, (b) two-body potentials𝑈(2)

(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑀, showing the interaction between
pairs of particles belonging to the same atom, and (c) two-body potentials𝑉(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑀, scaled along the graph distance d(𝑖, 𝑗)
between vertices 𝑖, 𝑗 ∈ Γ, which gives the interaction between particles belonging to different atoms.The systemunder consideration
can be considered as a generalized (bosonic) Hubbard model. We assume that a connected Lie group G acts on𝑀, represented by
a Euclidean space or torus of dimension 𝑑


≤ 𝑑, preserving the metric and the volume in 𝑀. Furthermore, we suppose that the

potentials𝑈(1),𝑈(2), and 𝑉 are G-invariant. The result of the paper is that any (appropriately defined) Gibbs states generated by the
above Hamiltonian is G-invariant, provided that the thermodynamic variables (the fugacity 𝑧 and the inverse temperature 𝛽) satisfy
a certain restriction. The definition of a Gibbs state (and its analysis) is based on the Feynman-Kac representation for the density
matrices.

1. Introduction

1.1. Basic Facts on Bi-Dimensional Graphs. As in [1], we
suppose that the graph (Γ,E) has been given, with the set of
vertices Γ and the set of edges E. The graph has the property
that whenever edge (𝑗


, 𝑗


) ∈ E, the reversed edge (𝑗


, 𝑗


)

belongs to E as well. Furthermore, graph (Γ,E) is without

multiple edges and has a bounded degree; that is, the number
of edges (𝑗, 𝑗


) with a fixed initial or terminal vertex is

uniformly bounded:

sup [max (♯ {𝑗 ∈ Γ : (𝑗, 𝑗


) ∈ E} ,

♯ {𝑗


∈ Γ : (𝑗


, 𝑗) ∈ E}) : 𝑗 ∈ Γ] < ∞.

(1)
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The bi-dimensionality property is expressed in the bound

0 < sup [1
𝑛

♯Σ (𝑗, 𝑛) : 𝑗 ∈ Γ, 𝑛 = 1, 2, . . .] < ∞, (2)

where Σ(𝑗, 𝑛) stands for the set of vertices in Γ at the graph
distance 𝑛 from 𝑗 ∈ Γ (a sphere of radius 𝑛 around 𝑗):

Σ (𝑗, 𝑛) = {𝑗


∈ Γ : d (𝑗, 𝑗


) = 𝑛} . (3)

(The graph distance d(𝑗, 𝑗) = d
Γ,E(𝑗, 𝑗


) between 𝑗, 𝑗


∈ Γ is

determined as theminimal length of a path on (Γ,E) joining 𝑗
and 𝑗.)This implies that for any 𝑜 ∈ Γ the cardinality ♯Λ(𝑜, 𝑛)
of the ball

Λ (𝑜, 𝑛) = {𝑗


∈ Γ : d (𝑜, 𝑗


) ≤ 𝑛} (4)

grows at most quadratically with 𝑛.
A justification for putting a quantum system on a graph

can be that graph-like structures become increasingly popu-
lar in rigorous StatisticalMechanics, for example, in quantum
gravity. Namely, see [2–4]. On the other hand, a number of
properties of Gibbs ensembles do not depend upon “regular-
ity” of an underlying spatial geometry.

1.2. A BosonicModel in the Fock Space. With each vertex 𝑖 ∈ Γ

we associate a copy of a compact manifold𝑀 which we take
in this paper to be a unit 𝑑-dimensional torus R𝑑

/Z𝑑 with
a flat metric 𝜌 and the volume V. We also associate with
𝑖 ∈ Γ a bosonic Fock-Hilbert space H(𝑖) ≃ H. Here H =

⊕
𝑘=0,1,...

H
𝑘
whereH

𝑘
= Lsym

2
(𝑀

𝑘
) is the subspace in L

2
(𝑀

𝑘
)

formed by functions symmetric under a permutation of the
variables. Given a finite set Λ ⊂ Γ, we setH(Λ) = ⊗

𝑖∈Λ
H(𝑖).

An element 𝜙 ∈ H(Λ) is a complex function:

x∗
Λ
∈ 𝑀

∗Λ
→ 𝜙 (x∗

Λ
) . (5)

Here x∗
Λ
is a collection {x∗(𝑗), 𝑗 ∈ Λ} of finite point sets

x∗(𝑗) ⊂ 𝑀 associated with sites 𝑗 ∈ Λ. Following [1], we call
x∗(𝑗) a particle configuration at site 𝑗 (which can be empty)
and x∗

Λ
a particle configuration in, or over, Λ. The space

𝑀

∗Λ of particle configurations inΛ can be represented as the
Cartesian product (𝑀∗

)

×Λ where 𝑀

∗ is the disjoint union
⋃

𝑘=0,1,...
𝑀

(𝑘) and 𝑀

(𝑘) is the collection of (unordered) 𝑘-
point subsets of𝑀. (One can consider𝑀(𝑘) as the factor of the
“off-diagonal” set 𝑀𝑘

̸=
in the Cartesian power 𝑀𝑘 under the

equivalence relation induced by the permutation group of
order 𝑘.) The norm and the scalar product in H

Λ
are given

by






𝜙





= (∫

𝑀
∗Λ






𝜙(x∗
Λ
)






2dx∗
Λ
)

1/2

,

⟨𝜙
1
,𝜙

2
⟩ = ∫

𝑀
∗Λ

𝜙
1
(x∗

Λ
)𝜙

2
(x∗

Λ
)dx∗

Λ
,

(6)

where measure dx∗
Λ
is the product ×

𝑗∈Λ
dx∗(𝑗) and dx∗(𝑗) is

the Poissonian sum measure on𝑀

∗:

dx∗ (𝑗) = ∑

𝑘=0,1,...

1 (♯x∗ (𝑗) = 𝑘)

1

𝑘!

∏

𝑥∈x∗(𝑗)
dV (𝑥) 𝑒−V(𝑀)

.

(7)

Here V(𝑀) is the volume of torus𝑀.
As in [1], we assume that an action

(g, 𝑥) ∈ G ×𝑀 → g𝑥 ∈ 𝑀 (8)

is given, of a group G that is a Euclidean space or a torus of
dimension 𝑑


≤ 𝑑. The action is written as

g𝑥 = 𝑥 + 𝜃𝐴 mod 1. (9)

Here vector 𝜃 = (𝜃
1
, . . . , 𝜃

𝑑
) with components 𝜃

𝑙
∈ [0, 1)

and 𝜃𝐴 is the 𝑑-dimensional vector 𝜃 = ((𝜃𝐴)
1
, . . . , (𝜃𝐴)

𝑑
)

representing the element g, where 𝐴 is a (𝑑 × 𝑑) matrix of
column rank 𝑑 with rational entries. The action of G is lifted
to unitary operators U

Λ
(g) inH

Λ
:

U
Λ
(g)𝜙 (x∗

Λ
) = 𝜙 (g

−1x∗
Λ
) , (10)

where g−1x∗
Λ
= {g−1x∗(𝑗), 𝑗 ∈ Λ} and g−1x∗(𝑗) = {g−1𝑥, 𝑥 ∈

x∗(𝑗)}.
The generally accepted view is that the Hubbard model

is a highly oversimplified model for strongly interacting
electrons in a solid.TheHubbardmodel is a kind ofminimum
model which takes into account quantummechanicalmotion
of electrons in a solid, and nonlinear repulsive interaction
between electrons. There is little doubt that the model is too
simple to describe actual solids faithfully [5]. In our context
the Hubbard Hamiltonian H

Λ
of the system in Λ acts as

follows:

(H
Λ
𝜙) (x∗

Λ
) =

[

[

−

1

2

∑

𝑗∈Λ

∑

𝑥∈x∗(𝑗)
Δ

(𝑥)

𝑗
+ ∑

𝑗∈Λ

∑

𝑥∈x∗(𝑗)
𝑈

(1)
(𝑥)

+

1

2

∑

𝑗∈Λ

∑

𝑥,𝑥

∈x∗(𝑗)

1 (𝑥 ̸= 𝑥


)𝑈

(2)
(𝑥, 𝑥


)

+

1

2

∑

𝑗,𝑗

∈Λ

1 (𝑗 ̸= 𝑗


) 𝐽 (d (𝑗, 𝑗


))

× ∑

𝑥∈x∗(𝑗),𝑥∈x∗(𝑗)

𝑉 (𝑥, 𝑥


)
]

]

𝜙 (x∗
Λ
)

+ ∑

𝑗,𝑗

∈Λ

𝜆
𝑗,𝑗
1 (♯x∗ (𝑗) ≥ 1, ♯x∗ (𝑗) < 𝜅)

× ∑

𝑥∈x∗(𝑗)
∫

𝑀

V (d𝑦)

× [𝜙 (x∗(𝑗,𝑥)→ (𝑗


,𝑦)

Λ
) − 𝜙 (x∗

Λ
)] .

(11)
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HereΔ(𝑥)

𝑗
means the Laplacian in variable𝑥 ∈ x∗(𝑗). Next, ♯x∗

stands for the cardinality of the particle configuration x∗ (i.e.,
♯x∗ = 𝑘 when x∗ ∈ 𝑀

(𝑘)), and the parameter 𝜅 is introduced
in (17). (Symbol ♯ will be used for denoting the cardinality
of a general (finite) set; for example, ♯Λ means the number
of vertices in Λ.) Further, x∗(𝑗,𝑥)→ (𝑗



,𝑦)

Λ
denotes the particle

configuration with the point 𝑥 ∈ x∗(𝑗) removed and point 𝑦
added to x∗(𝑗).

As in [1], we also consider a Hamiltonian H
Λ|x∗
Γ\Λ

in an
external field generated by a configuration x∗

Γ\Λ
= {x∗(𝑗),

𝑗


∈ Γ \ Λ} ∈ 𝑀

∗Γ\Λ where Γ ⊆ Γ is a (finite or infinite)
collection of vertices. More precisely, we only consider x∗

Γ\Λ

with ♯x∗(𝑗) ≤ 𝜅 (see (17) below) and set

(H
Λ|x∗
Γ\Λ

𝜙) (x∗
Λ
)

=
[

[

−

1

2

∑

𝑗∈Λ

∑

𝑥∈x∗(𝑗)
Δ

(𝑥)

𝑗
+ ∑

𝑗∈Λ

∑

𝑥∈x∗(𝑗)
𝑈

(1)
(𝑥)

+

1

2

∑

𝑗∈Λ

∑

𝑥,𝑥

∈x∗(𝑗)

1 (𝑥 ̸= 𝑥


)𝑈

(2)
(𝑥, 𝑥


)

+

1

2

∑

𝑗,𝑗

∈Λ

1 (𝑗 ̸= 𝑗


) 𝐽 (d (𝑗, 𝑗


))

× ∑

𝑥∈x∗(𝑗),𝑥∈x∗(𝑗)

𝑉 (𝑥, 𝑥


)
]

]

𝜙 (x∗
Λ
)

+ ∑

𝑗∈Λ,𝑗

∈Γ\Λ

𝐽 (d (𝑗, 𝑗

))

× ∑

𝑥∈x∗(𝑗),𝑥∈x∗(𝑗)

𝑉 (𝑥, 𝑥


)𝜙 (x∗

Λ
)

+ ∑

𝑗,𝑗

∈Λ

𝜆
𝑗,𝑗
1 (♯x∗ (𝑗) ≥ 1, ♯x∗ (𝑗) < 𝜅)

× ∑

𝑥∈x∗(𝑗)

∫

𝑀

V (d𝑦) [𝜙 (x∗(𝑗,𝑥)→ (𝑗


,𝑦)

Λ
) − 𝜙 (x∗

Λ
)] .

(12)

The novel elements in (11) and (12) compared with [1]
are the presence of on-site potentials 𝑈(1) and 𝑈

(2) and the
summand involving transition rates 𝜆

𝑗,𝑗
 ≥ 0 for jumps of a

particle from site 𝑗 to 𝑗.
We will suppose that 𝜆

𝑗,𝑗
 vanishes if the graph distance

d(𝑗, 𝑗) > 1. We will also assume uniform boundedness:

sup [𝜆
𝑗,𝑗
 (𝑥,𝑀) , 𝑗, 𝑗


∈ Γ, 𝑥 ∈ 𝑀] < ∞; (13)

in view of (1) it implies that the total exit rate
∑

𝑗

:d(𝑗,𝑗)=1 𝜆𝑗,𝑗

(𝑥,𝑀) from site 𝑗 is uniformly bounded.
These conditions are not sharp and can be liberalized.

The model under consideration can be considered as a
generalization of the Hubbard model [6] (in its bosonic ver-
sion). Its mathematical justification includes the following.
(a) An opportunity to introduce a Fock space formalism
incorporates a number of new features. For instance, a
fermonic version of the model (not considered here) emerges
naturally when the bosonic Fock space H(𝑖) is replaced by
a fermonic one. Another opening provided by this model
is a possibility to consider random potentials 𝑈(1), 𝑈(2) and
𝑉 which would yield a sound generalization of the Mott-
Andersonmodel. (b) Introducing jumpsmakes a step towards
a treatment of a model of a quantum (Bose-) gas where
particles “live” in a single Fock space. For example, a system
of interacting quantum particles is originally confined to a
“box” in a Euclidean space, with or without “internal” degrees
of freedom. In the thermodynamical limit the box expands
to the whole Euclidean space. In a two-dimensional model
of a quantum gas one expects a phenomenon of invariance
under space-translations; one hopes to be able to address this
issue in future publications. (c) A model with jumps can be
analysed by means of the theory of Markov processes which
provides a developed methodology.

Physically speaking, the model with jumps covers a situ-
ation where “light” quantum particles are subject to a “ran-
dom” force and change their “location.” This class of models
is interesting from the point of view of transport phenomena
that theymay display. (An analogywith the famousAnderson
model, in its multiparticle version, inevitably comes to
mind; cf., e.g., [7].) Methodologically, such systems occupy
an “intermediate” place between models where quantum
particles are “fixed” forever to their designated locations (as
in [1]) andmodels where quantumparticlesmove in the same
space (a Bose-gas, considered in [8, 9]). In particular, this
work provides a bridge between [1, 8, 9]; reading this paper
ahead of [8, 9] might help an interested reader to get through
[8, 9] at a much quicker pace.

We would like to note an interesting problem of analysis
of the small-mass limit (cf. [10]) from the point of Mermin-
Wagner phenomena.

1.3. Assumptions on the Potentials. The between-sites poten-
tial 𝑉 is assumed to be of class 𝐶2. Consequently, 𝑉 and its
first and second derivatives satisfy uniform bounds. Namely,
∀𝑥


, 𝑥


∈ 𝑀

−𝑉(𝑥


, 𝑥


) ,







∇x𝑉(𝑥


, 𝑥


)







,







∇x,x𝑉(𝑥


, 𝑥


)







≤ 𝑉. (14)

Here 𝑥 and 𝑥 run through the pairs of variables 𝑥, 𝑥. A simi-
lar property is assumed for the on-site potential𝑈(1) (here we
need only a 𝐶1 smoothness):

−𝑈

(1)
(𝑥) ,







∇x𝑈
(1)

(𝑥)







≤ 𝑈

(1)

, 𝑥 ∈ 𝑀. (15)

Note that for𝑉 and𝑈(1) the bounds are imposed on their neg-
ative parts only.

As to 𝑈(2), we suppose that (a)

𝑈

(2)
(𝑥, 𝑥


) = +∞ when 






𝑥 − 𝑥






≤ 𝜌, (16)
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and (b) ∃ a 𝐶1-function (𝑥, 𝑥


) →

̃
𝑈

(2)
(𝑥, 𝑥


) ∈ R such that

𝑈

(2)
(𝑥, 𝑥


) =

̃
𝑈

(2)
(𝑥, 𝑥


) whenever 𝜌(𝑥, 𝑥) > 𝜌. Here 𝜌(𝑥, 𝑥)

stands for the (flat) Riemannian distance between points
𝑥, 𝑥


∈ 𝑀. As a result of (16), there exists a “hard core” of

diameter 𝜌, and a given atom cannot “hold” more than

𝜅 = ⌈

V (𝑀)

V (𝐵 (𝜌))

⌉ (17)

particles where V(𝐵(𝜌)) is the volume of a 𝑑-dimensional ball
of diameter 𝜌. We will also use the bound

−
̃
𝑈

(2)
(𝑥, 𝑥


) ,







∇x̃𝑈
(2)

(𝑥, 𝑥


)







≤ 𝑈

(2)

, 𝑥, 𝑥


∈ 𝑀. (18)

Formally, (16) means that the operators in (11) and (12) are
considered for functions𝜙(x∗

Λ
) vanishingwhen in the particle

configuration x∗
Λ
= {x∗(𝑗), 𝑗 ∈ Λ}, the cardinality ♯x∗(𝑗) > 𝜅

for some 𝑗 ∈ Λ.
The function 𝐽 : 𝑟 ∈ (0,∞) → 𝐽(𝑟) ≥ 0 is assumed

monotonically nonincreasing with 𝑟 and obeying the relation
𝐽(𝑙) → 0 as 𝑙 → ∞, where

𝐽 (𝑙) = sup[

[

∑

𝑗

∈Γ

𝐽 (d (𝑗

, 𝑗


)) 1 (d (𝑗, 𝑗) ≥ 𝑙) : 𝑗


∈ Γ

]

]

< ∞.

(19)

Additionally, let 𝐽(𝑟) be such that

𝐽

∗
= sup[

[

∑

𝑗

∈Γ

𝐽 (d (𝑗, 𝑗

)) d(𝑗, 𝑗


)

2

: 𝑗 ∈ Γ
]

]

< ∞. (20)

Next, we assume that the functions 𝑈(1), 𝑈(2), and 𝑉 are g-
invariant: ∀𝑥, 𝑥 ∈ 𝑀 and g ∈ G,

𝑈

(1)
(𝑥) = 𝑈

(1)
(g𝑥) ,

𝑈

(2)
(𝑥, 𝑥


) = 𝑈

(2)
(g𝑥, g𝑥


) ,

𝑉 (𝑥, 𝑥


) = 𝑉 (g𝑥, g𝑥


) .

