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Two-sided matching is a hot issue in the field of operation research and decision analysis. This paper reviews the typical two-
sided matching models and their limitations in some specific contexts, and then puts forward a new decision model based on
uncertain preference sequences. In this model, we first design a data processingmethod to get preference ordinal value in uncertain
preference sequence, then compute the preference distance of each matching pair based on these certain preference ordinal values,
set the optimal objectives as maximizing matching number and minimizing total sum of preference distances of all the matching
pairs under the lowest threshold constraint of matching effect, and then solve it with branch-and-bound algorithm. Meanwhile,
we take two numeral cases as examples and analyze the different matching solutions with one-norm distance, two-norm distance,
and positive-infinity-norm distance, respectively. We also compare our decision model with two other approaches, and summarize
their characteristics on two-sided matching.

1. Introduction

Two-sided matching is an important research branch in
the field of operation research and decision analysis, which
has been applied into many aspects of engineering and
economics, such as commerce trading [1, 2], work assignment
[3, 4], and resource allocation [5, 6]. Two-sided matching
decision problem derives from Gale and Shapley’s research
on stable marriage matching and college admission problem
in 1962 [7]. Based on the pioneering work of Gale and
Shapley, Roth first gives an accurate conception of two-sided
matching: “two-sided” refers to the fact that agents in such
markets belong to one of two disjoint sets, for example,
firms or workers, that are specified in advance, and matching
refers to the bilateral nature of exchange in these markets, for
example, if I am employed by the University of Pittsburgh,
when the University of Pittsburgh employs me [8]. In many
actual two-sided matching cases, due to the difficulty of
information acquisition and fuzziness of the information
identification, it is much easier for a decision maker to
acquire the preference sequence of each element than other
kinds of information, such as the weight value of connection

between two elements in two disjoint sides, so preference
sequence usually may be the essential and even the only
basis for decision making. However, when the scale of data
grows rapidly, on one hand, it is nearly impossible to collect
the complete preference sequence and, on the other hand,
two or more elements in the preference sequence cannot be
distinguished which ranks higher or lower because they have
the same preference degree for the preference subject.

Now we define some conceptions about the preference
sequence. If preference sequence of an element in one set to
the other disjoint set includes all the elements in the latter set,
we call it a complete preference sequence; otherwise we name
it as an incomplete preference sequence. If any two elements
in the preference sequence of an element in one set to the
other disjoint set do not have the same preference degree, we
call it a strong preference sequence; otherwise we name it as a
weak preference sequence.We define the preference sequence
of an element in one set as a certain preference sequence only
when all the elements in the other set have direct and certain
ordinal value in accordance with this sequence; otherwise it
is an uncertain preference sequence. Obviously, a preference
sequence is certain only when it is complete and strong
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at the same time; otherwise it is an uncertain preference
sequence.The decisionmodel constructed in this paper is just
against this background: the only information given for two-
sided matching is the uncertain preference sequences.

2. Research on Two-Sided Matching

In general, we can categorize two-sided matching problem
into three typical kinds of models in terms of different
decision objectives: stable matching, maximum cardinality
matching, andmaximumweightmatching. In the firstmodel,
the objective is to seek a stable matching solution, and we
count a solution as stable matching only when there does
not exist any alternative pairing (𝐴, 𝐵) in which 𝐴 and
𝐵 are individually better off than they would be with the
element currently matched. Gale and Shapley put forward an
approach, also named Gale-Shapley algorithm, to get a stable
matching solution in the perspective of mathematics and
game theory, which symbolizes the beginning of two-sided
matching research and enlightens the subsequent scholars
to pay more attention to this topic. In the second model,
the objective is to seek a solution in which the number of
matching pairs is maximized. This kind of problem has been
widely applied to graph theory, and one common solving
approach is the Hungarian algorithm, which was put forward
by Hungarian mathematician Edmonds in 1965 on the basis
of the Hall Theorem [9]. The key point of the Hungarian
algorithm is to seek an augmenting path, and this kind of two-
sidedmatching problem is equivalent to maximummatching
in the bipartite graph.Maximumweightmatching sometimes
also is called optimal weight matching, for minimum weight
matching is easy to transfer to maximum weight matching
and has the same solving approach. In this model, each
matching pair consisting of two elements in two disjoint sets
has a corresponding weight value, and the objective is to
maximize or optimize the total weight sumof all thematching
pairs. This matching model can be classified as assignment
problem in the field of operation research, and one common
solving approach is the Hungarian method, which was first
put forward by Kuhn in 1955 on the basis of a mathematical
theorem found by another Hungarian mathematician König
[10]. It is worth mentioning that the names of approaches
put forward by Edmonds and Kuhn are similar because of
“Hungarian,” but they are two totally different methods or
algorithms. Meanwhile, assignment problem model also can
be regarded as a maximum weight matching problem in the
bipartite graph, inwhich one common solving approach is the
Kuhn-Munkres algorithm put forward by Munkres in 1957
[11].