(21)

In the following we will need to bound the fugacity (or
activity, cf. (25)) 𝑧 in terms of the other parameters of the
model

𝑧𝑒

Θ
< 1, where Θ = 𝜅𝛽 (𝑈

(1)

+ 𝜅𝑈

(2)

+ 𝜅𝐽 (1) 𝑉) . (22)

1.4. The Gibbs State in a Finite Volume. Define the particle
number operator N

Λ
, with the action

N
Λ
𝜙 (x∗

Λ
) = ♯x∗

Λ
𝜙 (x∗

Λ
) , x∗

Λ
∈ 𝑀

∗Λ
. (23)

Here, for a given x∗
Λ
= {x∗(𝑗), 𝑗 ∈ Λ}, ♯x∗

Λ
stands for the total

number of particles in configuration x∗
Λ
:

♯x∗
Λ
= ∑

𝑗∈Λ

♯x∗ (𝑗) . (24)

The standard canonical variable associated withN
Λ
is activity

𝑧 ∈ (0,∞).
The Hamiltonians (11) and (12) are self-adjoint (on the

natural domains) in H(Λ). Moreover, they are positive
definite and have a discrete spectrum, cf. [14]. Furthermore,
∀𝑧, 𝛽 > 0, H

Λ
and H

Λ|x∗
Γ\Λ

give rise to positive-definite trace-
class operators G

Λ
= G

𝑧,𝛽,Λ
and G

Λ|x∗
Γ\Λ

= G
𝑧,𝛽,Λ|x∗

Γ\Λ

:

G
Λ
= 𝑧

N
Λ exp [−𝛽H

Λ
] ,

G
Λ|x∗
Γ\Λ

= 𝑧

N
Λ exp [−𝛽H

Λ|x∗
Γ\Λ

] .

(25)

We would like to stress that the full range of variables 𝑧, 𝛽 > 0

is allowedhere because of the hard-core condition (16): it does
not allow more than 𝜅♯Λ particles in Λ where ♯Λ stands for
the number of vertices in Λ. However, while passing to the
thermodynamic limit, we will need to control 𝑧 and 𝛽.

Definition 1. We will call G
Λ
and G

Λ|x∗
Γ\Λ

the Gibbs operators
in volume Λ, for given values of 𝑧 and 𝛽 (and—in the case of
G

Λ|x∗
Γ\Λ

—with the boundary condition x∗
Γ\Λ

).
The Gibbs operators in turn give rise to the Gibbs states
𝜑
Λ
= 𝜑

𝛽,𝑧,Λ
and 𝜑

Λ|x
Γ\Λ

= 𝜑
𝛽,𝑧,Λ|x

Γ\Λ

, at temperature 𝛽−1 and
activity 𝑧 in volume Λ. These are linear positive normalized
functionals on the 𝐶

∗-algebra B
Λ
of bounded operators in

spaceH
Λ
:

𝜑
Λ
(A) = trH

Λ

(R
Λ
A) ,

𝜑
Λ|x
Γ\Λ

(A) = trH
Λ

(R
Λ|x
Γ\Λ

A) , A ∈ B
Λ
,

(26)

where

R
Λ
=

G
Λ

Ξ (Λ)
, with Ξ (Λ) = Ξ

𝑧,𝛽
(Λ) = trH

Λ

G
Λ
, (27)

R
Λ|x∗
Γ\Λ

=

G
Λ|x
Γ\Λ

Ξ (Λ | x∗
Γ\Λ

)

,

with Ξ (Λ | x∗
Γ\Λ

) = Ξ
𝑧,𝛽

(Λ | x∗
Γ\Λ

)

= trH
Λ

(𝑧

N
Λ exp [−𝛽H

Λ|x∗
Γ\Λ

]) .

(28)

The hard-core assumption (16) yields that the quantities
Ξ(Λ) and Ξ

𝑧,𝛽
(Λ | x∗

Γ\Λ
) are finite; formally, these facts will

be verified by virtue of the Feynman-Kac representation.

Definition 2. Whenever Λ0
⊂ Λ, the 𝐶∗-algebraB

Λ
0 is iden-

tified with the 𝐶∗ subalgebra inB
Λ
formed by the operators

of the form A
0
⊗ I

Λ\Λ
0 . Consequently, the restriction 𝜑Λ

0

Λ
of

state 𝜑
Λ
to 𝐶∗-algebraB

Λ
0 is given by

𝜑
Λ
0

Λ
(A

0
) = trH

Λ
0

(RΛ
0

Λ
A
0
) , A

0
∈ B

Λ
0 , (29)

where

RΛ
0

Λ
= trH

Λ\Λ
0

R
Λ
. (30)
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Operators RΛ
0

Λ
(we again call them RDMs) are positive defi-

nite and have trH
Λ
0

RΛ
0

Λ
= 1. They also satisfy the compatibil-

ity property: ∀Λ0
⊂ Λ

1
⊂ Λ,

RΛ
0

Λ
= trH

Λ
1
\Λ
0

RΛ
1

Λ
. (31)

In a similar fashion one defines functionals 𝜑Λ
0

Λ|x∗
Γ\Λ

and oper-

ators RΛ
0

Λ|x∗
Γ\Λ

, with the same properties.

1.5. Limiting Gibbs States. The concept of a limiting Gibbs
state is related to notion of a quasilocal 𝐶∗-algebra; see [14].
For the class of systems under consideration, the construction
of the quasilocal 𝐶∗-algebraB

Γ
is done along the same lines

as in [1]:B
Γ
is the norm completion of the 𝐶∗ algebra (B0

Γ
) =

lim ind
𝑛→∞

B
Λ
𝑛

. Any family of positive-definite operators
RΛ
0

in spacesH
Λ
0 of trace one, whereΛ0 runs through finite

subsets of Γ, with the compatibility property

RΛ
1

= trH
Λ
0
\Λ
1

RΛ
0

, Λ

1
⊂ Λ

0
, (32)

determines a state ofB
Γ
, see [12, 13].

Finally, we introduce unitary operators U
Λ
0(g), g ∈ G, in

H
Λ
0 :

U
Λ
𝜙 (x∗

Λ
0) = 𝜙 (g

−1x∗
Λ
0) , (33)

where

g
−1x∗

Λ
0 = {g

−1x∗ (𝑗) , 𝑗 ∈ Λ

0
} ,

g
−1x∗ (𝑗) = {g

−1
𝑥 : 𝑥 ∈ x∗ (𝑗)} .

(34)

Theorem3. Assuming the conditions listed above, for all 𝑧, 𝛽 ∈

(0, +∞) satisfying (22) and a finite Λ

0
⊂ Γ, operators RΛ

0

Λ

form a compact sequence in the trace-norm topology in H
Λ
0

as Λ ↗ Γ. Furthermore, given any family of (finite or infinite)
sets Γ = Γ(Λ) ⊆ Γ and configurations x∗

Γ\Λ
= {x∗(𝑖), 𝑖 ∈ Γ \ Λ}

with ♯x∗(𝑖) < 𝜅, operatorsRΛ
0

Λ|x
Γ\Λ

also forma compact sequence

in the trace-norm topology. Any limit point, RΛ
0

, for {RΛ
0

Λ
} or

{RΛ
0

Λ|x∗
Γ\Λ

} as Λ ↗ Γ, is a positive-definite operator in H(Λ

0
)

of trace one. Moreover, if Λ1
⊂ Λ

0 and RΛ
0

and RΛ
1

are the
limits forRΛ

0

Λ
andRΛ

1

Λ
or forRΛ

0

Λ|x∗
Γ\Λ

andRΛ
1

Λ|x∗
Γ\Λ

along the same
subsequence Λ

𝑠
↗ Γ, then the property (32) holds true.

Consequently, theGibbs states𝜑
Λ
and𝜑

Λ|x∗
Γ\Λ

form compact
sequences as Λ ↗ Γ.

Remark 4. In fact, the assertion of Theorem 3 holds without
assuming the bidimensionality condition on graph (Γ,E),
only under an assumption that the degree of the vertices in
Γ is uniformy bounded.

Definition 5. Any limit point 𝜑 for states 𝜑
Λ
and 𝜑

Λ|x∗
Γ\Λ

is
called a limiting Gibbs state (for given 𝑧, 𝛽 ∈ (0, +∞)).

Theorem 6. Under the condition (22), any limiting point,RΛ
0

,
for {RΛ

0

Λ
} or {RΛ

0

Λ|x∗
Γ\Λ

}, as Λ ↗ Γ, is a positive-definite operator
of trace one commuting with operators U

Λ
0(g): ∀g ∈ G,

U
Λ
0(g)

−1RΛ
0

U
Λ
0 (g) = RΛ

0

.
(35)

Accordingly, any limiting Gibbs state 𝜑 of B determined by a
family of limiting operators RΛ

0

obeying (35) satisfies the cor-
responding invariance property: ∀ finite Λ0

⊂ Γ, any A ∈ B
Λ
0 ,

and g ∈ G,

𝜑 (A) = 𝜑 (U
Λ
0(g)

−1AU
Λ
0 (g)) . (36)

Remarks. (1) Condition (22) does not imply the uniqueness of
an infinite-volume Gibbs state (i.e., absence of phase transi-
tions).

(2) Properties (35) and (36) are trivially fulfilled for the
limiting points RΛ

0

and 𝜑 of families {RΛ
0

Λ
} and {𝜑

Λ
}. How-

ever, they require a proof for the limit points of the families
{RΛ
0

Λ|x∗
Γ\Λ

} and {𝜑
Λ|x∗
Γ\Λ

}.
The set of limiting Gibbs states (which is nonempty due

to Theorem 3) is denoted by G0. In Section 3 we describe a
classG ⊃ G0 of states of𝐶∗-algebraB satisfying the FK-DLR
equation, similar to that in [1].

2. Feynman-Kac Representations for
the RDM Kernels in a Finite Volume

2.1. The Representation for the Kernels of the Gibbs Operators.
A starting point for the forthcoming analysis is the Feynman-
Kac (FK) representation for the kernels K

Λ
(x∗

Λ
, y∗

Λ
) =

K
𝛽,𝑧,Λ

(x∗
Λ
, y∗

Λ
) and F

Λ
(x∗

Λ
, y∗

Λ
) = F

𝛽,𝑧,Λ
(x∗

Λ
, y∗

Λ
) of operators

G
Λ
and R

Λ
.

Definition 7. Given (𝑥, 𝑖), (𝑦, 𝑗) ∈ 𝑀 × Γ, 𝑊𝛽

(𝑥,𝑖),(𝑦,𝑗)
denotes

the space of path, or trajectories, 𝜔 = 𝜔
(𝑥,𝑖),(𝑦,𝑗)

in 𝑀 × Γ, of
time-length 𝛽, with the end-points (𝑥, 𝑖) and (𝑦, 𝑗). Formally,
𝜔 ∈ 𝑊

𝛽

(𝑥,𝑖),(𝑦,𝑗)
is defined as follows:

𝜔 : 𝜏 ∈ [0, 𝛽] → 𝜔 (𝜏) = (𝑢 (𝜔, 𝜏) , 𝑙 (𝜔, 𝜏)) ∈ 𝑀 × Γ,

𝜔 is cádlág; 𝜔 (0) = (𝑥, 𝑖) , 𝜔 (𝛽−) = (𝑦, 𝑗) ,

𝜔 has finitely many jumps on [0, 𝛽] ;

if a jump occurs at time 𝜏, then d [𝑙 (𝜔, 𝜏−) , 𝑙 (𝜔, 𝜏)]=1.

(37)

The notation 𝜔(𝜏) and its alternative, (𝑢(𝜔, 𝜏), 𝑙(𝜔, 𝜏)), for
the position and the index of trajectory 𝜔 at time 𝜏 will be
employed as equal in rights. We use the term the temporal
section (or simply the section) of path 𝜔 at time 𝜏.

Definition 8. Let x∗
Λ

= {x∗(𝑖), 𝑖 ∈ Λ} ∈ 𝑀

∗Λ, and y∗
Λ

=

{y∗(𝑗), 𝑗 ∈ Λ} ∈ 𝑀

∗Λ be particle configurations overΛ, with
♯x∗

Λ
= ♯y∗

Λ
. A matching (or pairing) 𝛾 between x∗

Λ
and y∗

Λ
is
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defined as a collection of pairs [(𝑥, 𝑖), (𝑦, 𝑗)]
𝛾
, with 𝑖, 𝑗 ∈ Λ,

𝑥 ∈ x∗(𝑖), and 𝑦 ∈ y∗(𝑗), with the properties that (i) ∀𝑖 ∈ Λ

and 𝑥 ∈ x∗(𝑖) : there exist unique 𝑗 ∈ Λ and 𝑦 ∈ y∗(𝑗)
such that (𝑥, 𝑖) and (𝑦, 𝑗) form a pair, and (ii) ∀𝑗 ∈ Λ and
𝑦 ∈ y∗(𝑗) : there exist unique 𝑖 ∈ Λ and 𝑥 ∈ x∗(𝑖) such
that (𝑥, 𝑖) and (𝑦, 𝑗) form a pair. (Owing to the condition
♯x∗

Λ
= ♯y∗

Λ
, these properties are equivalent.) It is convenient

to write [(𝑥, 𝑖), (𝑦, 𝑗)]
𝛾
= [(𝑥, 𝑖), 𝛾(𝑥, 𝑖)].

Next, consider the Cartesian product

𝑊

𝛽

x∗
Λ
,y∗
Λ
,𝛾
= ×

𝑖∈Λ

×

𝑥∈x∗(𝑖)
𝑊

𝛽

(𝑥,𝑖),𝛾(𝑥,𝑖)
, (38)

and the disjoint union

𝑊

𝛽

x∗
Λ
,y∗
Λ

= ⋃

𝛾

𝑊

𝛽

x∗
Λ
,y∗
Λ
,𝛾
. (39)

Accordingly, an element 𝜔
Λ

∈ 𝑊

𝛽

x∗
Λ
,y∗
Λ
,𝛾
in (38) represents a

collection of paths 𝜔
𝑥,𝑖
, 𝑥 ∈ x∗(𝑖), 𝑖 ∈ Λ, of time-length 𝛽,

starting at (𝑥, 𝑖) and ending up at 𝛾(𝑥, 𝑖). We say that 𝜔
Λ
is a

path configuration in (or over) Λ.

The presence of matchings in the above construction is a
feature of the bosonic nature of the systems under consider-
ation.

We will work with standard sigma algebras (generated by
cylinder sets) in𝑊

𝛽

(𝑥,𝑖),(𝑦,𝑗)
,𝑊𝛽

x∗
Λ
,y∗
Λ
,𝛾
, and𝑊

𝛽

x∗
Λ
,y∗
Λ

.

Definition 9. In what follows, 𝜉(𝜏), 𝜏 ≥ 0, stands for the
Markov process on 𝑀 × Γ, with cádlág trajectories, deter-
mined by the generator L acting on a function (𝑥, 𝑖) ∈ 𝑀 ×

Λ → 𝜓(𝑥, 𝑖) by

L𝜓 (𝑥, 𝑖) = −

1

2

Δ𝜓 (𝑥, 𝑖)

+ ∑

𝑗:d(𝑖,𝑗)=1

𝜆
𝑖,𝑗
∫

𝑀

V (d𝑦) [𝜓 (𝑦, 𝑗) − 𝜓 (𝑥, 𝑖)] .

(40)

In the probabilistic literature, such processes are referred to
as Lévy processes; see, for example, [14].

Pictorially, a trajectory of process 𝜉 moves along 𝑀

according to the Brownian motion with the generator −Δ/2
and changes the index 𝑖 ∈ Γ from time to time in accor-
dance with jumps occurring in a Poisson process of rate
∑

𝑗:d(𝑖,𝑗)=1 𝜆𝑖.𝑗
. In other words, while following a Brownian

motion rule on 𝑀, having index 𝑖 ∈ Γ and being at point
𝑥 ∈ 𝑀, themoving particle experiences an urge to jump from
𝑖 to a neighboring vertex 𝑗 and to a point 𝑦 at rate 𝜆

𝑖,𝑗
V(d𝑦).

After a jump, the particle continues the Brownian motion on
𝑀 from 𝑦 and keeps its new index 𝑗 until the next jump, and
so on.

For a given pairs (𝑥, 𝑖), (𝑦, 𝑗) ∈ 𝑀 × Γ, we denote by
P
𝛽

(𝑥,𝑖),(𝑦,𝑗)
the nonnormalised measure on 𝑊

𝛽

(𝑥,𝑖),(𝑦,𝑗)
induced

by 𝜉. That is, under measure P𝛽

(𝑥,𝑖),(𝑦,𝑗)
the trajectory at time

𝜏 = 0 starts from the point 𝑥 and has the initial index 𝑖 while
at time 𝜏 = 𝛽 it is at the point 𝑦 and has the index 𝑗.The value
𝑝
(𝑥,𝑖),(𝑦,𝑗)

= P
𝛽

(𝑥,𝑖),(𝑦,𝑗)
(𝑊

𝛽

(𝑥,𝑖),(𝑦,𝑗)
) is given by

𝑝
(𝑥,𝑖),(𝑦,𝑗)

= 1 (𝑖 = 𝑗) 𝑝

𝛽

𝑀
(𝑥, 𝑦) exp[

[

−𝛽 ∑

𝑗:d(𝑖,𝑗)=1

𝜆
𝑖,𝑗
]

]

+ ∑

𝑘≥1

∑

𝑙
0
=𝑖,𝑙
1
,...,𝑙
𝑘
,𝑙
𝑘+1

=𝑗

∏

0≤𝑠≤𝑘

1 (d (𝑙
𝑠
, 𝑙
𝑠+1

) = 1)

× 𝜆
𝑙
𝑠
,𝑙
𝑠+1

∫

𝛽

0

d𝜏
𝑠
exp[

[

− (𝜏
𝑠+1

− 𝜏
𝑠
) ∑

𝑗:d(𝑙
𝑠
,𝑗)=1

𝜆
𝑙
𝑠
,𝑗
]

]

× 1 (0 = 𝜏
0
< 𝜏

1
< ⋅ ⋅ ⋅ < 𝜏

𝑘
< 𝜏

𝑘+1
= 𝛽) ,

(41)

where 𝑝𝛽

𝑀
(𝑥, 𝑦) denotes the transition probability density for

the Brownian motion to pass from 𝑥 to 𝑦 on𝑀 in time 𝛽:

𝑝

𝛽

𝑀
(𝑥, 𝑦) =

1

(2𝜋𝛽)

𝑑/2

× ∑

𝑛=(𝑛1,...,𝑛𝑑)∈Z
𝑑

exp(
−






𝑥 − 𝑦 + 𝑛






2

2𝛽

) .

(42)

In view of (13), the quantity 𝑝
(𝑥,𝑖),(𝑦,𝑗)

and its derivatives are
uniformly bounded:

𝑝
(𝑥,𝑖),(𝑦,𝑗)

,







∇
𝑥
𝑝
(𝑥,𝑖),(𝑦,𝑗)







,







∇
𝑦
𝑝
(𝑥,𝑖),(𝑦,𝑗)







≤ 𝑝
𝑀
,

𝑥, 𝑦 ∈ 𝑀, 𝑖, 𝑗 ∈ Γ,

(43)

where 𝑝
𝑀

= 𝑝
𝑀
(𝛽) ∈ (0, +∞) is a constant.

We suggest a term “non-normalised Brownian bridge
with jumps” for themeasure but expect that a better termwill
be proposed in future.

Definition 10. Suppose that x∗
Λ
= {x∗(𝑖), 𝑖 ∈ Λ} ∈ 𝑀

∗Λ and
y∗
Λ
= {y∗(𝑗), 𝑗 ∈ Λ} ∈ 𝑀

∗Λ are particle configurations over
Λ, with ♯x∗

Λ
= ♯y∗

Λ
. Let 𝛾 be a pairing between x∗

Λ
and y∗

Λ
.

Then P∗

x∗
Λ
,y∗
Λ
,𝛾
denotes the product measure on𝑊

𝛽

x∗
Λ
,y∗
Λ
,𝛾
:

P
𝛽

x∗
Λ
,y∗
Λ
,𝛾
= ×

𝑖∈Λ

×

𝑥∈x∗(𝑖)
P
𝛽

(𝑥,𝑖),𝛾(𝑥,𝑖)
. (44)

Furthermore, P𝛽

x∗
Λ
,y∗
Λ

stands for the sum measure on𝑊

𝛽

x∗
Λ
,y∗
Λ

:

P
𝛽

x∗
Λ
,y∗
Λ

= ∑

𝛾

P
𝛽

x∗
Λ
,y∗
Λ
,𝛾
. (45)

According to Definition 10, under the measure P
𝛽

x∗
Λ
,y∗
Λ
,𝛾
,

the trajectories 𝜔
𝑥,𝑖

∈ 𝑊

𝛽

(𝑥,𝑖),𝛾(𝑥,𝑖)
constituting 𝜔

Λ
are inde-

pendent components. (Here the term independence is used
in the measure-theoretical sense.)
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As in [1], we will work with functionals on𝑊

𝛽

x∗
Λ
,y∗
Λ
,𝛾
repre-

senting integrals along trajectories. The first such functional,
hΛ(𝜔

Λ
), is given by

hΛ (𝜔
Λ
) = ∑

𝑖∈Λ

∑

𝑥∈x∗(𝑖)
h𝑥,𝑖 (𝜔

𝑥,𝑖
)

+

1

2

∑

(𝑖,𝑖

)∈Λ×Λ

∑

𝑥∈x∗(𝑖),𝑥∈x∗(𝑖)
h(𝑥,𝑖),(𝑥



,𝑖


)

× (𝜔
𝑥,𝑖
, 𝜔

𝑥

,𝑖
) .

(46)

Here, introducing the notation 𝑢
𝑥,𝑖
(𝜏) = 𝑢(𝜔

𝑥,𝑖
, 𝜏) and

𝑢
𝑥

,𝑖
(𝜏) = 𝑢(𝜔

𝑥

,𝑖
 , 𝜏) for the positions in 𝑀 of paths 𝜔

𝑥,𝑖
∈

𝑊

𝛽

(𝑥,𝑖),𝛾(𝑥,𝑖)
and 𝜔

𝑥

,𝑖
 ∈ 𝑊

𝛽

(𝑥

,𝑖

),𝛾(𝑥

,𝑖

)
at time 𝜏, we define

h𝑥,𝑖 (𝜔
𝑥,𝑖
) = ∫

𝛽

0

d𝜏𝑈(1)
(𝑢

𝑖,𝑥
(𝜏)) . (47)

Next, with 𝑙
𝑥,𝑖
(𝜏) and 𝑙

𝑥

,𝑖
(𝜏) standing for the indices of 𝜔

𝑥,𝑖

and 𝜔
𝑥

,𝑖
 at time 𝜏,

h(𝑥,𝑖),(𝑥


,𝑖


)
(𝜔

𝑥,𝑖
, 𝜔

𝑥

,𝑖
)

= ∫

𝛽

0

d𝜏[

[

∑

𝑗

∈Γ

𝑈

(2)
(𝑢

𝑖,𝑥
(𝜏) , 𝑢

𝑖

,𝑥
 (𝜏))

× 1 (𝑙
𝑥,𝑖
(𝜏) = 𝑗


= 𝑙

𝑥

,𝑖
 (𝜏))

+

1

2

∑

(𝑗

,𝑗

)∈Γ×Γ

𝐽 (d (𝑗

, 𝑗


))

× 𝑉 (𝑢
𝑖,𝑥
(𝜏) , 𝑢

𝑖

,𝑥
 (𝜏))

× 1 (𝑙
𝑥,𝑖
(𝜏) = 𝑗


̸= 𝑗


= 𝑙

𝑥

,𝑖
 (𝜏))

]

]

.

(48)

Next, consider the functional hΛ(𝜔
Λ
| x∗

Γ\Λ
): for x∗

Γ\Λ
=

{x∗(𝑗), 𝑗 ∈ Γ \ Λ}. As before, we assume that ♯x∗(𝑗) ≤ 𝜅.
Define

hΛ (𝜔
Λ
| x∗

Γ\Λ
) = hΛ (𝜔

Λ
) + hΛ (𝜔

Λ
|| x∗

Γ\Λ
) . (49)

Here hΛ(𝜔
Λ
) is as in (46) and

hΛ (𝜔
Λ
|| x∗

Γ\Λ
)

= ∑

(𝑖,𝑖

)∈Λ×(Γ\Λ)

∑

𝑥∈x∗(𝑖),𝑥∈x∗(𝑖)
h(𝑥,𝑖),(𝑥



,𝑖


)

× (𝜔
𝑥,𝑖
, (𝑥


, 𝑖


)) ,

(50)

where, in turn,

h(𝑥,𝑖),(𝑥


,𝑖


)
(𝜔

𝑥,𝑖
, (𝑥


, 𝑖


))

= ∫

𝛽

0

d𝜏 [𝑈(2)
(𝑢

𝑖,𝑥
(𝜏) , 𝑥


) 1 (𝑙

𝑥,𝑖
(𝜏) = 𝑖


)

+ ∑

𝑗∈Γ:𝑗 ̸= 𝑖


𝐽 (d (𝑗, 𝑖

))

×𝑉 (𝑢
𝑖,𝑥
(𝜏) , 𝑥


) 1 (𝑙

𝑥,𝑖
(𝜏) = 𝑗)] .

(51)

The functionals hΛ(𝜔
Λ
) and hΛ(𝜔

Λ
|| x∗

Γ\Λ
) are interpreted as

energies of path configurations. Compare (2.1.4) and (2.3.8)

in [1].
Finally, we introduce the indicator functional 𝛼

Λ
(𝜔

Λ
):

𝛼
Λ
(𝜔

Λ
) =

{
{

{
{

{

1, if index 𝑙
𝑥,𝑖
(𝜏) ∈ Λ,

∀𝜏 ∈ [0, 𝛽] , 𝑖 ∈ Λ, 𝑥 ∈ x∗ (𝑖) ,
0, otherwise.

(52)

It can be derived from known results [11, 15–17] (for a direct
argument, see [18]) that the following assertion holds true.

Lemma 11. For all 𝑧, 𝛽 > 0 and a finite Λ, the Gibbs operators
G

Λ
and G

Λ|x∗
Γ\Λ

act as integral operators inH(Λ):

(G
Λ
𝜙) (x∗

Λ
) = ∫

𝑀
∗Λ

∏

𝑗∈Λ

∏

𝑦∈y∗(𝑗)

V (d𝑦)K
Λ
(x∗

Λ
, y∗

Λ
)𝜙 (y∗

Λ
) ,

(G
Λ|x∗
Γ\Λ

𝜙) (x∗
Λ
)

= ∫

𝑀
∗Λ

∏

𝑗∈Λ

∏

𝑦∈y∗(𝑗)
V (d𝑦)K

Λ
(x∗

Λ
, y∗

Λ
| x∗

Γ\Λ
)𝜙 (y∗

Λ
) .

(53)

Moreover, the integral kernels K
Λ
(x∗

Λ
, y∗

Λ
) and K

Λ
(x∗

Λ
, y∗

Λ
|

x∗
Γ\Λ

) vanish if ♯x∗
Λ

̸= ♯y∗
Λ
. On the other hand, when ♯x∗

Λ
=

♯y∗
Λ
, the kernels K

Λ
(x∗

Λ
, y∗

Λ
) and K

Λ
(x∗

Λ
, y∗

Λ
| x∗

Γ\Λ
) admit the

following representations:

K
Λ
(x∗

Λ
, y∗

Λ
) = 𝑧

♯x∗
Λ

∫

𝑊
∗

x∗
Λ
,y∗
Λ

P
𝛽

x∗
Λ
,y∗
Λ

(d𝜔
Λ
) 𝛼

Λ
(𝜔

Λ
)

× exp [−hΛ (𝜔
Λ
)] ,

(54)

K
Λ
(x∗

Λ
, y∗

Λ
| x∗

Γ\Λ
)

= 𝑧

♯ x∗
Λ

∫

𝑊
∗

x∗
Λ
,y∗
Λ

P
𝛽

x∗
Λ
,y∗
Λ

(d𝜔
Λ
) 𝛼

Λ
(𝜔

Λ
)

× exp [−hΛ (𝜔
Λ
| x∗

Γ\Λ
)] .

(55)

The ingredients of these representations are determined in (46)–
(51).
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Remark 12. As before, we stress that, owing to (16) and (17),
a nonzero contribution to the integral in the RHS of (54) can
only come from a path configuration 𝜔

Λ
= {𝜔

𝑥,𝑖
} such that

∀𝜏 ∈ [0, 𝛽] and ∀𝑗 ∈ Γ, the number of paths 𝜔
𝑥,𝑖

with index
𝑙
𝑥,𝑖
(𝜏) = 𝑗 is less than or equal to 𝜅. Likewise, the integral in

the RHS of (55) receives a non-zero contribution only from
configurations𝜔

Λ
= {𝜔

∗

𝑥,𝑖
} such that, ∀ site 𝑗 ∈ Γ, the number

of paths 𝜔
𝑥,𝑖

with index 𝑙
𝑥,𝑖
(𝜏) = 𝑗 plus the cardinality ♯x∗(𝑗)

does not exceed 𝜅.

2.2. The Representation for the Partition Function. The FK
representations of the partition functions Ξ(Λ) = Ξ

𝛽,𝑧
(Λ)

in (27) and Ξ(Λ | x∗
Γ\Λ

) in (1.4.6) reflect a specific character
of the traces trG

Λ
and trG

Λ|x∗
Γ\Λ

in H(Λ). The source of a
complication here is the jump terms in the Hamiltonians𝐻

Λ

and𝐻
Λ|x∗
Γ\Λ

in (11) and (12), respectively. In particular, we will
have to pass from trajectories of fixed time-length 𝛽 to loops
of a variable time length. To this end, a given matching 𝛾

is decomposed into a product of cycles, and the trajectories
associated with a given cycle are merged into closed paths
(loops) of a time-lengthmultiple of𝛽. (A similar construction
has been performed in [18].)

To simplify the notation, we omit, wherever possible, the
index 𝛽.

Definition 13. For given (𝑥, 𝑖), (𝑦, 𝑗) ∈ 𝑀 × Γ, the symbol
𝑊

∗

(𝑥,𝑖),(𝑦,𝑗)
denotes the disjoint union:

𝑊

∗

(𝑥,𝑖),(𝑦,𝑗)
= ⋃

𝑘=0,1,...

𝑊

𝑘𝛽

(𝑥,𝑖),(𝑦,𝑗)
. (56)

In other words,𝑊∗

(𝑥,𝑖),(𝑦,𝑗)
is the space of pathsΩ∗

= Ω

∗

(𝑥,𝑖),(𝑦,𝑗)

in𝑀×Γ, of a variable time-length 𝑘𝛽, where 𝑘 = 𝑘(Ω

∗

) takes
values 1, 2, . . . and called the lengthmultiplicity, with the end-
points (𝑥, 𝑖) and (𝑦, 𝑗).The formal definition follows the same
line as in (37), and we again use the notation Ω

∗

(𝜏) and the
notation (𝑢(Ω

∗

, 𝜏), 𝑙(Ω

∗

, 𝜏)) for the pair of the position and
the index of path Ω

∗ at time 𝜏. Next, we call the particle
configuration {Ω

∗

(𝜏 + 𝛽𝑚), 0 ≤ 𝑚 < 𝑘(Ω

∗

)} the temporal
section (or simply the section) of Ω∗ at time 𝜏 ∈ [0, 𝛽]. We
also callΩ∗

(𝑥,𝑖),(𝑦,𝑗)
∈ 𝑊

∗

(𝑥,𝑖),(𝑦,𝑗)
a path (from (𝑥, 𝑖) to (𝑦, 𝑗)).

A particular role will be played by closed paths (loops),
with coinciding endpoints (where (𝑥, 𝑖) = (𝑦, 𝑗)). Accord-
ingly, we denote by 𝑊

∗

𝑥,𝑖
the set 𝑊∗

(𝑥,𝑖),(𝑥,𝑖)
. An element of

𝑊

∗

𝑥,𝑖
is denoted by Ω

∗

𝑥,𝑖
or, in short, by Ω

∗ and called a loop
at vertex 𝑖. (The upper index ∗ indicates that the length
multiplicity is unrestricted.) The length multiplicity of a loop
Ω

∗

𝑥,𝑖
∈ 𝑊

∗

𝑥,𝑖
is denoted by 𝑘(Ω∗

𝑥,𝑖
) or 𝑘

𝑥,𝑖
. It is instructive to

note that, as topological object, a given loop Ω∗ admits a
multiple choice of the initial pair (𝑥, 𝑖): it can be represented
by any pair (𝑢(Ω∗

, 𝜏), 𝑙(Ω

∗
, 𝜏)) at a time 𝜏 = 𝑙𝛽 where 𝑙 =

1, . . . , 𝑘(Ω∗). As above, we use the term the temporal section
at time 𝜏 ∈ [0, 𝛽] for the particle configuration {Ω

∗

𝑥,𝑖
(𝜏 +

𝛽𝑚), 0 ≤ 𝑚 < 𝑘
𝑥,𝑖
} and employ the alternative notation

(𝑢(𝜏 + 𝛽𝑚;Ω

∗
), 𝑙(𝜏 + 𝛽𝑚;Ω

∗
)) addressing the position and

the index ofΩ∗ at time 𝜏 + 𝛽𝑚 ∈ [0, 𝛽𝑘(Ω

∗
)].

Definition 14. Suppose x∗
Λ
= {x∗(𝑖), 𝑖 ∈ Λ} ∈ 𝑀

∗Λ and y∗
Λ
=

{y∗(𝑗), 𝑗 ∈ Λ} ∈ 𝑀

∗Λ are particle configurations over Λ,
with ♯x∗

Λ
= ♯y∗

Λ
. Let 𝛾 be a matching between x∗

Λ
and y∗

Λ
. We

consider the Cartesian product:

𝑊

∗

x∗
Λ
,y∗
Λ
,𝛾
= ×

𝑖∈Λ

×

𝑥∈x∗(𝑖)
𝑊

∗

(𝑥,𝑖),𝛾(𝑥,𝑖)
, (57)

and the disjoint union:

𝑊

∗

x∗
Λ
,y∗
Λ

= ⋃

𝛾

𝑊

∗

x∗
Λ
,y∗
Λ
,𝛾
. (58)

Accordingly, an element Ω∗
Λ
∈ 𝑊

∗

x∗
Λ
,y∗
Λ
,𝛾
in (58) represents a

collection of paths Ω∗
𝑥,𝑖
, 𝑥 ∈ x∗(𝑖), 𝑖 ∈ Λ, of time-length 𝑘𝛽,

starting at (𝑥, 𝑖) and ending up at (𝑦, 𝑗) = 𝛾(𝑥, 𝑖). We say that
Ω

∗

Λ
∈ 𝑊

∗

x∗
Λ
,y∗
Λ

is a path configuration in (or over) Λ.
Again, loops play a special role and deserve a particular

notation. Namely,𝑊∗

x∗
Λ

denotes the Cartesian product:

𝑊

∗

x∗
Λ

= ×

𝑖∈Λ

×

𝑥∈x∗(𝑖)
𝑊

∗

𝑥,𝑖
, (59)

and 𝑊

∗

Λ
stands for the disjoint union (or equivalently, the

Cartesian power):

𝑊

∗

Λ
= ⋃

x∗
Λ
∈𝑀
∗Λ

𝑊

∗

x∗
Λ

= ×

𝑖∈Λ

𝑊

∗

{𝑖}
,

where 𝑊

∗

{𝑖}
= ⋃

x∗∈𝑀∗
( ×

𝑥∈x∗
𝑊

∗

𝑥,𝑖
) .