Based on the previous scholar’s work, the current research
on two-sided matching is usually conducted in the follow-
ing two ways. The first one is to seek a more effective
method or analyze some certain algorithms for the typical
models, especially the stable matching model; for example,
Roth puts forward the hospital-resident algorithm regarding
many-to-one matching case [12], Knoblauch researches the
characteristics of the Gale-Shapley algorithm on the condi-
tion of randomly distributed preference ordinal value [13],
McVitie and Wilson put forward a new algorithm based on

“Breakmarriage Operation” regarding the situation when the
number of the two sides is not the same [14], and Teo et al.
study strategic issues in the Gale-Shapley stable marriage
model [15]. The second one is the specific application in
different decision contexts; after all each decision context has
its own characteristics and the decision makers have to take
the distinctive constraints into consideration, so they should
extend or revise the typical two-sided matching model; for
example, van Raalte andWebers research a two-sided market
where the one type of agents needs the service of amiddleman
or matchmaker in order to be matched with the other type
[16] and Sarne and Kraus address the problem of agents in a
distributed costly two-sided search for pairwise partnerships
in amultiagent system [17].The research content in this paper
is just conducted in the second way.

In many actual decision situations, we cannot easily
classify most of the two-sided matching cases into the
mentioned typical matching models. For example, it is really
hard to set an appropriate weight value for each matching
pair directly. Though we have some quantitative methods
or techniques, such as AHP just shown in [18], to help to
determine the weight value, they take little effect when the
scale of data in the decision background is very huge or the
useful information given is very scarce. Many researchers
set the stable matching as their most important optimal
objective; however stable matching under the uncertain pref-
erence sequence has some limitations. When the preference
sequence information is incomplete but strong, the Gale-
Shapley algorithm still takes effect. The solution is still stable,
while the number of matching pairs may be reduced. In
fact, when the preference sequence information is incomplete
but strong, or weak but complete, the solutions are both
able to be solved in polynomial time [19]; nevertheless
when the preference sequence information is incomplete and
weak at the same time, the problem is NP-hard, and the
common solving approach is to release some constraints
or adopt approximation algorithms, just shown in [20, 21].
What is more, sometimes decision objective on two-sided
matching is not to get a stable matching, because stable
matching not only cannot take the benefit of two sides into
consideration at the same time, but also cannot maximize
the total utility in economics or other perspectives. One
of the common decision objectives of two-sided matching
in rational economic perspective is to maximize the total
utility, so a decision maker generally should transfer the
preference sequence information to utility value with some
data processing methods and then use typical maximum
weight matching model to solve it. Li et al. replace the utility
with satisfactory and try to maximize the total sum of it.
Based on a hypothesis that satisfactory degree decreases with
the growth of preference ordinal value and the speed of its
decline is slower and slower, Li et al. construct a transfor-
mation mechanism between preference ordinal value and
satisfactory value [22]. However in their research, not only
is the preference sequence complete, but also the matching
solution highly depends on the transfer function between
preference ordinal value and satisfactory value and it maybe
changes if any parameter in the function or the function itself
changes. Regarding this situation, we research the two-sided
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matching on the condition of uncertain preference sequence
information and put forward a new decision model which
integrates typical maximum cardinality model and optimal
weight matching model. The objectives in the integrated
model aremaximizing thematching number andminimizing
the distance from ideal status.