(60)

Denote by Ω∗ = {Ω∗(𝑖), 𝑖 ∈ Λ} ∈ 𝑊

∗

Λ
a collection of

loop configurations at vertices 𝑖 ∈ Λ starting and ending up
at particle configurations x∗(𝑖) ∈ 𝑀

∗ (note that some of the
Ω∗(𝑖)’s may be empty). The temporal section (or, in short,
the section), Ω∗(𝜏), of Ω∗ at time 𝜏 is defined as the particle
configuration formed by the pointsΩ∗

𝑥,𝑖
(𝜏+𝛽𝑚)where 𝑖 ∈ Λ,

𝑥 ∈ x∗(𝑖), and 0 ≤ 𝑚 < 𝑘
𝑥,𝑖
.

As before, consider the standard sigma algebras of subsets
in the spaces 𝑊∗

(𝑥,𝑖),(𝑦,𝑗)
, 𝑊

𝑥,𝑖
, 𝑊∗

x∗
Λ
,y∗
Λ
,𝛾
, 𝑊∗

x∗
Λ
,y∗
Λ

, 𝑊∗

x∗
Λ

, and 𝑊

∗

Λ

introduced in Definitions 13 and 14. In particular, the sigma
algebra of subsets in𝑊∗

Λ
will be denoted by W

Λ
; we comment

on some of its specific properties in Section 3.1. (An infinite-
volume version𝑊

∗

Γ
of𝑊∗

Λ
is treated in Section 3.2 and after.)

Definition 15. Given points (𝑥, 𝑖), (𝑦, 𝑗) ∈ 𝑀 × Γ, we denote
by P∗

(𝑥,𝑖),(𝑦,𝑗)
the sum measure on𝑊

∗

(𝑥,𝑖),(𝑦,𝑗)
:

P
∗

(𝑥,𝑖),(𝑦,𝑗)
= ∑

𝑘=0,1,...

P
𝑘𝛽

(𝑥,𝑖),(𝑦,𝑗)
. (61)

Further, P∗

𝑥,𝑖
denotes the similar measure on𝑊

∗

𝑥,𝑖
:

P
∗

𝑥,𝑖
= ∑

𝑘=0,1,...

P
𝑘𝛽

𝑥,𝑖
. (62)
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Definition 16. Let x∗
Λ

= {x∗(𝑖), 𝑖 ∈ Λ} ∈ 𝑀

∗Λ and y∗
Λ

=

{y∗(𝑗), 𝑗 ∈ Λ} ∈ 𝑀

∗Λ be particle configurations overΛ, with
♯x∗

Λ
= ♯y∗

Λ
. Let 𝛾 be a matching between x∗

Λ
and y∗

Λ
, and we

define the product measure P∗

x∗
Λ
,y∗
Λ
,𝛾
:

P
∗

x∗
Λ
,y∗
Λ
,𝛾
= ×

𝑖∈Λ

×

𝑥∈x∗(𝑖)
P
∗

(𝑥,𝑖),𝛾(𝑥,𝑖) (63)

and the sum measure

P
∗

x∗
Λ
,y∗
Λ

= ∑

𝛾

P
∗

x∗
Λ
,y∗
Λ
,𝛾
. (64)

Next, symbolP∗

x∗
Λ

stands for the product measure on𝑊∗

x∗
Λ

:

P
∗

x∗
Λ

= ×

𝑖∈Λ

×

𝑥∈x∗(𝑖)
P
∗

𝑥,𝑖
. (65)

Finally, dΩ∗
Λ
yields the measure on𝑊

∗

Λ
:

dΩ∗
Λ
= dx∗

Λ
× P

∗

x∗
Λ

(dΩ∗
Λ
) . (66)

Here, for x∗
Λ

= {x∗(𝑖), 𝑖 ∈ Λ}, we set: dx∗
Λ

=

∏
𝑖∈Λ

∏
𝑥∈x∗(𝑖)V(d𝑥). For sites 𝑖 with x∗(𝑖) = 0, the corre-

sponding factors are trivial measures sitting on the empty
configurations.

We again need to introduce energy-type functionals
represented by integrals along loops. More precisely, we
define the functionals hΛ(Ω∗

Λ
) and hΛ(Ω∗

Λ
| x∗

Γ\Λ
) which are

modifications of the above functionals hΛ(𝜔
Λ
) and hΛ(𝜔

Λ
|

x∗
Γ\Λ

); confer (46) and (50). Say, for a loop configurationΩ∗
Λ
=

{Ω

∗

𝑥,𝑖
} over Λ with an initial and final particle configuration

x∗
Λ
= {x∗(𝑖), 𝑖 ∈ Λ},

hΛ (Ω
∗

Λ
)

= ∑

𝑖∈Λ

∑

𝑥∈x∗(𝑖)
h𝑥,𝑖 (Ω∗

𝑥,𝑖
)

+

1

2

∑

(𝑖,𝑖

)∈Λ×Λ

∑

𝑥∈x∗(𝑖),𝑥∈x∗(𝑖)

× 1 ((𝑥, 𝑖) ̸= (𝑥


, 𝑖


)) h(𝑥,𝑖),(𝑥



,𝑖


)
(Ω

∗

x,𝑖, Ω
∗

𝑥

,𝑖
) .

(67)

To determine the functionals h𝑥,𝑖(Ω∗

𝑥,𝑖
) and h(𝑥,𝑖),(𝑥



,𝑖


)
(Ω

∗

𝑥,𝑖
,

Ω

∗

𝑥

,𝑖
), we set, for given 𝑚 = 0, 1, . . . , 𝑘

𝑥,𝑖
− 1 and 𝑚


=

0, 1, . . . , 𝑘
𝑥

,𝑖
 − 1:

𝑢
𝑖,𝑥
(𝜏 + 𝛽𝑚) = 𝑢 (𝜏 + 𝛽𝑚;Ω

∗

𝑥,𝑖
) ,

𝑙
𝑖,𝑥
(𝜏 + 𝛽𝑚) = 𝑙 (𝜏 + 𝛽𝑚;Ω

∗

𝑥,𝑖
) ,

𝑢
𝑖

,𝑥
 (𝜏 + 𝛽𝑚


) = 𝑢 (𝜏 + 𝛽𝑚


; Ω

∗

𝑥

,𝑖
) ,

𝑙
𝑖

,𝑥
 (𝜏 + 𝛽𝑚


) = 𝑙 (𝜏 + 𝛽𝑚


; Ω

∗

𝑥

,𝑖
) .

(68)

A (slightly) shortened notation 𝑙
𝑖,𝑥
(𝜏 + 𝛽𝑚) is used for the

index 𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚;Ω

∗

𝑥,𝑖
) and 𝑢

𝑖,𝑥
(𝜏 + 𝛽𝑚) for the position

𝑢(𝜏 + 𝛽𝑚;Ω

∗

𝑥,𝑖
) for Ω∗

𝑥,𝑖
(𝜏) ∈ 𝑀 × Γ, of the section Ω

∗

𝑥,𝑖
(𝜏)

of the loop Ω

∗

𝑥,𝑖
at time 𝜏, and similarly with 𝑙

𝑖

,𝑥
(𝜏 + 𝛽𝑚


)

and 𝑢
𝑖

,𝑥
(𝜏 + 𝛽𝑚


). (Note that the pairs (𝑥, 𝑖) and (𝑥


, 𝑖


)may

coincide.) Then

h(𝑥,𝑖) (Ω∗

𝑥,𝑖
)

= ∫

𝛽

0

d𝜏[

[

∑

0≤𝑚<𝑘
𝑥,𝑖

𝑈

(1)
(𝑢

𝑥,𝑖
(𝜏 + 𝛽𝑚))

+ ∑

0≤𝑚<𝑚

<𝑘
𝑥,𝑖

∑

𝑗∈Γ

1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚)

= 𝑗 = 𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚


))

×𝑈

(2)
(𝑢

𝑥,𝑖
(𝜏 + 𝛽𝑚) , 𝑢

𝑥,𝑖
(𝜏 + 𝛽𝑚


))

]

]

,

h(𝑥,𝑖),(𝑥


,𝑖


)
(Ω

∗

𝑥,𝑖
, Ω

∗

𝑥

,𝑖
 )

= ∑

0≤𝑚<𝑘
𝑥,𝑖

∑

0≤𝑚

<𝑘
𝑥

,𝑖


∫

𝛽

0

d𝜏

×
[

[

∑

𝑗∈Γ

𝑈

(2)
(𝑢

𝑥,𝑖
(𝜏 + 𝛽𝑚) , 𝑢

𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

× 1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚) = 𝑗 = 𝑙

𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

+ ∑

(𝑗,𝑗


)∈Γ×Γ

𝐽 (d (𝑗, 𝑗

))𝑉

× (𝑢
𝑖,𝑥
(𝜏 + 𝛽𝑚) , 𝑢

𝑖

,𝑥
 (𝜏 + 𝛽𝑚


))

×1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚) = 𝑗 ̸= 𝑗


= 𝑙

𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

]

]

.

(69)

Next, the functional𝐵(Ω∗
Λ
) takes into account the bosonic

character of the model:

𝐵 (Ω
∗

Λ
) = ∏

𝑖∈Λ

∏

𝑥∈x∗(𝑖)

𝑧

𝑘
𝑥,𝑖

𝑘
𝑥,𝑖

. (70)

The factor 𝑘−1
𝑥,𝑖

in (70) reflects the fact that the starting point
of a loop Ω

∗

𝑥,𝑖
may be selected among points 𝑢(𝛽𝑚,Ω

∗

𝑥,𝑖
)

arbitrarily.
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Next, we define the functional hΛ(Ω∗
Λ
| x∗

Γ\Λ
): for x∗

Γ\Λ
=

{x∗(𝑗), 𝑗 ∈ Γ \ Λ}, again assuming that ♯x∗(𝑗) ≤ 𝜅. Set

hΛ (Ω
∗

Λ
| x∗

Γ\Λ
) = hΛ (Ω

∗

Λ
) + hΛ (Ω

∗

Λ
|| x∗

Γ\Λ
) . (71)

Here hΛ(Ω∗
Λ
) is as in (67) and

hΛ (Ω
∗

Λ
|| x∗

Γ\Λ
)

= ∑

(𝑖,𝑖

)∈Λ×(Γ\Λ)

∑

𝑥∈x∗(𝑖),𝑥∈x∗(𝑖)

h(𝑥,𝑖),(𝑥


,𝑖


)
(Ω

∗

𝑥,𝑖
, (𝑥


, 𝑖


)) ,

(72)

where, in turn,

h(𝑥,𝑖),(𝑥


,𝑖


)
(Ω

∗

𝑥,𝑖
, (𝑥


, 𝑖


))

= ∑

0≤𝑚<𝑘
𝑥,𝑖

∫

𝛽

0

d𝜏

× [𝑈

(2)
(𝑢

𝑥,𝑖
(𝜏 + 𝛽𝑚) , 𝑥


)

× 1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚) = 𝑖


)

+ ∑

𝑗∈Γ

𝐽 (d (𝑗, 𝑖

))𝑉 (𝑢

𝑖,𝑥
(𝜏 + 𝛽𝑚) , 𝑥


)

×1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚) = 𝑗) ] .

(73)

As before, the functionals hΛ(Ω∗
Λ
) and hΛ(Ω∗

Λ
|| x∗

Γ\Λ
) have a

natural interpretation as energies of loop configurations.
Finally, as before, the functional 𝛼

Λ
(Ω∗

Λ
) is the indicator

that the collection of loopsΩ∗
Λ
= {Ω

∗

𝑥,𝑖
} does not quit Λ:

𝛼
Λ
(Ω

∗

Λ
) =

{
{

{
{

{

1, if Ω∗

𝑥,𝑖
(𝜏) ∈ 𝑀 × Λ,

∀𝑖 ∈ Λ, 𝑥 ∈ x∗ (𝑖) , 0 ≤ 𝜏 ≤ 𝛽𝑘
𝑥,𝑖
,

0, otherwise.
(74)

Like above, we invoke known results [11, 15–17] to estab-
lish the following statement (again a direct argument can be
found in [18]).

Lemma 17. For all finite Λ ⊂ Γ and 𝑧, 𝛽 > 0 satisfying (22),
the partition functions Ξ(Λ) in (27) and Ξ(Λ | x∗

Γ\Λ
) in (27)

and (28) admit the representations as converging integrals:

Ξ (Λ) = ∫

𝑊
∗

Λ

dΩ∗
Λ
𝐵 (Ω

∗

Λ
) 𝛼

Λ
(Ω

∗

Λ
) exp [−hΛ (Ω

∗

Λ
)] , (75)

Ξ (Λ | x∗
Γ\Λ

)

= ∫

𝑊
∗

Λ

dΩ∗
Λ
𝐵 (Ω

∗

Λ
) 𝛼

Λ
(Ω

∗

Λ
) exp [−hΛ (Ω

∗

Λ
|| x∗

Γ\Λ
)]

(76)

with the ingredients introduced in (60)–(74).

Again, we emphasis that the non-zero contribution to
the integral in (75) can only come from loop configurations
Ω∗

Λ
= {Ω

∗

𝑥,𝑖
, 𝑥 ∈ x∗(𝑖), 𝑖 ∈ Λ} such that ∀ vertex 𝑗 ∈ Λ and

𝜏 ∈ [0, 𝛽], the total number of pairs (𝑢
𝑥,𝑖
(𝜏+𝑚𝛽), 𝑙

𝑥,𝑖
(𝜏+𝑚𝛽))

with 0 ≤ 𝑚 < 𝑘
𝑥,𝑖
, and 𝑙(𝜏 + 𝑚𝛽) = 𝑗 does not exceed 𝜅.

Remark 18. The integrals in (75) and (76) represent examples
of partition functions which will be encountered in the forth-
coming sections. See (96), (97), (101), (103), (105), (107), (111),
and (113) below. A general form of such a partition function
treated as an integral over a set of loop configurations rather
than a trace in a Hilbert space is given in (96) and (97).

2.3. The Representation for the RDM Kernels. Let Λ0
, Λ be

finite sets, Λ0
⊂ Λ ⊂ Γ. The construction developed in

Section 2.2 also allows us towrite a convenient representation
for the integral kernels of the RDMsRΛ

0

Λ
(see (31)) andRΛ

0

Λ|x∗
Γ\Λ

.

In accordancewith Lemma 11 and the definition ofRΛ
0

Λ
in (31),

the operator RΛ
0

Λ
acts as an integral operator inH(Λ

0
):

(RΛ
0

Λ
𝜙) (x∗0)

= ∫

𝑀
∗Λ
0

∏

𝑗∈Λ
0

∏

𝑦∈y∗(𝑗)
V (d𝑦) FΛ

0

Λ
(x∗0, y∗0)𝜙 (y∗0) ,

(77)

where

FΛ
0

Λ
(x∗0, y∗0)

:= ∫

𝑀
∗Λ\Λ
0

∏

𝑗∈Λ\Λ
0

∏

𝑧∈z∗(𝑗)
V (d𝑧)

× F
Λ
(x∗0 ∨ z∗

Λ\Λ
0 , y∗0 ∨ z∗

Λ\Λ
0)

:=

̂Ξ
Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
)

Ξ (Λ)
.

(78)

We employ here and below the notation x∗0 and y∗0 for
particle configurations x∗

Λ
0 = {x∗(𝑖), 𝑖 ∈ Λ

0
} and y∗

Λ
0 =

{y∗(𝑗), 𝑗 ∈ Λ

0
} overΛ0. Next, x∗0∨z∗

Λ\Λ
0 ; y∗0∨z∗

Λ\Λ
0 denotes

the concatenated configurations over Λ.
Similarly, the RDM RΛ

0

Λ|x∗
Γ\Λ

is determined by its integral

kernel FΛ
0

Λ|x∗
Γ\Λ

(x∗0, y∗0), again admitting the representation

FΛ
0

Λ|x∗
Γ\Λ

(x∗0, y∗0) :=
̂Ξ
Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
| x∗

Γ\Λ
)

Ξ (Λ)
.

(79)

As in [1], we call FΛ
0

Λ
and FΛ

0

Λ|x∗
Γ\Λ

the RDM kernels (in
short, RDMKs). The focus of our interest is the numerators
̂Ξ
Λ
0

Λ
(x∗0, y∗0, Λ \ Λ

0
) and ̂Ξ

Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
| x∗

Γ\Λ
) in

(78) and (79). To introduce the appropriate representation for
these quantities, we need some additional definitions.
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Definition 19. Repeating (57)-(58), symbol 𝑊∗

x∗0 ,y∗0 denotes
the disjoint union ⋃

𝛾
0𝑊

∗

x∗0 ,y∗0,𝛾0 over matchings 𝛾

0

between x∗0 and y∗0. Accordingly, elementΩ∗0 = Ω∗x∗0 ,y∗0,𝛾0 ∈
𝑊

∗

x∗0 ,y∗0,𝛾0 yields a collection of pathsΩ
∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

∈ 𝑊

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

lying in 𝑀 × Γ. Each path Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

has time lengths
𝛽𝑘

(𝑥,𝑖),(𝑦,𝑗)
, begins at (𝑥, 𝑖), and ends up at (𝑦, 𝑗) = 𝛾

0
(𝑥, 𝑖),

where 𝑥 ∈ x∗(𝑖), 𝑦 ∈ y∗(𝑗). Like above, we will use for Ω∗0

the term a path configuration over Λ0. Repeating (63)-(64),
we obtain the measures P∗

x∗0 ,y∗0,𝛾0 on 𝑊

∗

x∗0 ,y∗0,𝛾0 and P∗

x∗0,y∗0

on𝑊

∗

x∗0 ,y∗0 .

The assertion of Lemma 20 below again follows directly
from known results, in conjunction with calculations of the
partial trace trH

Λ\Λ
0

in H
Λ
. The meaning of new ingredients

in (79)–(82) is explained below.

Lemma 20. The quantity ̂Ξ
Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
) emerging in

(78) is set to be 0 when ♯x∗0 ̸= ♯y∗0. On the other hand, for
♯x∗0 = ♯y∗0,

̂Ξ
Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
)

= ∫

𝑊
∗

x∗0,y∗0
P
∗

x∗0 ,y∗0 (dΩ
∗0

) 𝐵 (Ω
∗0

)

× 𝛼
Λ
(Ω

∗0

) 1 (Ω∗0 ∈ F
Λ
0

)

× exp [−hΛ
0

(Ω
∗0

)]
̂Ξ
Λ
0

Λ
(Λ \ Λ

0
| Ω

∗0

) ,

(80)

where

̂Ξ
Λ
0

Λ
(Λ \ Λ

0
| Ω

∗0

)

= ∫

𝑊
∗

Λ\Λ
0

dΩ∗
Λ\Λ
0𝐵 (Ω

∗

Λ\Λ
0)

× 𝛼
Λ
(Ω

∗

Λ\Λ
0) 1 (Ω∗

Λ\Λ
0 ∈ F

Λ
0

)

× exp [−hΛ\Λ
0

(Ω
∗

Λ\Λ
0 | Ω

∗0

)] .