3. Uncertain Preference Sequences
and Ordinal Value

The two-sided matching model constructed in this paper
computes preference distance of any two elements in two
disjoint sets, respectively, on the basis of their preference
ordinal value, so we first design a data processing method,
to get the preference ordinal value in uncertain preference
sequence. We denote two disjoint sets by 𝑋 and 𝑌, and
the number of elements in them is 𝑚 and 𝑛, respectively,
𝑋 = {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
}, 𝑌 = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
}, so 𝑋

𝑖
and 𝑌

𝑗

are the elements in 𝑋 and 𝑌, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝐼 = [1,𝑚],
𝐽 = [1, 𝑛]. We denote the preference sequence of 𝑋

𝑖
to 𝑌 by

𝑃
𝑖
(or 𝑃
𝑖

∗). Specifically, only when the preference sequence
of 𝑋
𝑖
to 𝑌 is incomplete and 𝑋

𝑖
would not like to accept

the elements not in its preference sequence do we label the
preference sequence of 𝑋

𝑖
to 𝑌 as 𝑃

𝑖

∗; otherwise we label the
preference sequence of𝑋

𝑖
to𝑌 as 𝑃

𝑖
. 𝑃
𝑖
(or 𝑃
𝑖

∗) consists of the
elements in 𝑌, and these elements are sorted in descending
order according to the preference degree of 𝑋

𝑖
. If 𝑋

𝑖
has

the same preference degree as some elements in 𝑃
𝑖
(or 𝑃
𝑖

∗),
we label them with parentheses. For example, 𝑋 and 𝑌 both
have 5 elements, and the preference sequence of 𝑋

3
, one of

the elements in 𝑋, to 𝑌 is labeled as 𝑃
3
(or 𝑃
3

∗). One of its
instances is {𝑌

2
, (𝑌
1
, 𝑌
4
), 𝑌
5
}, which refers to the fact that, for

𝑋
3
, 𝑌
2
is its first preference item in 𝑌, 𝑌

1
and 𝑌

4
are tied for

the second item, and 𝑌
5
is the fourth item. As the preference

sequence of 𝑋
3
is an incomplete preference sequence and 𝑌

3

is not in it, in order to deal with this situation, we classify
incomplete preference sequence into two types: one is that
after considering the elements in the preference sequence
preferentially: it would like to accept the elements which are
not in its preference sequence; the other one is that it would
not like to accept the elements not in its preference sequence
at any time. To the latter situation, we label it with ∗; for
example, if we denote the preference sequence of 𝑋