(81)

Similarly, the quantity ̂Ξ
Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
| x∗

Γ\Λ
) from (79)

vanishes when ♯x∗0 ̸= ♯y∗0. For ♯x∗0 = ♯y∗0,

̂Ξ
Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
| x∗

Γ\Λ
)

= ∫

𝑊
∗

x∗0,y∗0
P
∗

x∗0 ,y∗0 (dΩ
∗0

) 𝐵 (Ω
∗0

)

× 𝛼
Λ
(Ω

∗0

) 1 (Ω∗0 ∈ F
Λ
0

)

× exp [−hΛ
0

(Ω
∗0

| x∗
Γ\Λ

)]

×
̂Ξ
Λ
0

Λ
(Λ \ Λ

0
| Ω

∗0

∨ x∗
Γ\Λ

) ,

(82)

where

̂Ξ
Λ
0

Λ
(Λ \ Λ

0
| Ω

∗0

∨ x∗
Γ\Λ

)

= ∫

𝑊
∗

Λ\Λ
0

dΩ∗
Λ\Λ
0𝐵 (Ω

∗

Λ\Λ
0) 𝛼Λ

(Ω
∗

Λ\Λ
0)

× 1 (Ω∗
Λ\Λ
0 ∈ F

Λ
0

)

× exp [−hΛ\Λ
0

(Ω
∗

Λ\Λ
0 | Ω

∗0

∨ x∗
Γ\Λ

)] .

(83)

These representations hold ∀𝑧, 𝛽 > 0 and finite Λ0
⊂ Λ ⊂ Γ.

Let us define the functionals 𝐵(Ω∗0), 𝛼
Λ
(Ω

∗0

), 1(Ω∗0 ∈

FΛ
0

), 1(Ω∗
Λ\Λ
0 ∈ FΛ

0

)hΛ
0

(Ω
∗0

), hΛ\Λ
0

(Ω∗
Λ\Λ
0 | Ω

∗0

),
hΛ
0

(Ω
∗0x∗

Γ\Λ
), and hΛ\Λ

0

(Ω∗
Λ\Λ
0 | Ω

∗0

∨ x∗
Γ\Λ

) in (79)–(83).
(The functionals 𝐵(Ω∗

Λ\Λ
0) and 𝛼

Λ
(Ω∗

Λ\Λ
0) are defined as (70)

and (74), respectively, replacing Λ with Λ \ Λ

0.)
To this end, let Ω∗0 = Ω

∗

x∗0,y∗0,𝛾0 ∈ 𝑊

∗

x∗0 ,y∗0,𝛾0 be a
path configuration represented by a collection of paths
Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

∈ 𝑊

∗

(𝑥,𝑖),𝛾
∗0
(𝑥,𝑖)

(Ω∗

𝑥,𝑖
in short), with end points (𝑥, 𝑖)

and (𝑦, 𝑗) = 𝛾

0
(𝑥, 𝑖), of time-length𝛽𝑘

(𝑥,𝑖),(𝑦,𝑗)
.The functional

𝐵(Ω
∗0

) is given by

𝐵 (Ω
∗0

) = ∏

𝑖∈Λ

∏

𝑥∈x∗(𝑖)
𝑧

𝑘
(𝑥,𝑖),(𝑦,𝑗)

. (84)

The functional 𝛼
Λ
(Ω

∗0

) is again an indicator:

𝛼
Λ
(Ω

∗0

) =

{
{
{
{

{
{
{
{

{

1, if Ω∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

(𝜏) ∈ 𝑀 × Λ,

∀𝑖 ∈ Λ, 𝑥 ∈ x∗ (𝑖) ,
0 ≤ 𝜏 ≤ 𝛽𝑘

(𝑥,𝑖),(𝑦,𝑗)
,

0, otherwise.

(85)

Now let us define the indicator function 1(⋅ ∈ FΛ
0

) in
(80)–(83). The factor 1(Ω∗0 ∈ FΛ

0

) equals one if and only
if every path Ω

∗

(𝑥,𝑖),(𝑦,𝑗)
from Ω∗0, of time-length 𝛽𝑘

(𝑥,𝑖),(𝑦,𝑗)
,

starting at (𝑥, 𝑖) ∈ 𝑀×Λ

0 and ending up at (𝑦, 𝑗) = 𝛾

0
(𝑥, 𝑖) ∈

𝑀×Λ

0 remains in𝑀× (Λ \ Λ

0
) at the intermediate times 𝛽𝑙

for 𝑙 = 1, . . . , 𝑘
(𝑥,𝑖),(𝑦,𝑗)

− 1:

Ω

∗

(𝑥,𝑖),(𝑦,𝑗)
(𝑙𝛽) ∉ 𝑀 × Λ

0
, ∀𝑙 = 1, . . . , 𝑘

(𝑥,𝑖),(𝑦,𝑗)
− 1, (86)

(when 𝑘
(𝑥,𝑖),(𝑦,𝑗)

= 1, this is not a restriction).
Furthermore, suppose that Ω∗

Λ\Λ
0 = Ω∗x∗

Λ\Λ
0

is a loop

configuration over Λ \ Λ

0, with the initial/end configuration
x∗
Λ\Λ
0 = {x∗(𝑖), 𝑖 ∈ Λ \ Λ

0
}, represented by a collection of

loops Ω∗

𝑥,𝑖
, 𝑖 ∈ Λ \ Λ

0
, 𝑥 ∈ x∗(𝑖). Then 1(Ω∗

Λ\Λ
0 ∈ FΛ

0

) = 1

if and only if each loop Ω

∗

𝑥,𝑖
of time-length 𝛽𝑘

𝑥,𝑖
, beginning
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and finishing at (𝑥, 𝑖) ∈ 𝑀 × (Λ \ Λ

0
), does not enter the set

𝑀× Λ

0 at times 𝛽𝑙 for 𝑙 = 1, . . . , 𝑘
𝑥,𝑖

− 1:

Ω

∗

𝑥,𝑖
(𝑙𝛽) ∉ 𝑀 × Λ

0
, ∀𝑙 = 1, . . . , 𝑘

𝑥,𝑖
− 1 (87)

(again, if 𝑘
𝑥,𝑖

= 1, this is not a restriction).
The functional hΛ

0

(Ω
∗0

) in (80) gives the energy of the
path configuration Ω∗0 and is introduced similarly to (67),
mutatis mutandis. Next, the functional hΛ\Λ

0

(Ω∗
Λ\Λ
0 | Ω

∗0

) in
(81) represents the energy of the loop configurationΩ∗

Λ\Λ
0 in

the potential field generated by the path configurationΩ∗0:

hΛ\Λ
0

(Ω
∗

Λ\Λ
0 | Ω

∗0

) = hΛ\Λ
0

(Ω
∗

Λ\Λ
0) + h (Ω∗0 || Ω∗

Λ\Λ
0) .

(88)

Here, the summand hΛ\Λ
0

(Ω∗
Λ\Λ
0) yields the energy of the

loop configurationΩ∗
Λ\Λ
0 ; again confer (67). Further, the term

h(Ω∗0 || Ω∗
Λ\Λ
0) yields the energy of interaction betweenΩ

∗0

and Ω∗
Λ\Λ
0 : for a path/loop configurations Ω∗0 = {Ω

∗

𝑥,𝑖
} ∈

𝑊

∗

x∗0 ,y∗0,𝛾0 and aΩ∗
Λ\Λ
0 = {Ω

∗

𝑥

,𝑖
} ∈ 𝑊

∗

Λ\Λ
0 we set

h (Ω∗0 || Ω∗
Λ\Λ
0)

= ∑

(𝑖,𝑖


)∈Λ
0
×(Λ\Λ

0

)

∑

𝑥∈x∗(𝑖),𝑥∈x∗(𝑖)
h(𝑥,𝑖),(𝑥



,𝑖


)
(Ω

∗

𝑥,𝑖
, Ω

∗

𝑥

,𝑖
) .

(89)

Here, for a pathΩ∗

𝑥,𝑖
= Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

, of time-length 𝛽𝑘
(𝑥,𝑖),𝛾

0
(𝑥,𝑖)

,
and a loopΩ

∗

𝑥

,𝑖
 , of time-length 𝛽𝑘

𝑥,𝑖
,

h(𝑥,𝑖),(𝑥


,𝑖


)
(Ω

∗

𝑥,𝑖
, Ω

∗

𝑥

,𝑖
)

= ∑

0≤𝑚<𝑘
(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

∑

0≤𝑚

<𝑘
𝑥

,𝑖


∫

𝛽

0

d𝜏

×
[

[

∑

𝑗∈Γ

𝑈

(2)
(𝑢 (𝜏 + 𝛽𝑚;Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

) , 𝑢 (𝜏 + 𝛽𝑚


; Ω

∗

𝑥

,𝑖
))

× 1 (𝑙
(𝑥,𝑖),𝛾

0
(𝑥,𝑖)

(𝜏 + 𝛽𝑚) = 𝑗 = 𝑙
𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

+ ∑

𝑗,𝑗

∈Γ×Γ

𝐽 (d (𝑗, 𝑗

))𝑉 (𝑢

𝑖,𝑥
(𝜏 + 𝛽𝑚) , 𝑢

𝑖

,𝑥
 (𝜏 + 𝛽𝑚


))

×1 (𝑙
(𝑥,𝑖),𝛾

0
(𝑥,𝑖)

(𝜏 + 𝛽𝑚) = 𝑗 ̸= 𝑗


= 𝑙

𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

]

]

.

(90)

Here, in turn, we employ the shortened notation for the
positions and indices of the sections Ω∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

(𝜏 + 𝛽𝑚) and
Ω

∗

𝑥

,𝑖
(𝜏 + 𝛽𝑚


) of Ω∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

and Ω

∗

𝑥

,𝑖
 at times 𝜏 + 𝛽𝑚 and

𝜏 + 𝛽𝑚

, respectively:

𝑢
𝑖,𝑥
(𝜏 + 𝛽𝑚) = 𝑢 (𝜏 + 𝛽𝑚;Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

) ,

𝑙
𝑖,𝑥
(𝜏 + 𝛽𝑚) = 𝑙 (𝜏 + 𝛽𝑚;Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

) ,

𝑢
𝑖

,𝑥
 (𝜏 + 𝛽𝑚


) = 𝑢 (𝜏 + 𝛽𝑚


; Ω

∗

𝑥

,𝑖
) ,

𝑙
𝑖

,𝑥
 (𝜏 + 𝛽𝑚


) = 𝑙 (𝜏 + 𝛽𝑚


; Ω

∗

𝑥

,𝑖
) .

(91)

Further, the functional hΛ
0

(Ω
∗0

| x∗
Γ\Λ

) in (82) is
determined as in (71)–(73), with Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

instead of Ω∗

𝑥,𝑖
.

Next, for hΛ\Λ
0

(Ω∗
Λ\Λ
0 | Ω

∗0

∨ x∗
Γ\Λ

) in (83), we set

hΛ\Λ
0

(Ω
∗

Λ\Λ
0 | Ω

∗0

∨ x∗
Γ\Λ

)

= hΛ\Λ
0

(Ω
∗

Λ\Λ
0) + h (Ω∗

Λ\Λ
0 || Ω

∗0

∨ x∗
Γ\Λ

) .

(92)

Here again, the summand hΛ\Λ
0

(Ω∗
Λ\Λ
0) is determined as in

(67). Next, the term hΛ\Λ
0

(Ω∗
Λ\Λ
0 || Ω

∗0

∨ x∗
Γ\Λ

) is defined
similarly to (72)-(73):

hΛ\Λ
0

(Ω
∗

Λ\Λ
0 || Ω

∗0

∨ x∗
Γ\Λ

)

= ∑

(𝑖,𝑖

)∈(Λ\Λ

0

)×Λ
0

∑

𝑥∈x∗(𝑖),𝑥∈x∗(𝑖)
h(𝑥,𝑖),(𝑥



,𝑖


)
(Ω

∗

𝑥,𝑖
, Ω

∗

𝑥

,𝑖
)

+ ∑

𝑖∈Λ\Λ
0

∑

𝑥∈x∗(𝑖),𝑥∈x∗(𝑖)
h(𝑥,𝑖),(𝑥



,𝑖


)
(Ω

∗

𝑥,𝑖
, (𝑥


, 𝑖


))

(93)

with

h(𝑥,𝑖),(𝑥


,𝑖


)
(Ω

∗

𝑥,𝑖
, Ω

∗

𝑥

,𝑖
)

= ∑

0≤𝑚<𝑘
𝑥,𝑖

∑

0≤𝑚

<𝑘
(𝑥

,𝑖

),𝛾
0
(𝑥

,𝑖

)

× ∫

𝛽

0

d𝜏

×
[

[

∑

𝑗∈Γ

𝑈

(2)
(𝑢

𝑥,𝑖
(𝜏 + 𝛽𝑚) , 𝑢

𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

× 1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚) = 𝑗 = 𝑙

𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

+ ∑

(𝑗,𝑗


)∈Γ×Γ

𝐽 (d (𝑗, 𝑗

))𝑉

× (𝑢
𝑖,𝑥
(𝜏 + 𝛽𝑚) , 𝑢

𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

×1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚) = 𝑗 ̸= 𝑗


= 𝑙

𝑥

,𝑖
 (𝜏 + 𝛽𝑚


))

]

]

,
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h(𝑥,𝑖),(𝑥


,𝑖


)
(Ω

∗

𝑥,𝑖
, (𝑥


, 𝑖


))

= ∑

0≤𝑚<𝑘
𝑥,𝑖

∫

𝛽

0

d𝜏 [𝑈(2)
(𝑢

𝑥,𝑖
(𝜏 + 𝛽𝑚) , 𝑥


)

× 1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚) = 𝑖


)

+ ∑

𝑗∈Γ

𝐽 (d (𝑗, 𝑖

))𝑉 (𝑢

𝑖,𝑥
(𝜏 + 𝛽𝑚) , 𝑥


)

×1 (𝑙
𝑥,𝑖
(𝜏 + 𝛽𝑚) = 𝑗) ] .

(94)

As before, the functionals hΛ(Ω∗
Λ
) and hΛ(Ω∗

Λ
|| x∗

Γ\Λ
)

have a natural interpretation as energies of loop configura-
tions.

Repeating the above observation, non-zero contributions
to the integral in (80) come only from pairs (Ω

∗0

,Ω∗
Λ\Λ
0)

such that ∀𝑗 ∈ Γ and 𝜏 ∈ [0, 𝛽], the total number of pairs
(𝑢(𝜏 + 𝛽𝑚;Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

), 𝑙(𝜏 + 𝛽𝑚;Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

)) with 0 ≤ 𝑚 <

𝑘
(𝑥,𝑖),𝛾

0
(𝑥,𝑖)

, 𝑖 ∈ Λ

0 and 𝑥 ∈ x∗(𝑖) incident to the paths
of the configuration Ω∗0 and pairs (𝑢(𝜏 + 𝛽𝑚


; Ω

∗

𝑥

,𝑖
), 𝑙(𝜏 +

𝛽𝑚


; Ω

∗

𝑥

,𝑖
)) with 0 ≤ 𝑚


< 𝑘

(𝑥

,𝑖

)
, 𝑖 ∈ Λ \ Λ

0 and 𝑥


∈ x∗(𝑖)

incident to the loops of the configuration Ω∗
Λ\Λ
0 does not

exceed 𝜅. Similarly, non-zero contributions to the integral in
(82) come only from pairs (Ω∗0,Ω∗

Λ\Λ
0) such that the above

inequality holdswhenwe additionally count points𝑥 ∈ x∗(𝑗).
The integral ̂ΞΛ

0

Λ
(Λ \ Λ

0
| Ω

∗0

) defined in (81) can be
considered as a particular (although important) example of
a partition function in the volume Λ \ Λ

0 with a boundary
condition Ω∗0. Note the presence of the subscript Λ indicat-
ing that the loops contributing to ̂Ξ

Λ
0

Λ
(Λ\Λ

0
| Ω

∗0

) can jump
within volumeΛ only (owing to the indicator functional 𝛼

Λ
).

On the other hand, the presence of the indicator functional
1(Ω∗

Λ\Λ
0 ∈ FΛ

0

) in the integral (reflected in the upperscript

Λ

0 and the roof sign in the notation ̂Ξ
Λ
0

Λ
(Λ \ Λ

0
| Ω

∗0

))
indicates a particular restriction on the jumps of the loops,
forbidding them to visit setΛ0 at intermediate times 𝛽𝑚.This
is true also for the integral ̂ΞΛ

0

Λ
(Λ \Λ

0
| Ω

∗0

∨ x∗
Γ\Λ

) in (83): it
is a particular example of a partition function in the volume
Λ \ Λ

0 with a boundary conditionΩ∗0 ∨ x∗
Γ\Λ

.
Other useful types of partition functions are Ξ

Γ
0(
̃
Λ |

Ω
∗0

∨ Ω∗
Γ
1) and ΞΓ0(̃Λ | Ω

∗0

∨ Ω∗
Γ
1 ∨ x∗

Γ
2) where the sets of

vertices ̃Λ, Λ0, Γ0, Γ1, and Γ

2 satisfy

̃
Λ ⊂ Γ

0
⊆ Γ, Γ

1
, Γ

2
⊂ Γ \

̃
Λ,

Γ

1
∩ Γ

2
= 0, Λ

0
⊂ Γ \ (

̃
Λ ∪ Γ

1
∪ Γ

2
)

(95)

and ♯
̃
Λ, ♯Λ

0
< +∞. Accordingly, Ω∗0 is a (finite) configu-

ration over Λ0, Ω∗
Γ
1 a (possibly infinite) loop configuration

over Γ1, and x∗
Γ
2 a (possibly infinite) particle configuration

over Γ

2. The partition functions Ξ
Γ
0(
̃
Λ | Ω

∗0

∨ Ω∗
Γ
1) and

Ξ
Γ
0(
̃
Λ | Ω

∗0

∨Ω∗
Γ
1 ∨ x∗

Γ
2) are given by

Ξ
Γ
0 (

̃
Λ | Ω

∗0

∨Ω
∗

Γ
1)

= ∫

𝑊
∗

̃
Λ

dΩ∗
Λ̃
𝛼
Γ
0 (Ω

∗

Λ̃
) 𝐵 (Ω

∗

Λ̃
)

× exp [−hΛ̃ (Ω
∗

Λ̃
| Ω

∗0

∨Ω
∗

Γ
1)] ,

(96)

Ξ
Γ
0 (

̃
Λ | Ω

∗0

∨Ω
∗

Γ
1 ∨ x∗

Γ
2)

= ∫

𝑊
∗

̃
Λ

dΩ∗
Λ̃
𝛼
Γ
0 (Ω

∗

Λ̃
) 𝐵 (Ω

∗

Λ̃
)

× exp [−hΛ̃ (Ω
∗

Λ̃
| Ω

∗0

∨Ω
∗

Γ
1 ∨ x∗

Γ
2)]

(97)

with the indicator 𝛼
Γ
0 as in (74). These partition functions,

feature loop configurations Ω∗
�̃�
formed by loops Ω∗

𝑥,𝑖
, 𝑖 ∈ ̃

Λ,
which start and finish in ̃

Λ, are confined to Γ

0 and move
in a potential field generated by Ω∗0 ∨ Ω∗

Γ
1 , where Ω

∗0

=

{Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

} andΩ
Γ
1 = {Ω

∗

𝑥,𝑖
, 𝑥 ∈ x∗(𝑖), 𝑖 ∈ Γ

1
} orΩ∗

Γ
1 ∨ x∗

Γ
2 ,

where x∗
Γ
2 = {x∗(𝑖), 𝑖 ∈ Γ

2
}. (The latter can be understood

as the concatenation of the loop configuration Ω∗
Γ
1 over Γ1

and the loop configuration over Γ2 formed by the constant
trajectories sitting at points 𝑥 ∈ x∗(𝑖), 𝑖 ∈ Γ

2.) In (96) we
assume that, ∀𝜏 ∈ [0, 𝛽] and 𝑗 ∈ Γ, the number

♯ {(𝑥, 𝑖, 𝑚) : 𝑖 ∈
̃
Λ, 𝑙 (𝜏 + 𝑚𝛽;Ω

∗

𝑥,𝑖
) = 𝑗, 0 ≤ 𝑚 < 𝑘

𝑥,𝑖
}

+ ♯ {(𝑥, 𝑖) : 𝑖 ∈ Λ

0
, 𝑙 (𝜏 + 𝑚𝛽;Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

)

= 𝑗, 0 ≤ 𝑚 < 𝑘
(𝑥,𝑖),𝛾

0
(𝑥,𝑖)

}

+ ♯ {(𝑥, 𝑖, 𝑚) : 𝑖 ∈ Γ

1
,

𝑙 (𝜏 + 𝑚𝛽;Ω

∗

𝑥,𝑖
) = 𝑗, 0 ≤ 𝑚 < 𝑘

𝑥,𝑖
}

(98)

does not exceed 𝜅. Analogously, in (97) it is assumed that the
same is true for the above number plus the cardinality ♯x∗(𝑗).

Such “modified” partition functions will be used in forth-
coming sections.

2.4. The FK-DLR Measure 𝜇
Λ
in a Finite Volume. The Gibbs

states 𝜑
Λ
and 𝜑

Λ|x∗
Γ\Λ

give rise to probability measures 𝜇
Λ
and

𝜇
Λ|x∗
Γ\Λ

on the sigma algebraW
Λ
of subsets of𝑊∗

Λ
. The sigma

algebra W
Λ
is constructed by following the structure of the

space 𝑊

∗

Λ
(a disjoint union of Cartesian products); confer

Definition 16. The measures 𝜇
Λ
and 𝜇

Λ|x∗
Γ\Λ

are determined
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by their Radon-Nykodym derivative 𝑝
Λ
and 𝑝

Λ|x∗
Γ\Λ

relative to
the measure dΩ∗

Λ
:

𝑝
Λ
(Ω

∗

Λ
) :=

𝜇
Λ
(dΩ∗

Λ
)

dΩ∗
Λ

=

1

Ξ (Λ)
𝛼
Λ
(Ω

∗

Λ
) 𝐵 (Ω

∗

Λ
)

× exp [−hΛ (Ω
∗

Λ
)] , Ω

∗

Λ
∈ 𝑊

∗

Λ
,

𝑝
Λ|x∗
Γ\Λ

(Ω
∗

Λ
) :=

𝜇
Λ|x∗
Γ\Λ

(dΩ∗
Λ
)

dΩ∗
Λ

1

Ξ (Λ | x∗
Γ\Λ

)

= 𝛼
Λ
(Ω

∗

Λ
) 𝐵 (Ω

∗

Λ
)

× exp [−hΛ (Ω
∗

Λ
| x∗

Γ\Λ
)] , Ω

∗

Λ
∈ 𝑊

∗

Λ
.

(99)

Given Λ

0
⊂ Λ, the sigma algebra W

Λ
0 is naturally identified

with a sigma subalgebra of W
Λ
. The restrictions of 𝜇

Λ

to W
Λ
0 and 𝜇

Λ|x∗
Γ\Λ

are denoted by 𝜇Λ
0

Λ
and 𝜇Λ

0

Λ|x∗
Γ\Λ

; these
measures are determined by their Radon-Nikodym deriva-
tives 𝑝

Λ
0

Λ
(Ω∗

Λ
0) := 𝜇Λ

0

Λ
(dΩ∗

Λ
0)/dΩ∗

Λ
0 and 𝑝

Λ
0

Λ|x∗
Γ\Λ

(Ω∗
Λ
0) :=

𝜇Λ
0

Λ|x∗
Γ\Λ

(dΩ∗
Λ
0)/dΩ∗

Λ
0 .

The first key property of the measures 𝜇
Λ
and 𝜇

Λ|x∗
Γ\Λ

is
expressed in the so-called FK-DLR equation. We state it as
Lemma 21 below; its proof repeats a standard argument used
in the classical case for establishing the DLR equation in a
finite volume Λ ⊂ Γ.

Lemma 21. For all 𝑧, 𝛽 > 0 satisfying (22), and Λ

0
⊂ Λ


⊂ Λ,

the probability density 𝑝Λ
0

Λ
admits the form:

𝑝

Λ
0

Λ
(Ω

∗

Λ
0)

= ∫

𝑊
∗

Λ\Λ


𝑞

Λ
0

Λ\Λ
 (Ω

∗

Λ
0 | Ω

∗

Λ\Λ
)𝜇

Λ\Λ


Λ
(dΩ∗

Λ\Λ
) ,

(100)

where

𝑞

Λ
0

Λ\Λ
 (Ω

∗

Λ
0 | Ω

∗

Λ\Λ
) = exp [−hΛ

0

(Ω
∗

Λ
0 | Ω

∗

Λ\Λ
)]

×

Ξ
Λ
(Λ


\ Λ

0
| Ω∗

Λ
0 ∨Ω

∗

Λ\Λ
)

Ξ
Λ
(Λ


| Ω∗

Λ\Λ
)

,

(101)

and the conditional partition functions Ξ
Λ
(Λ


\ Λ

0
| Ω∗ ∨

Ω∗
Λ\Λ
) and ΞΛ(Λ

| Ω∗
Λ\Λ
) are determined as in (96).

Similarly, for 𝑝Λ
0

Λ|x∗
Γ\Λ

one has:

𝑝

Λ
0

Λ|x∗
Γ\Λ

(Ω
∗

Λ
0) = ∫

𝑊
∗

Λ\Λ


𝑞

Λ
0

Λ\Λ
 (Ω

∗

Λ
0 | Ω

∗

Λ\Λ
 ∨ x∗

Γ\Λ
)

× 𝜇
Λ\Λ


Λ|x∗
Γ\Λ

(dΩ∗
Λ\Λ
) ,

(102)

where

𝑞

Λ
0

Λ\Λ
 (Ω

∗

Λ
0 | Ω

∗

Λ\Λ
 ∨ x∗

Γ\Λ
)

= exp [−hΛ
0

(Ω
∗

Λ
0 | Ω

∗

Λ\Λ
 ∨ x∗

Γ\Λ
)]

×

Ξ
Λ
(Λ


\ Λ

0
| Ω∗

Λ
0 ∨Ω

∗

Λ\Λ
 ∨ x∗

Γ\Λ
)

Ξ
Λ
(Λ


| Ω∗

Λ\Λ
 ∨ x∗

Γ\Λ
)

(103)

and the conditional partition functions Ξ
Λ
(Λ


\ Λ

0
| Ω∗

Λ
0 ∨

Ω∗
Λ\Λ
 ∨ x∗

Γ\Λ
) and Ξ

Λ
(Λ


| Ω∗

Λ\Λ
 ∨ x∗

Γ\Λ
) are determined as in

(96).

As in [1], (100) and (102) mean that the conditional den-
sities 𝑝Λ

0

Λ
(Ω∗

Λ
0 | Ω∗

Λ\Λ
) and 𝑝

Λ
0

Λ|x∗
Γ\Λ

(Ω∗
Λ
0 | Ω∗

Λ\Λ
) relative

to 𝜎-algebra WΛ\Λ


coincide, respectively, with 𝑞

Λ
0

Λ\Λ
(Ω

∗0
|

Ω∗
Λ\Λ
), and 𝑞

Λ
0

Λ\Λ
(Ω

∗0
| Ω∗

Λ\Λ
 ∨ x∗

Γ\Λ
), for 𝜇Λ\Λ



Λ
—and

𝜇Λ\Λ


Λ|x∗
Γ\Λ

—a.a.Ω∗
Λ\Λ
 ∈ 𝑊

∗

Λ\Λ
 and a.a.Ω∗

Λ
0 ∈ 𝑊

∗

Λ
0 .

As in [1], we call the expressions 𝑞Λ
0

Λ\Λ
(Ω

∗

Λ
0 | Ω

∗

Λ\Λ
) and

𝑞

Λ
0

Λ\Λ
(Ω

∗

Λ
0 | Ω∗

Λ\Λ
 ∨ x∗

Γ\Λ
), as well as the expressions

𝑞

Λ
0

Λ\Λ
(Ω

∗0

| Ω∗
Λ\Λ
) and 𝑞

Λ
0

Λ\Λ
(Ω

∗0

| Ω∗
Λ\Λ
 ∨ x∗

Γ\Λ
)

appearing below, the (conditional) RDM functionals (in
brief, the RDMFs). The same name will be used for the
quantity 𝑞Λ

0

Λ\Λ
(Ω

∗

Λ
0 | Ω

∗

Λ\Λ
) from (110)-(111) and the quantity

𝑞

Λ
0

Γ\Λ
(Ω

∗0

| Ω∗
Γ\Λ

) from (112)-(113).
The second property is that the RDMKs FΛ

0

Λ
(x∗0, y∗0) and

FΛ
0

Λ|x∗
Γ\Λ

(x∗0, y∗0) are related to the measures 𝜇
Λ
and 𝜇

Λ|x∗
Γ\Λ


.
Again, the proof of this fact is done by inspection.

Lemma 22. The RDMK FΛ
0

Λ
(x∗0, y∗0) is expressed as follows:

∀Λ

0
⊂ Λ


⊂ Λ,

FΛ
0

Λ
(x∗0, y∗0)

= ∫

𝑊
∗

x0,y0
P
∗

x0 ,y0 (dΩ
∗0

) 𝛼
Λ
(Ω

∗0

)

× 𝐵 (Ω
∗0

) 1 (Ω∗0 ∈ F
Λ
0

)

× ∫

𝑊
∗

Λ\Λ


𝜇
Λ\Λ


(dΩ∗
Λ\Λ
) 1 (Ω∗

Λ\Λ
 ∈ F

Λ
0

)

× 𝑞

Λ
0

Λ\Λ
 (Ω

∗0

| Ω
∗

Λ\Λ
) ,

(104)

where

𝑞

Λ
0

Λ\Λ
 (Ω

∗0

| Ω
∗

Λ\Λ
)

= exp [−hΛ
0

(Ω
∗0

| Ω
∗

Λ\Λ
)]

×

̂Ξ
Λ
0

Λ
(Λ


\ Λ

0
| Ω

∗0

∨Ω∗
Λ\Λ
)

Ξ
Λ
(Λ


| Ω∗

Λ\Λ
)

.

(105)
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Similarly,

FΛ
0

Λ|x∗
Γ\Λ

(x∗0, y∗0)

= ∫

𝑊
∗

x0,y0
P
∗

x0 ,y0 (dΩ
∗0

) 𝛼
Λ
(Ω

∗0

)

× 𝐵 (Ω
∗0

) 1 (Ω∗0 ∈ F
Λ
0

)

× ∫

𝑊
∗

Λ\Λ


𝜇
Λ\Λ


Λ|x∗
Γ\Λ

(dΩ∗
Λ\Λ
) 1 (Ω∗

Λ\Λ
 ∈ F

Λ
0

)

× 𝑞

Λ
0

Λ\Λ
 (Ω

∗0

| Ω
∗

Λ\Λ
 ∨ x∗

Γ\Λ
) ,

(106)

where

𝑞

Λ
0

Λ\Λ
 (Ω

∗0

| Ω
∗

Λ\Λ
x∗

Γ\Λ
)

= exp [−hΛ
0

(Ω
∗0

| Ω
∗

Λ\Λ
 ∨ x∗

Γ\Λ
)]

×

̂Ξ
Λ
0

Λ
(Λ


\ Λ

0
| Ω

∗0

∨Ω∗
Λ\Λ
 ∨ x∗

Γ\Λ
)

Ξ
Λ
(Λ


| Ω∗

Λ\Λ
 ∨ x∗

Γ\Λ
)

.

(107)

Here the partition functions ̂ΞΛ
0

Λ
(Λ


\ Λ

0
| Ω

∗0

∨ Ω∗
Λ\Λ
) and

̂Ξ
Λ
0

Λ
(Λ


\ Λ

0
| Ω

∗0

∨Ω∗
Λ\Λ
 ∨ x∗

Γ\Λ
) are determined in (81) and

(83).

Remark 23. Summarizing the above observations, the mea-
sures 𝜇

Λ
and 𝜇

Λ|x∗
Γ\Λ

are concentrated on the subset in 𝑊

∗

Λ

formed by loop configurations Ω∗
Λ
such that ∀𝜏 ∈ [0, 𝛽], the

sectionΩ∗
Λ
(𝜏) has ≤ 𝜅 particles at each vertex 𝑖 ∈ Λ.

3. The Class of Gibbs States G for
the Fock Space Model

3.1. Definition of Class G. In this section we apply the idea
from [1] to define the class of states G = G

𝑧,𝛽
for the model

introduced in Section 2 and state a number of results. These
results will hold under condition (34) which is assumed from
now on. As in [1], the definition of a state 𝜑 ∈ G is based on
the notion of an FK-DLR probability measure 𝜇 on the space
𝑊

∗

Γ
; the class of these measures will be also denoted byG.

Definition 24. Space 𝑊

∗

Γ
is the (infinite) Cartesian product

×
𝑖∈Γ

𝑊

∗

{𝑖}
(cf. (60)); its elements are loop configurations Ω∗

Γ
=

{Ω∗(𝑖), 𝑖 ∈ Γ} over Γ. A component Ω∗(𝑖) is a finite loop
configuration (possibly, empty), with an initial/final particle
configuration x∗(𝑖) ⊂ 𝑀. Formally,Ω∗(𝑖) is a finite collection
of loops Ω

∗

𝑥,𝑖
, of time-length 𝛽𝑘

𝑥,𝑖
where 𝑘

𝑥,𝑖
= 1, 2, . . .,

starting and finishing at a point (𝑥, 𝑖) ∈ 𝑀 × Γ. For reader’s
convenience, we repeat (37) for the case under consideration:

Ω

∗

𝑥,𝑖
: 𝜏 ∈ [0, 𝛽𝑘

𝑥,𝑖
] → (𝑥 (Ω

∗

𝑥,𝑖
, 𝜏) ,

̃
𝑖 (Ω

∗

𝑥,𝑖
, 𝜏)) ∈ 𝑀 × Γ,

Ω

∗

𝑥,𝑖
is cádlág; Ω

∗

𝑥,𝑖
(0) = Ω

∗

𝑥,𝑖
(𝛽𝑘

𝑥,𝑖
−) = (𝑥, 𝑖) ,

Ω

∗

𝑥,𝑖
has finitely many jumps on [0, 𝛽𝑘

𝑥,𝑖
] ;

if a jump occurs at time 𝜏, then

d [̃𝑖 (Ω
∗

𝑥,𝑖
, 𝜏− ) ,

̃
𝑖 (Ω

∗

𝑥,𝑖
, 𝜏)] = 1.

(108)

By W = W
Γ
we denote the 𝜎-algebra in 𝑊

∗

Γ
generated

by cylindrical events. Given a subset Γ ⊂ Γ (finite or infinite),
we denote byWΓ

= WΓ

Γ
the 𝜎-subalgebra ofW generated by

cylindrical events localized in Γ. Given a probability measure
𝜇 = 𝜇

Γ
on (𝑊

∗

Γ
,W

Γ
), we denote by 𝜇Γ = 𝜇Γ

Γ
the restriction of

𝜇 onWΓ.