3
by 𝑃
3

directly, it refers to the fact that 𝑋
3
would like to accept 𝑌

3

as its preference item, after considering 𝑌
2
, 𝑌
1
, 𝑌
4
, and 𝑌

5

preferentially; if we denote it by 𝑃
3

∗, it refers to the fact that
𝑋
3
would not like to accept 𝑌

3
as its preference item at any

time.
We denote the real ordinal value of 𝑌

𝑗
in 𝑃
𝑖
(or 𝑃
𝑖

∗) by
𝑜
𝑖𝑗
, so when 𝑌

𝑗
is one of the elements in 𝑃

𝑖
(or 𝑃
𝑖

∗), 𝑜
𝑖𝑗
is

1, 2, . . . , 𝑛; and when 𝑌
𝑗
is not in 𝑃

𝑖
(or 𝑃
𝑖

∗), 𝑜
𝑖𝑗
is ⌀. Take

𝑃
3

= {𝑌
2
, (𝑌
1
, 𝑌
4
), 𝑌
5
} mentioned above as an example; the

real ordinal value of 𝑌
2
, 𝑌
1
, 𝑌
4
, and 𝑌

5
is 𝑜
32

= 1, 𝑜
31

= 2,
𝑜
34

= 3, and 𝑜
35

= 4, and the real ordinal value of 𝑌
3
is 𝑜
33

=

⌀. We also denote the preference ordinal value 𝑌
𝑗
in 𝑃
𝑖
(or

𝑃
𝑖

∗) by 𝑟
𝑖𝑗
; according to the data processing method designed

in this paper, the transition between 𝑜
𝑖𝑗
and 𝑟
𝑖𝑗
is defined as

follows: (a) when 𝑜
𝑖𝑗
is ⌀, if the preference sequence of 𝑋

𝑖
is

labeled as 𝑃
𝑖
, 𝑟
𝑖𝑗
is (|𝑃
𝑖
| + 1 + 𝑛)/2, where |𝑃

𝑖
| is the number

of elements in 𝑃
𝑖
, and else if the preference sequence of 𝑋

𝑖

is labeled as 𝑃
𝑖

∗, 𝑟
𝑖𝑗
is 𝑛 + 1; (b) when 𝑜

𝑖𝑗
is not ⌀, if there

does not exist any other element tied with 𝑌
𝑗
in 𝑃
𝑖
(or 𝑃
𝑖

∗),
𝑟
𝑖𝑗
equals 𝑜

𝑖𝑗
, and else if there exists any other element tied

with 𝑌
𝑗
in 𝑃
𝑖
(or 𝑃
𝑖

∗), which we denote including 𝑌
𝑗
by set 𝑌󸀠,

𝑟
𝑖𝑗
equals arithmetic average value of the real ordinal value of

all the elements in 𝑌
󸀠, labeled as avg(𝑌󸀠). The definition of 𝑜

𝑖𝑗

and transition between 𝑜
𝑖𝑗
and 𝑟
𝑖𝑗
is presented as follows:

𝑜
𝑖𝑗

=
{

{

{

1, 2, 3, . . . , 𝑛, 𝑌
𝑗
∈ 𝑃
𝑖

(or 𝑃
𝑖

∗
)

⌀, 𝑌
𝑗
∉ 𝑃
𝑖

(or 𝑃
𝑖

∗
) ,

𝑟
𝑖𝑗

=

{{{{{{{{

{{{{{{{{

{

󵄨󵄨󵄨󵄨𝑃𝑖
󵄨󵄨󵄨󵄨 + 1 + 𝑛

2
, 𝑜
𝑖𝑗

= ⌀, ∃𝑃
𝑖

𝑛 + 1, 𝑜
𝑖𝑗

= ⌀, ∃𝑃
𝑖

∗

𝑜
𝑖𝑗
, 𝑜

𝑖𝑗
̸= ⌀, not tied with 𝑌

𝑗
in 𝑃
𝑖

(or 𝑃
𝑖

∗
)

avg (𝑌
󸀠
) , 𝑜

𝑖𝑗
̸= ⌀, tied with 𝑌

𝑗
in 𝑃
𝑖

(or 𝑃
𝑖

∗
) .

(1)

Similarly, we denote the preference sequence of 𝑌
𝑗
to 𝑋 by

𝑄
𝑗
(or 𝑄
𝑗

∗). Specifically, we label the preference sequence of
𝑌
𝑗
to 𝑋 as 𝑄

𝑗

∗ only when the preference sequence of 𝑌
𝑗
to 𝑋

is incomplete, and 𝑌
𝑗
would not like to accept the elements

not in its preference sequence at any time; otherwise we label
it as 𝑄

𝑗
directly. We denote the real ordinal value of 𝑋

𝑖
in 𝑄
𝑗

(or𝑄
𝑗

∗) by 𝑠
𝑖𝑗
and the preference ordinal value of𝑋

𝑖
in𝑄
𝑗
(or

𝑄
𝑗

∗) by 𝑡
𝑖𝑗
, and the transition between 𝑠

𝑖𝑗
and 𝑡
𝑖𝑗
also is similar

to 𝑜
𝑖𝑗
and 𝑟
𝑖𝑗
: (a) when 𝑠

𝑖𝑗
is ⌀, if the preference sequence of

𝑌
𝑗
to𝑋 is labeled as𝑄

𝑗
, 𝑡
𝑖𝑗
is (|𝑄
𝑗
|+1+𝑚)/2, where |𝑄

𝑖
| is the

number of elements in𝑄
𝑗
, and else if the preference sequence

of𝑌
𝑗
to𝑋 is labeled as𝑄

𝑗

∗, 𝑡
𝑖𝑗
is𝑚+1; (b) when 𝑠

𝑖𝑗
is not⌀, if

there does not exist any other element tied with 𝑋
𝑖
in 𝑄
𝑗
(or

𝑄
𝑗

∗), 𝑡
𝑖𝑗
equals 𝑠

𝑖𝑗
, and else if there exists any other element

tied with𝑋
𝑖
in 𝑄
𝑗
(or𝑄
𝑗

∗), which we denote including𝑋
𝑖
by

set 𝑋󸀠, 𝑡
𝑖𝑗
equals the average value of the real ordinal value of

all the elements in𝑋
󸀠, labeled as avg(𝑋󸀠). The definition of 𝑠

𝑖𝑗

and the transition between 𝑠
𝑖𝑗
and 𝑡
𝑖𝑗
is presented as follows:

𝑠
𝑖𝑗

=
{

{

{

1, 2, 3, . . . , 𝑚, 𝑋
𝑖
∈ 𝑄
𝑗

(or 𝑄
𝑗

∗
)

⌀, 𝑋
𝑖
∉ 𝑄
𝑗

(or 𝑄
𝑗

∗
) ,

𝑡
𝑖𝑗

=

{{{{{{{{

{{{{{{{{

{

󵄨󵄨󵄨󵄨󵄨
𝑄
𝑗

󵄨󵄨󵄨󵄨󵄨
+ 1 + 𝑚

2
, 𝑠
𝑖𝑗

= ⌀, ∃𝑄
𝑗

𝑚 + 1, 𝑠
𝑖𝑗

= ⌀, ∃𝑄
𝑗

∗

𝑠
𝑖𝑗
, 𝑠

𝑖𝑗
̸= ⌀, not tied with 𝑋

𝑖
in 𝑄
𝑗

(or 𝑄
𝑗

∗
)

avg (𝑋
󸀠
) , 𝑠

𝑖𝑗
̸= ⌀, tied with 𝑋

𝑖
in 𝑄
𝑗

(or 𝑄
𝑗

∗
) .

(2)

4. Preference Distance

As we cannot measure the relationship between preference
ordinal value and preference utility exactly, no universal
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transition function between them is widely accepted. No
matter whether it is a linear function or a nonlinear function,
both depend on the specific decision background. However,
the preference ordinal value is a good unit to measure the
distance from ideal status, which we name as preference
distance. The larger the ordinal value is, the further the
distance is, and the less value the matching effect has. So our
model first computes the preference distances from the ideal
matching situation on the basis of preference ordinal values,
and then minimizes the total sum of these distances.

Take the elements𝑋
𝑖
and𝑌
𝑗
in𝑋 and𝑌, respectively, as an

example. In 𝑃
𝑖
, the preference sequence of 𝑋

𝑖
, the preference

ordinal value of 𝑌
𝑗
is 𝑟
𝑖𝑗
; and in 𝑄

𝑗
, the preference sequence

of 𝑌
𝑗
, the preference ordinal value of 𝑋

𝑖
is 𝑡
𝑖𝑗
. We use (𝑟

𝑖𝑗
, 𝑡
𝑖𝑗
)

to represent the matching status between 𝑋
𝑖
and 𝑌

𝑗
. In the

ideal matching status, 𝑋
𝑖
and 𝑌

𝑗
are both the first preference

items of each other, and we label this ideal matching status as
(1, 1). Preference distance of𝑋

𝑖
and𝑌
𝑗
is the distance between

the real matching status and ideal matching status of this
matching pair, denoted by 𝑑

𝑖𝑗
. According to the definition

of distance given by Minkowski, the computation of 𝑑
𝑖𝑗
is

defined as follows:

𝑑
𝑖𝑗

= (
󵄨󵄨󵄨󵄨󵄨
𝑟
𝑖𝑗
− 1󵄨󵄨󵄨󵄨󵄨
𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑡
𝑖𝑗
− 1󵄨󵄨󵄨󵄨󵄨
𝑞

)
1/𝑞

. (3)

If we take the different importance of two sides into consid-
eration, the computation mentioned above can be modified
as follows:

𝑑
𝑖𝑗

= (
󵄨󵄨󵄨󵄨󵄨
𝑟
𝑖𝑗
− 1󵄨󵄨󵄨󵄨󵄨
𝑞

+𝛼
𝑞 󵄨󵄨󵄨󵄨󵄨

𝑡
𝑖𝑗
− 1󵄨󵄨󵄨󵄨󵄨
𝑞

)
1/𝑞

. (4)

And 𝛼 is the importance factor to balance two sides. In this
paper, we ignore the difference and assume that two sides
have the same importance, so 𝛼 is always assigned as 1 and
the computation of preference distance is equivalent in (3)
and (4). In the computation equation, it refers to different
kinds of distance when 𝑞 varies. Theoretically, 𝑞 can be any
real number from 1 to +∞, but the most common value is 1,
2, and +∞.

When 𝑞 = 1, 𝑑
𝑖𝑗
is a one-norm distance, also called

Manhattan distance. It is a form of geometry in which the
distance between two points is the sum of the absolute
differences of their Cartesian coordinate value. In this case,
𝑑
𝑖𝑗
between point (𝑟

𝑖𝑗
, 𝑡
𝑖𝑗
) and point (1, 1) is 𝑟

𝑖𝑗
+ 𝑡
𝑖𝑗

− 2,
a linear expression of their coordinate value. A common
criterion to evaluate a matching solution is the total sum of
preference ordinal values of all the matching elements. The
total sum of preference ordinal values and the total sum of
one-norm distances are linearly equivalent in mathematics;
namely, all the feasible solutions of minimizing total sum of
one-norm distances and minimizing total sum of preference
ordinal values are completely the same. And both of them
have a negative correlation with matching effect. One-norm
distance applies to the decision situation where the ranges of
preference ordinal value of two sides do not have significant
difference, and two sides roughly have the same metrics so
that we can use simple additive relationship to represent the
whole matching effect.

When 𝑞 = 2, 𝑑
𝑖𝑗
is a two-norm distance, also called

Euclidean distance. It is a form of geometry in which the dis-
tance between two points is the length of the line segment
connecting them and is computed by Pythagorean formula.
In this case, 𝑑

𝑖𝑗
between point (𝑟

𝑖𝑗
, 𝑡
𝑖𝑗
) and point (1, 1) is

√(𝑟
𝑖𝑗

− 1)2 + (𝑡
𝑖𝑗

− 1)2, just equaling their Euclidean distance.
Since the coordinate value is integer number generally, 𝑑

𝑖𝑗

involves floating computing if 𝑞 = 2. So in the perspective
of solving efficiency, the solving time will increase rapidly
when the scale of data grows. Therefore, two-norm distance
applies to the situation where the dimensions represented in
two sides are independent, and the data scale is in an accepted
scope.

When 𝑞 = +∞, 𝑑
𝑖𝑗
is a positive-infinity-norm distance,

also called Chebyshev distance. It is a form of geometry in
which the distance between two points is the greatest of their
differences along any coordinate dimension. In this case, 𝑑

𝑖𝑗

between point (𝑟
𝑖𝑗
, 𝑡
𝑖𝑗
) and point (1, 1) equals the larger value

in 𝑟
𝑖𝑗
−1 and 𝑡

𝑖𝑗
−1. Inmathematics, take one point as the origin

of coordinates; the points which have 𝑑 Chebyshev distance
with origin of coordinates make up a quadrate. The origin
of coordinates is the central point of this quadrate, and the
length of its each side is 2𝑑; meanwhile each side is parallel
with coordinate axes. Positive-infinity-norm distance applies
to the situation where the balanced performance of two sides
is important, and the difference of two sides should not be too
much.

5. Modeling Construction and Solving

In the typical optimal weight matching model, the main
constraint is that any element in one set can only match
one element in the other set at most, and the objective is
to optimize the total sum of weight values; for example,
we take the preference distance of each matching pair as
its weight value; the optimal objective is to minimize the
total sum of preference distances of all the matching pairs.
Besides, matching number is also a constraint, though the
value is obvious in the typical model: if the number of
elements in two sides is the same, the matching number
just equals the number of elements in each side; otherwise,
the matching number equals the less one. In the model put
forward in this paper, in order to avoid the performance of
some matching pairs being too bad, we set a threshold of
matching performance; namely, preference distances of all
the matching pairs should not be more than the value set in
advance. As this new constraint on matching performance,
the matching number is not a constant value any more, and it
depends on restraint degree of the threshold. Regarding this
context, we set two optimal objectives in the decision model:
one is to maximize the number of all matching pairs and the
other one is to minimize the total sum of all matching pairs’
preference distances.