Definition 25. The class G under consideration is formed by
measures 𝜇 which satisfy the following equation: ∀ finite Λ ⊂

Γ and Λ

0
⊆ Λ, the probability density:

𝑝

Λ
0

(Ω
∗0
) = 𝑝

Λ
0

𝜇
(Ω

∗0
) :=

𝜇Λ
0

Γ
(dΩ∗0)

^ (dΩ∗0)
, Ω

∗0
∈ 𝑊

∗

Λ
0 ,

(109)

is of the form

𝑝

Λ
0

(Ω
∗

Λ
0) = ∫

𝑊
∗

Γ\Λ

𝑞

Λ
0

Γ\Λ
(Ω

∗0
| Ω

∗

Γ\Λ
)𝜇

Γ\Λ
(dΩ∗

Γ\Λ
) , (110)

where

𝑞

Λ
0

Γ\Λ
(Ω

∗0
| Ω

∗

Γ\Λ
)

= exp [−hΛ
0

(Ω
∗0

| Ω
∗

Γ\Λ
)]

×

Ξ
Γ
(Λ \ Λ

0
| Ω∗0 ∨Ω∗

Γ\Λ
)

Ξ
Γ
(Λ | Ω∗

Γ\Λ
)

,

(111)

and the conditional partition functions Ξ
Γ
(Λ \ Λ

0
| Ω∗0 ∨

Ω∗
Γ\Λ

) and Ξ
Γ
(Λ | Ω∗

Γ\Λ
) are determined as in (96).

As in [1], (110) means that the conditional density
𝑝

Λ
0

|Γ\Λ
(Ω∗0 | Ω∗

Γ\Λ
), relative to 𝜎-algebra WΓ\Λ, coincides

with 𝑞

Λ
0

Γ\Λ
(Ω∗0 | Ω∗

Γ\Λ
), for 𝜇Γ\Λ

Γ
—a.a. Ω∗

Γ\Λ
∈ 𝑊

∗𝛽

Γ\Λ
and ^

Λ
0—

a.a.Ω∗0 ∈ 𝑊

∗

Λ
0 .

Remark 26. The measure 𝜇
Γ
inherits the property from

Remark 23 and is concentrated on the subset in 𝑊

∗

Γ
formed

by (infinite) loop configurations Ω∗
Γ
such that, for all 𝜏 ∈

[0, 𝛽], the sectionΩ∗
Λ
(𝜏) has≤ 𝜅 particles at each vertex 𝑖 ∈ Λ.
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Given ameasure 𝜇 ∈ G, we associate with it a normalized
linear functional 𝜑 = 𝜑

𝜇
on the quasilocal 𝐶∗-algebra B.

First, we set

FΛ
0

(x∗0, y∗0)

= ∫

𝑊
∗

x0,y0
P
∗

x0 ,y0 (dΩ
∗0

) 𝐵 (Ω
∗0

) 1 (Ω∗0 ∈ F
Λ
0

)

× ∫

𝑊
∗

Γ\Λ

𝜇
Γ\Λ

(dΩ∗
Γ\Λ

) 1 (Ω∗
Γ\Λ

∈ F
Λ
0

)

× 𝑞

Λ
0

Γ\Λ
(Ω

∗0

| Ω
∗

Γ\Λ
) ,

(112)

where

𝑞

Λ
0

Γ\Λ
(Ω

∗0

| Ω
∗

Γ\Λ
)

= exp [−hΛ
0

(Ω
∗0

| Ω
∗

Γ\Λ
)]

×

̂Ξ
Λ
0

Λ
(Λ \ Λ

0
| Ω

∗0

∨Ω∗
Γ\Λ

)

Ξ
Γ
(Λ | Ω∗

Γ\Λ
)

.

(113)

This defines a kernel FΛ
0

(x∗0, y∗0), x∗0, y∗0 ∈ 𝑀

∗Λ
0

,
where Λ

0
⊂ Γ is a finite set of sites. It is worth reminding

the reader of the presence of the indicator functionals 1(⋅ ∈
FΛ
0

) in (112) and (113) (in the integral for ̂Ξ
Λ
0

Λ
(Λ \ Λ

0
|

Ω
∗0

∨ Ω∗
Γ\Λ

)). These indicators guarantee the compatibility
property: ∀ finite Λ0

⊂ Λ

1,

FΛ
0

(x∗0, y∗0)

= ∫

𝑀
∗Λ
1
\Λ
0

∏

𝑗∈Λ
1
\Λ
0

∏

𝑧∈z∗(𝑗)
V (d𝑧)

× FΛ
1

(x∗0 ∨ z∗
Λ
1
\Λ
0 , y∗0 ∨ z∗

Λ
1
\Λ
0) .

(114)

Next, we identify the operator RΛ
0

(a candidate for the
RDM in volumeΛ0) as an integral operator acting inH

Λ
0 by

(RΛ
0

𝜙) (x∗0) = ∫

𝑀
∗Λ
0

FΛ
0

(x∗0, y∗0)𝜙 (y∗0) dy∗0. (115)

Equation (114) implies that

trH
Λ
1
\Λ
0

RΛ
1

= RΛ
0

. (116)

Definition 27. The functional 𝜑 ∈ G is identified with the
(compatible) family of operators RΛ

0

. If the operators RΛ
0

are positive definite (a property that is not claimed to be
automatically fulfilled), we again call it an FK-DLR state in
the infinite volume (for given values of activity 𝑧 and inverse
temperature 𝛽). To stress the dependence on 𝑧 and 𝛽, we
sometimes employ the notationG(𝑧, 𝛽).

3.2. Theorems on Existence and Properties of FK-DLR States.
We are now in position to state results about class G. We
assume the conditions on the potentials 𝑈(1) and 𝑈

(2) from
the previous section, including the hard-core condition for
𝑈

(1).

Theorem 28. For all 𝑧, 𝛽 ∈ (0, +∞) satisfying (22), any lim-
iting Gibbs state 𝜑 ∈ G0 (see Theorem 3) lies in G. Therefore,
the class of stateG s is nonempty.

Theorem 29. Under condition (22), any FK-DLR state 𝜑 ∈ G

is G-invariant, in the sense that, ∀ finite Λ0
⊂ Γ and ∀g ∈ G,

the RDM RΛ
0

satisfies (35). Consequently, (36) holds true.

4. Proof of Theorems 3, 6, 28, and 29

4.1. Proof of Theorems 3 and 28. The proof is based on the
same approach as that used in [1]. First, given Λ

0
⊂ Γ,

we establish compactness of the sequence of the RDMKs
FΛ
0

Λ
(x∗0, y∗0) and FΛ

0

Λ|x∗
Γ\Λ

(x∗0, y∗0) (see (78)–(83)) as functions

of variables x∗0 = {x∗0(𝑖)}, y∗0 = {y∗0(𝑖)} ∈ 𝑀

∗Λ
0

, with

♯x∗0
Λ

= ♯y∗0
Λ
, ♯x∗0 (𝑖) , ♯y∗0 (𝑖) < 𝜅, 𝑖 ∈ Λ, (117)

when Λ ↗ Γ. Then we use Lemma 1.1 from [1] to derive that
the sequence of the RDMs RΛ

0

Λ
and RΛ

0

Λ|x∗
Γ\Λ

is compact in the
trace-norm operator topology inH

Λ
0 .

To verify compactness of the RDMKs FΛ
0

Λ
(x∗0, y∗0) and

FΛ
0

Λ|x∗
Γ\Λ

(x∗0, y∗0) we, again as in [1], use the Ascoli-Arzela the-
orem, which requires the properties of uniform boundedness
and equicontinuity. These properties follow from the follow-
ing.

Lemma 30. (i) Under condition (22) the RDMKs FΛ
0

Λ
(x∗0,

y∗0) and FΛ
0

Λ|x∗
Γ\Λ

(x∗0, y∗0) admit the bounds

FΛ
0

Λ
(x∗0, y∗0) , FΛ

0

Λ|x∗
Γ\Λ

(x∗0, y∗0)

≤ [(𝜅♯Λ

0
)!] (𝑝

𝑀
)

𝜅♯Λ
0

Φ

♯Λ
0

,

(118)

where

Φ = ∑

𝑘≥1

𝑧

𝑘 exp (𝑘Θ) ,

with Θ = 𝜅𝛽 (𝑈

(1)

+ 𝜅𝑈

(2)

+ 𝜅𝐽 (1) 𝑉) .

(119)

(Note that Φ < ∞ under the assumption (22)) Let 𝑝(𝑘)

𝑀
yields

the supremum of the transition function over time 𝑘𝛽 for Brow-
nian motion on the torus𝑀:

𝑝

(𝑘)

𝑀
= sup

𝑥,𝑦∈𝑀

𝑝

𝑘𝛽
(𝑥, 𝑦) = 𝑝

𝑘𝛽
(0, 0) , (120)

and 𝑝
𝑀

= sup
𝑘≥1

𝑝

(𝑘)

𝑀
. Finally, the upper-bound values 𝑈(1),

𝑈

(2), 𝐽(1), and 𝑉 have been determined in (14), (15), and (18).
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(ii) The gradients of the RDMKs FΛ
0

Λ
(x∗0, y∗0) and

FΛ
0

Λ|x∗
Γ\Λ

(x∗0, y∗0) satisfy ∀𝑖 ∈ Λ and 𝑥 ∈ x∗0(𝑖), 𝑦 ∈ y∗0(𝑖),








∇
𝑥
FΛ
0

Λ
(x∗0, y∗0)








,








∇
𝑥
FΛ
0

Λ|x∗
Γ\Λ

(x0, y0)














∇
𝑦
FΛ
0

Λ
(x∗0, y∗0)








,








∇
𝑦
FΛ
0

Λ|x∗
Γ\Λ

(x0, y0)







≤ (♯Λ

0
)ΘΦ


𝑝
𝑀
[(𝜅♯Λ

0
)!] (𝑝

𝑀
)

𝜅♯Λ
0

Φ

♯Λ
0

,

(121)

where

Φ


= ∑

𝑘≥1

𝑘𝑧

𝑘 exp (𝑘Θ) . (122)

(Again,Φ
< ∞ under the condition (22).) The ingredients 𝑝

𝑀

and 𝑈

(1), 𝑈(2), 𝐽(1), and 𝑉 as in statement (i).

Proof of Lemma 30. First, observe that𝑝
𝑀

< ∞on a compact
manifold. Bound (119) is established in a direct fashion. First,
we majorize the energy

hΛ
0

(Ω
∗0

| Ω
∗

Λ\Λ
0) = hΛ

0

(Ω
∗0

) + h (Ω∗
Λ\Λ
0 || Ω

∗0

) (123)

contributing to the RHS in (80) and (81) and the energy

hΛ
0

(Ω
∗0

| Ω
∗

Λ\Λ
0 ∨ x∗

Γ\Λ
)

= hΛ
0

(Ω
∗0

| x∗
Γ\Λ

) + h (Ω∗
Λ\Λ
0 || Ω

∗0

)

(124)

contributing to the RHS in (82) and (83).This yields the factor

∏

𝜔∈Ω
∗0

𝑧

𝑘(𝜔
∗

) exp [𝑘 (𝜔∗
)Θ] . (125)

Next, we majorize the integral = ∫

𝑊
∗

x∗0,y∗0
P
∗

x∗0 ,y∗0(dΩ
∗0

) in
(80) and (82); this gives the factor

(♯Λ

0
) 𝑝

𝑀
[(𝜅♯Λ

0
)!] (𝑝

𝑀
)

𝜅♯Λ
0

Φ

♯Λ
0

.
(126)

The aftermath are the ratios (78) and (79) with x∗0 = y∗0 = 0;
they do not exceed 1.

Passing to (121), let us discuss the gradients ∇
𝑥
only. (The

gradients in the entries of ∇
𝑦
are included by symmetry.)

The gradient in (121), of course, affects only the numerators
̂Ξ
Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
) and ̂Ξ

Λ
0

Λ
(x∗0, y∗0; Λ \ Λ

0
| x∗

Γ\Λ
) in (78)

and (79). The bounds (121) are done essentially as in [1]. For
definiteness, we discuss the case of the RDMK FΛ

0

Λ
(x∗0, y∗0);

the RDMK FΛ
0

Λ|x∗
Γ\Λ

(x0, y0) is treated similarly. There are two
contributions into the gradient: one comes from varying
the measure P∗

x∗0,y∗0(dΩ
∗0

), and the other from varying the
functional exp[−hΛ

0

(Ω
∗0

) − hΛ\Λ
0

(Ω∗
Λ\Λ
0 | Ω

∗0

)].
The first contribution can again be uniformly bounded in

terms of the constant 𝑝
𝑀
. The detailed argument, as in [1],

includes a deformation of a trajectory and is done similarly

to [1] (the presence of jumps does not change the argument
because 𝑝

𝑀
yields a uniform bound in (43)).

The second contribution yields, again as in [1], an expres-
sion of the form:

∫

𝑊
∗

x∗0,y∗0
P
∗

x∗0 ,y∗0 (dΩ
∗0

)

× ∑

𝑖∈Λ
0

∑

𝑥∈x∗0(𝑖)

̃h
𝑥,𝑖
(Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

,Ω
∗

Λ\Λ
0)

× exp [−hΛ
0

(Ω
∗0

) − hΛ\Λ
0

(Ω
∗

Λ\Λ
0 | Ω

∗0

)] ,

(127)

where the functional ̃h
𝑥,𝑖
(Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

,Ω∗
Λ\Λ
0) is uniformly

bounded. Combining this an upper bound similar to (119)
yields the desired estimate for the gradients in (121).

Hence, we can guarantee that the RDMs RΛ
0

Λ
and RΛ

0

Λ|x∗
Γ\Λ

converge to a limiting RDM RΛ
0

along a subsequence in Λ ↗

Γ. The diagonal process yields convergence for every finite
Λ

0
⊂ Γ. A parallel argument leads to compactness of the

measures 𝜇Λ
0

Λ
for any given Λ

0 as Λ ↗ Γ. We only give here
a sketch of the corresponding argument, stressing differences
with its counterpart in [1].

In the probabilistic terminology, measures 𝜇
Λ
represent

random marked point fields on 𝑀 × Γ with marks from the
space𝑊∗

= 𝑊

∗

0
where𝑊∗

0
= ⋃

𝑘≥1
𝑊

𝑘𝛽

0
and𝑊𝑘𝛽

0
is the space

of loops of time-length 𝑘𝛽 starting and finishing at 0 ∈ 𝑀 and
exhibiting jumps, that is, changes of the index. (The space𝑊∗

𝑥,𝑖

introduced inDefinitions 7 and 13 can be considered as a copy
of 𝑊∗ placed at site 𝑖 ∈ Γ and point 𝑥 ∈ 𝑀.) The measure
𝜇

Λ
0

Λ
describes the restriction of 𝜇

Λ
to volume Λ0 (i.e., to the

sigma algebra W∗

Λ
0) and is given by its Radon-Nikodym

derivative 𝑝

Λ
0

Λ
relative to the reference measure dΩ∗

Λ
0 on

𝑊

∗

Λ
0 (cf. (66), (100)). The reference measure is sigma-finite.

Moreover, under the condition (22), the value 𝑝

Λ
0

Λ
(Ω∗

Λ
0) is

uniformly bounded (in both Λ ↗ Γ and Ω∗
Λ
0 ∈ 𝑊

∗

Λ
0).

This enables us to verify tightness of the family of measures
{𝜇

Λ
0

Λ
, Λ ↗ Γ} and apply the Prokhorov theorem. Next, we

use the compatibility property of the limit-point measures
𝜇

Λ
0

Γ
and apply the Kolmogorov theorem. This establishes the

existence of the limit-point measure 𝜇
Γ
.

By construction, and owing to Lemmas 21 and 22, the
limiting family {RΛ

0

} yields a state belonging to the class G.
This completes the proof of Theorems 3 and 28.

4.2. Proof ofTheorems 6 and 29. Theassertion ofTheorem 6 is
included inTheorem 29.Therefore, wewill focus on the proof
of the latter.The proof based on the analysis of the conditional
RDMFs 𝑞Λ

0

Γ\Λ
(Ω

∗0

| Ω∗
Γ\Λ

) and 𝑞

Λ
0

Γ\Λ
(Ω

∗0

| Ω∗
Γ\Λ

) introduced
in (111) and (112). For definiteness, we assume that vertex 𝑜 ∈

Λ

0, so that Λ0 lies in the ball Λ
𝑛
for 𝑛 large enough. As in
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[1], the problem is reduced to checking that ∀𝑧, 𝛽 ∈ (0,∞)

satisfying (22), g ∈ G and finite Λ0
⊂ Γ,

lim
𝑛→∞

𝑞

Λ
0

Γ\Λ(𝑛)
(gΩ

∗0

| Ω∗
Γ\Λ(𝑛)

)

𝑞

Λ
0

Γ\Λ(𝑛)
(Ω

∗0

| Ω∗
Γ\Λ(𝑛)

)

= 1; (128)

here we need to establish this convergence (128) uniformly in
the argumentΩ∗

Γ\Λ(𝑛)
= {Ω∗(𝑖), 𝑖 ∈ Γ \Λ(𝑛)}with ♯Ω∗(𝑖) ≤ 𝜅

and in Ω∗0 outside a set of the P∗𝛽

x0 ,y0 measure tending to 0

as 𝑛 → ∞. The latter is formed by path configurations Ω∗0

that contain trajectories visiting sites 𝑖 ∈ Γ \ Λ(𝑟(𝑛)) where
𝑟(𝑛) grows with 𝑛; see Lemma 31 below.The action of g upon
a path configuration Ω∗0 = {Ω

∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

, 𝑖 ∈ Λ

0
, 𝑥 ∈ x∗0} is

defined by

gΩ
∗0

= {gΩ
∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

} ,

where (gΩ
∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

) (𝜏) = g (Ω
∗

(𝑥,𝑖),𝛾
0
(𝑥,𝑖)

(𝜏)) .

(129)

We want to establish that ∀𝑎 ∈ (1,∞), for any 𝑛 large
enough, the conditional RDMFs satisfy

𝑎𝑞

Λ
0

Γ\Λ(𝑛)
(gΩ

∗0

| Ω
∗

Γ\Λ(𝑛)
) + 𝑎𝑞

Λ
0

Γ\Λ(𝑛)
(g

−1
Ω

∗0

| Ω
∗

Γ\Λ(𝑛)
)

≥ 2𝑞

Λ
0

Γ\Λ(𝑛)
(Ω

∗0

| Ω
∗

Γ\Λ(𝑛)
) .

(130)

As in [1], we deduce (130) with the help of a special con-
struction of “tuned” actions g

Λ(𝑛)\Λ
0 on loop configurations

𝜔
Λ(𝑛)\Λ

0 (over which there is integration performed in the
numerators

̂Ξ
Λ
0

Γ
(Λ (𝑛) \ Λ

0
| gΩ

∗0

∨Ω
∗

Γ\Λ(𝑛)
) ,

̂Ξ
Λ
0

Γ
(Λ (𝑛) \ Λ

0
| g

−1
Ω

∗0

∨Ω
∗

Γ\Λ(𝑛)
)

(131)

in the expression for 𝑞

Λ
0

Γ\Λ(𝑛)
(gΩ

∗0

| Ω∗
Γ\Λ(𝑛)

) and
𝑞

Λ
0

Γ\Λ(𝑛)
(g−1Ω

∗0

| Ω∗
Γ\Λ(𝑛)

)). The tuning in g
Λ(𝑛)\Λ

0 is chosen
so that it approaches e (or the 𝑑-dimensional zero vector in
the additive form of writing), the neutral element of G, while
we move from Λ

0 towards Γ \ Λ(𝑛).
Formally, (130) follows from the estimate (132) below: ∀

finite Λ

0
⊂ Γ, Ω∗0 ∈ 𝑊

Λ
(𝑛), g ∈ G and 𝑎 ∈ (1,∞), for

any 𝑛 large enough, ∀Ω∗
Λ(𝑛)\Λ

0 = {Ω∗(𝑖), 𝑖 ∈ Λ(𝑛) \ Λ

0
} and

Ω∗
Γ\Λ(𝑛)

= {Ω∗(𝑖), 𝑖 ∈ Γ \ Λ(𝑛)} with ♯Ω∗(𝑖) ≤ 𝜅,

𝑎

2

exp [−hΛ(𝑛) ((gΩ∗0) ∨ (g
Λ(𝑛)\Λ

0Ω
∗

Λ(𝑛)\Λ
0) | Ω

∗

Γ\Λ(𝑛)
)]

+

𝑎

2

exp [ − hΛ(𝑛)

× ((g
−1
Ω

∗0

) ∨ (g
−1

Λ(𝑛)\Λ
0Ω

∗

Λ(𝑛)\Λ
0) | Ω

∗

Γ\Λ(𝑛)
)]

≥ exp [−hΛ(𝑛) (Ω∗0 ∨Ω∗
Λ(𝑛)\Λ

0 | Ω
∗

Γ\Λ(𝑛)
)] .

(132)

In (132), the loop configuration g
Λ(𝑛)\Λ

0Ω∗
Λ(𝑛)\Λ

0 is deter-
mined by specifying its temporal section {g

Λ(𝑛)\Λ
0Ω

∗

𝑥,𝑖
(𝜏 +

𝛽𝑚), 𝑖 ∈ Λ(𝑛) \ Λ

0
, 𝑥 ∈ x∗(𝑖), 0 ≤ 𝑚 < 𝑘

𝑥,𝑖
}. That is, we

need to specify the sections:

(𝑢 (𝜏 + 𝛽𝑚; g
Λ(𝑛)\Λ

0Ω

∗

𝑥,𝑖
) , 𝑙 (𝜏 + 𝛽𝑚; g

Λ(𝑛)\Λ
0Ω

∗

𝑥,𝑖
)) (133)

for loopsΩ∗

𝑥,𝑖
constituting g

Λ(𝑛)\Λ
0Ω∗

Λ(𝑛)\Λ
0 . To this end we set

𝑢 (𝜏 + 𝛽𝑚; g
Λ(𝑛)\Λ

0Ω

∗

𝑥,𝑖
) = g

(𝑛)

𝑗
𝑢 (𝜏 + 𝛽𝑚;Ω

∗

𝑥,𝑖
)

if 𝑙 (𝜏 + 𝛽𝑚; g
Λ(𝑛)\Λ

0Ω

∗

𝑥,𝑖
) = 𝑗.

(134)

In other words, we apply the action g(𝑛)
𝑗

to the temporal sec-
tions of all loops Ω

∗

𝑥,𝑖
located at vertex 𝑗 at a given time,

regardless of position of their initial points (𝑥, 𝑖) inΛ(𝑛) \Λ

0.
Observe that (130) is deduced from (132) by integrating

in dΩ∗
Λ(𝑛)\Λ

0 and normalizing by Ξ
Λ(𝑛)\Λ

0(Ω∗
Γ\Λ(𝑛)

); see (80)
with Λ


= Λ(𝑛). (The Jacobian of the map Ω∗

Λ(𝑛)\Λ
0 →

g
Λ(𝑛)\Λ

0Ω∗
Λ(𝑛)\Λ

0 equals 1.)
Thus, our aim becomes proving (132). The tuned family

g
Λ(𝑛)\Λ

0 is composed of individual actions g(𝑛)
𝑗

∈ G:

g
Λ(𝑛)\Λ

0 = {g
(𝑛)

𝑗
, 𝑗 ∈ Λ (𝑛) \ Λ

0
} . (135)

Elements g(𝑛)
𝑗

are powers (multiples, in the additive parlance)
of element g ∈ G figuring in (128)–(132) (resp., of the corre-
sponding vector 𝜃 ∈ 𝑀; cf. (9)) and defined as follows. Let
𝜃

(𝑛)

𝑗
denote the vector from𝑀 corresponding to g(𝑛)

𝑗
, and we

select positive integer values 𝑟(𝑛) = ⌈log (1 + 𝑛)⌉ and set

𝜃

(𝑛)

𝑗
= 𝜃𝜐 (𝑛, 𝑗) , (136)

where

𝜐 (𝑛, 𝑗) = {

1, d (𝑜, 𝑗) ≤ 𝑟 (𝑛) ,

𝜗 (d (𝑗, 𝑜) − 𝑟 (𝑛) , 𝑛 − 𝑟 (𝑛)) , d (𝑜, 𝑗) > 𝑟 (𝑛) .

(137)

In turn, the function 𝜗 is chosen to satisfy

𝜗 (𝑎, 𝑏) = 1 (𝑎 ≤ 0) +

1 (0 < 𝑎 < 𝑏)

𝑄 (𝑏)

× ∫

𝑏

𝑎

𝑧 (𝑢) d𝑢, 𝑎, 𝑏 ∈ R,

(138)

with

𝑄 (𝑏) = ∫

𝑏

0

𝜁 (𝑢) d𝑢 ∼ log log 𝑏,

where 𝜁 (𝑢) = 1 (𝑢 ≤ 2) + 1 (𝑢 > 2)

1

𝑢 ln 𝑢
, 𝑏 > 0.

(139)

Lemma 31. Given 𝑧, 𝛽 ∈ (0,∞) satisfying (22) and a finite
set Λ0, there exists a constant 𝐶 ∈ (0,∞) such that ∀x0, y0 ∈

𝑀

∗Λ
0

, the set of path configurations Ω∗0 ∈ 𝑊

∗

x∗0 ,y∗0 with
hΛ
0

(Ω
∗0

) < +∞ which include trajectories visiting points in
Γ\Λ(𝑟(𝑛)) has theP∗

x0 ,y0 measure that does not exceed𝐶/(⌈(1+
𝑟(𝑛))⌉)!.
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Proof of Lemma 31. The condition that hΛ
0

(Ω
∗0

) < +∞

implies that the total number of sub trajectories of length
𝛽 in Ω∗0 does not exceed 𝜅 × ♯Λ

0 which is a fixed value
in the context of the lemma. Each such trajectory has a
Poisson number of jumps; this produces the factor 1/(⌈(1 +

𝑟(𝑛))⌉)!.

Back to the proof of Theorem 29: let g−1
Λ(𝑛)\Λ

0 be the col-
lection of the inverse elements:

g
−1

Λ(𝑛)\Λ
0 = {g

(𝑛)

𝑗

−1

, 𝑗 ∈ Λ (𝑛) \ Λ

0
} . (140)

The vectors corresponding to g(𝑛)
𝑗

−1

are −𝜃(𝑛)
𝑗

∈ 𝑀. We will

use this specification for g(𝑛)
𝑗

and g(𝑛)
𝑗

−1

for 𝑗 ∈ Λ(𝑛), or even
for 𝑗 ∈ Γ, as it agrees with the requirement that g(𝑛)

𝑗
≡ gwhen

𝑗 ∈ Λ

0 and g(𝑛)
𝑗

≡ e for 𝑗 ∈ Γ \ Λ(𝑛). Accordingly, we will use
the notation g

Λ(𝑛)
= {g(𝑛)

𝑗
, 𝑗 ∈ Λ(𝑛)}.

Observe that the tuned family g
Λ(𝑛)\Λ

0 does not change
the contribution into the energy functional hΛ(𝑛)|Γ\Λ(𝑛) com-
ing from potentials𝑈(1) and𝑈(2): it affects only contributions
from potential 𝑉.

The Taylor formula for function 𝑉, together with the
above identification of vectors 𝜃(𝑛)

𝑗
, gives








𝑉 (g
(𝑛)

𝑗
𝑥, g

(𝑛)

𝑗

𝑥


) + 𝑉(g

(𝑛)

𝑗

−1

𝑥, g
(𝑛)

𝑗


−1

𝑥


) − 2𝑉 (𝑥, 𝑥


)








≤ 𝐶






𝜃






2





𝜐 (𝑛, 𝑗) − 𝜐 (𝑛, 𝑗


)







2

𝑉, 𝑥, 𝑥


∈ 𝑀.

(141)

Here 𝐶 ∈ (0,∞) is a constant, |𝜃| stands for the norm of the
vector 𝜃 representing the element g, and the value 𝑉 is taken
from (14).

Next, the square |𝜐(𝑛, 𝑗) − 𝜐(𝑛, 𝑗


)|

2 can be specified as







𝜐(𝑛, 𝑗) − 𝜐(𝑛, 𝑗


)







2

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

0,

if d (𝑗, 𝑜) , d (𝑗, 𝑜) ≤ 𝑟 (𝑛) ,

0,

if d (𝑗, 𝑜) , d (𝑗, 𝑜) ≥ 𝑛

[𝜗 (d (𝑗, 𝑜) − 𝑟 (𝑛) , 𝑛 − 𝑟 (𝑛))

−𝜗 (d(𝑗, 𝑜) − 𝑟(𝑛), 𝑛 − 𝑟(𝑛))]

2

,

if 𝑟 (𝑛) < d (𝑗, 𝑜) , d (𝑗, 𝑜) ≤ 𝑛,

𝜗(d(𝑗, 𝑜) − 𝑟(𝑛), 𝑛 − 𝑟(𝑛))

2

,

if 𝑟 (𝑛) < d (𝑗, 𝑜) ≤ 𝑛, d (𝑗, 𝑜) ∈ ]𝑟 (𝑛) , 𝑛[ ,

𝜗(d(𝑗, 𝑜) − 𝑟(𝑛), 𝑛 − 𝑟(𝑛))

2

,

if 𝑟 (𝑛) < d (𝑗, 𝑜) ≤ 𝑛, d (𝑗, 𝑜) ∈ ]𝑟 (𝑛) , 𝑛[ .

(142)

By using convexity of the function exp and (141), ∀𝑎 > 1,

𝑎

2

exp [−hΛ(𝑛) (g
Λ(𝑛)

(Ω
∗0

∨Ω
∗

Λ(𝑛)\Λ
0) | Ω

∗

Γ\Λ(𝑛)
)]

+

𝑎

2

exp [−hΛ(𝑛) (g−1
Λ(𝑛)

(Ω
∗0

∨Ω
∗

Λ(𝑛)\Λ
0) | Ω

∗

Γ\Λ(𝑛)
)]

≥ 𝑎 exp [−1
2

hΛ(𝑛)|Γ\Λ(𝑛)

× (g
Λ(𝑛)

(Ω
∗0

∨Ω
∗

Λ(𝑛)\Λ
0) ,Ω

∗

Γ\Λ(𝑛)
)

−

1

2

hΛ(𝑛) (g−1
Λ(𝑛)

(Ω
∗0

∨Ω
∗

Λ(𝑛)\Λ
0) | Ω

∗

Γ\Λ(𝑛)
)]

≥ 𝑎 exp [−hΛ(𝑛) (Ω∗0 ∨Ω∗
Λ(𝑛)\Λ

0 | Ω
∗

Γ\Λ(𝑛)
)] 𝑒

−𝐶Υ/2
,

(143)

where

Υ = Υ (𝑛, g) = 𝛽𝜅

2

× ∑

(𝑗,𝑗


)∈Λ(𝑛)×Γ

𝐽 (d (𝑗, 𝑗

))







𝜐(𝑛, 𝑗) − 𝜐(𝑛, 𝑗


)







2

.

(144)

The next observation is that

Υ ≤ 3𝛽𝜅

2




𝜃






2

× ∑

(𝑗,𝑗


)∈Λ(𝑛)×Γ

1 (d (𝑗, 𝑜) ≤ d (𝑗

, 0)) 𝐽 (d (𝑗, 𝑗


))

× [𝜗 (d (𝑗, 𝑜) − 𝑟 (𝑛) , 𝑛 − 𝑟 (𝑛))

−𝜗 (d (𝑗

, 𝑜) − 𝑟 (𝑛) , 𝑛 − 𝑟 (𝑛))]

2

,

(145)

where, owing to the triangle inequality, for all 𝑗, 𝑗 : d(𝑗, 𝑜) ≤
d(𝑗, 𝑜)

0 ≤ 𝜗 (d (𝑗, 𝑜) − 𝑟 (𝑛) , 𝑛 − 𝑟 (𝑛))

− 𝜗 (d (𝑗

, 𝑜) − 𝑟 (𝑛) , 𝑛 − 𝑟 (𝑛))

≤ d (𝑗, 𝑗

)

𝜁 (d (𝑗, 𝑜) − 𝑟)

𝑄 (𝑛 − 𝑟 (𝑛))

.

(146)

This yields

Υ ≤ 𝛽𝜅

2
3






𝜃






2

𝑄(𝑛 − 𝑟(𝑛))

2

× ∑

(𝑗,𝑗


)∈Λ(𝑛)×Γ

𝐽 (d (𝑗, 𝑗

)) d(𝑗, 𝑗


)

2

𝜁(d(𝑗, 0) − 𝑟 (𝑛))

2

≤

3






𝜃






2

𝑄(𝑛 − 𝑟(𝑛))

2

[

[

sup
𝑗∈Γ

∑

𝑗

∈Γ

𝐽
𝑗,𝑗
d(𝑗, 𝑗


)

2
]

]

× ∑

𝑗∈Λ
𝑛+𝑟
0

𝜁(d (𝑗, 0) − 𝑟 (𝑛))

2

,

(147)

where function 𝜁 is determined in (139).
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Therefore, it remains to estimate the sum
∑

𝑗∈Λ
𝑛+𝑟
0

𝜁(d(𝑗, 0) − 𝑟(𝑛))

2. To this end, observe that 𝑢𝜁(𝑢) < 1

when 𝑢 ∈ (3,∞). The next remark is that the number of sites
in the sphere Σ

𝑛
grows linearly with 𝑛. Consequently,

∑

𝑗∈Λ
𝑛+𝑟
0

𝜁(d(𝑗, 𝑜) − 𝑟(𝑛))

2

= ∑

1≤𝑘≤𝑛+𝑟
0

𝜁 (𝑘 − 𝑟 (𝑛))

× ∑

𝑗∈Σ
𝑘

𝜁 (𝑘 − 𝑟 (𝑛))

≤ 𝐶
0

∑

1≤𝑘≤𝑛+𝑟
0

𝜁 (𝑘 − 𝑟 (𝑛))

≤ 𝐶
1
𝑄 (𝑛 + 𝑟

0
− 𝑟 (𝑛)) ,

Υ ≤

𝐶

𝑄 (𝑛 − 𝑟 (𝑛))

→ ∞, as 𝑛 → ∞.

(148)

Therefore, given 𝑎 > 1 for 𝑛 large enough, the term
𝑎𝑒

−𝐶Υ/2 in the RHS of (145) becomes >1. Hence,

𝑎

2

exp [−hΛ(𝑛) (g
Λ(𝑛)

(Ω
∗0

∨Ω
∗

Λ(𝑛)\Λ
0) | Ω

∗

Γ\Λ(𝑛)
)]

+

𝑎

2

exp [−hΛ(𝑛) (g−1
Λ(𝑛)

(Ω
∗0

∨Ω
∗

Λ(𝑛)\Λ
0) | Ω

∗

Γ\Λ(𝑛)
)]

≥ exp [−hΛ(𝑛) (Ω∗0 ∨Ω∗
Λ(𝑛)\Λ

0 | Ω
∗

Γ\Λ(𝑛)
)] .

(149)

Equation (149) implies that the quantity

𝑞

Λ
0

|Γ\Λ(𝑛)
(Ω

∗0

| Ω
Γ\Λ(𝑛)

)

= ∫

𝑊
Λ(𝑛)\Λ
0

dΩ∗
Λ(𝑛)\Λ

0

×

exp [−hΛ
0

(Ω
∗0

∨Ω∗
Λ(𝑛)\Λ

0 | Ω
∗

Γ\Λ
0)]

Ξ
Λ(𝑛)

(Ω∗
Γ\Λ(𝑛)

)

,

(150)

obeys

lim
𝑛→∞

[𝑞

Λ
0

|Γ\Λ(𝑛)

𝛽
(gΩ

∗0

| Ω
∗

Γ\Λ(𝑛)
)

+𝑞

Λ
0

|Γ\Λ(𝑛)

𝛽
(g

−1
Ω

∗0

| Ω
∗

Γ\Λ(𝑛)
)]

≥ 2 lim
𝑛→∞

𝑞

Λ
0

|Γ\Λ(𝑛)

𝛽
(Ω

∗0

| Ω
∗

Γ\Λ(𝑛)
)

(151)

uniformly in boundary condition 𝜔
Γ\Λ(𝑛)

. Integrating (151)
d𝜇Γ\Λ(𝑛)

Γ
(𝜔

Γ\Λ(𝑛)
) yields (132).
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