We use 𝑥
𝑖𝑗
to denote the matching relationship between

𝑋
𝑖
and 𝑌

𝑗
, 𝑥
𝑖𝑗

∈ {0, 1}. If 𝑥
𝑖𝑗
is 1, it refers to the fact that 𝑋

𝑖

and 𝑌
𝑗
match each other and make up a matching pair; else if

𝑥
𝑖𝑗
is 0, it refers to the fact that 𝑋

𝑖
and 𝑌

𝑗
do not match each

other and also do notmake up amatching pair.The constraint
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that any element in one set can onlymatch one element in the
other set at most is presented as follows:

0 ≤ ∑

𝑖∈𝐼

𝑥
𝑖𝑗

≤ 1, ∀𝑗 ∈ 𝐽,

0 ≤ ∑

𝑗∈𝐽

𝑥
𝑖𝑗

≤ 1, ∀𝑖 ∈ 𝐼.

(5)

We denote the maximum value of 𝑑
𝑖𝑗

by 𝑑max and the
minimum value by 𝑑min, and the specific value of 𝑑max and
𝑑min depends on the range of parameter 𝑞 and the preference
sequences. We also denote 𝜆 as the threshold factor of
matching performance, 𝜆 ∈ [0, 1]. When 𝜆 = 1, it refers to no
constraint on threshold; when 𝜆 decreases, it refers to the fact
that the constraint degree on threshold increases; and when
𝜆 = 0, it refers to the fact that the constraint on threshold is
the strictest. The constraint is presented as follows:

𝑥
𝑖𝑗
𝑑
𝑖𝑗

≤ 𝑑min +𝜆 (𝑑max −𝑑min) , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽. (6)

Since one element should not match an element which is not
in the former one’s preference sequence and meanwhile the
former element also would not like to accept that, we should
add a new constraint: if 𝑟

𝑖𝑗
equals 𝑛+1, 𝑥

𝑖𝑗
should be zero; and

if 𝑡
𝑖𝑗
equals 𝑚 + 1, 𝑥

𝑖𝑗
also should be zero. As the maximum

value of 𝑟
𝑖𝑗
and 𝑡
𝑖𝑗
is 𝑛 + 1 and 𝑚 + 1, respectively, and the

second maximum value of 𝑟
𝑖𝑗
and 𝑡
𝑖𝑗
is 𝑛 and 𝑚, respectively,

this constraint can be presented as a linear expression as
follows:

0 ≤ 𝑥
𝑖𝑗

≤ 𝑛+ 1− 𝑟
𝑖𝑗
, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽,

0 ≤ 𝑥
𝑖𝑗

≤ 𝑚+ 1− 𝑡
𝑖𝑗
, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽.

(7)

Maximizing the matching number and minimizing the total
sum of preference distances are presented as follows:

max∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑥
𝑖𝑗
,

min∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑥
𝑖𝑗
𝑑
𝑖𝑗
.

(8)

As it is a multiobjective optimization, we generally have three
different ways to deal with it: the first one is to transfer
a multiobjective problem to one single-objective problem,
such as simple linear additive weight method, maximal-
minimal method, and TOPSIS method: the critical point of
this solving way is to ensure that the optimal solution of the
new single-objective problem is also the noninferior solution
of the original multiobjective problem; the second one is to
transfer it to multiple single-objective problems in a special
order, such as hierarchical method, interactive programming
method: we get the optimal solution of the original problem
through solving these single-objective problems one by one,
which is also the optimal solution of the last single-objective
problem; the third way is some nonuniform methods, such
as multiplication division method and efficiency coefficient
method. In this paper, we hold that maximizing the number
of all matching pairs is the main optimal objective and min-
imizing the total sum of preference distances are the second

optimal objective, so we use the secondwaymentioned above
to deal with it. Namely, we first get the optimal solution of the
main objective, then add it as a new constraint, and finally
get the optimal solution of the second objective. These two
objectives are integrated as a linear equation as follows:

max𝑦 = 𝑀1 ∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑥
𝑖𝑗
−𝑀2 ∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑥
𝑖𝑗
𝑑
𝑖𝑗
, 𝑀1 ≫ 𝑀2, (9)

where𝑀
1
and𝑀

2
are both positive real numbers and “𝑀

1
≫

𝑀
2
” refers to the fact that 𝑀

1
is far greater than 𝑀

2
. We can

also give a specific value to𝑀
1
and𝑀

2
if we can measure the

importance of these two objectives exactly, but it is not the
content discussed in this paper. In conclusion, the decision
model constructed in this paper is presented as follows:

max 𝑦 = 𝑀1 ∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑥
𝑖𝑗
−𝑀2 ∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑥
𝑖𝑗
𝑑
𝑖𝑗

s.t. 0 ≤ ∑

𝑖∈𝐼

𝑥
𝑖𝑗

≤ 1, ∀𝑗 ∈ 𝐽

0 ≤ ∑

𝑗∈𝐽

𝑥
𝑖𝑗

≤ 1, ∀𝑖 ∈ 𝐼

𝑥
𝑖𝑗
𝑑
𝑖𝑗

≤ 𝑑min +𝜆 (𝑑max −𝑑min) ,

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽

0 ≤ 𝑥
𝑖𝑗

≤ 𝑛+ 1− 𝑟
𝑖𝑗
, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽

0 ≤ 𝑥
𝑖𝑗

≤ 𝑚+ 1− 𝑡
𝑖𝑗
, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽

𝑥
𝑖𝑗

= 0 or 1

𝑑
𝑖𝑗

= [(𝑡
𝑖𝑗
− 1)
𝑞

+ (𝑟
𝑖𝑗
− 1)
𝑞

]
1/𝑞

𝜆 ∈ [0, 1] ,

𝑞 ∈ [1, +∞] ,

𝑀1 ∈ 𝑅
+
, 𝑀2 ∈ 𝑅

+
, 𝑀1 ≫ 𝑀2.

(10)

In the typical maximum weight matching model, as the
maximum matching number is constant and obvious, the
model is easy to convert to a standard assignment model.
In standard assignment model, the number of elements in
each side is the same and every element in one set will be
matched with one element in the other set, through adding
some zero elements to balance the number of two sides.
When the scale is not too large, the Hungarian method is
one common approach to solve this kind of model, and it
is on basis of the following two theorems: (a) if all elements
in one column or row of efficiency matrix are plus or minus
a number, the optimal solutions of the origin matrix and
new matrix are the same; (b) the maximum number of
independent zero elements in efficiency matrix equals the
minimum number of lines which cover all the zero elements.
Now so many literatures have researched and promoted
this method and provide programming codes in different
programming languages or coding platforms, such as C,
JAVA, and MATLAB, so we do not discuss it repetitively.
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Regarding nonlinear optimization, the common solving
approach is heuristic algorithms, such as genetic algorithm,
simulated annealing algorithm, and tabu search algorithm.
However, if we first compute 𝑑

𝑖𝑗
in terms of 𝑟

𝑖𝑗
and 𝑡
𝑖𝑗
, then

input the 𝑑
𝑖𝑗
matrix and the value of 𝑑max, 𝑑min, and 𝜆;

all the constraints and optimal objectives involving 𝑥
𝑖𝑗
are

linear expressions, so the model we construct is a standard
0-1 integer linear programming model, which we can use
branch-and-bound method to solve, even when the scale of
data is very large. Branch-and-boundmethod is an algorithm
design paradigm for discrete optimization problems as well
as general real valued problems. It is first proposed by Land
and Doig in 1960 for discrete programming [23] and has
become the most commonly used tool for solving integer
programming and NP-hard problem. It has two procedures:
branching and bounding; branching refers to dividing the
origin problem into some subproblems in which the union
set of all solutions covers all the feasible solutions in the
origin problem and bounding refers to computing an upper
bound and a lower bound for optimal objective value. The
main idea of branch-and-bound algorithm is to increase
lower bound and decrease upper bound iteratively and get
the optimal value finally. It also can be classified into some
specific types on basis of the different branching search
strategies. Modern linear programming software, such as
CPLEX, solves integer programming model with branch-
and-bound algorithm package. In this paper, we also use this
algorithm to solve our model and analyze the solution in the
following section.

6. Numerical Cases and Analysis

We first give a numerical case, named Case 1, and each side of
it has 10 elements. Set𝑋, 𝑌, and their preference sequences 𝑃

and 𝑄 are shown in Table 1. The real ordinal value of 𝑌
𝑗
in 𝑃
𝑖
,

the preference sequence of 𝑋
𝑖
, makes up a matrix, labeled as

𝑂 = [𝑜
𝑖𝑗
]10×10, and the preference ordinal value alsomakes up

amatrix, labeledwith𝑅 = [𝑟
𝑖𝑗
]10×10. Similarly, the real ordinal

value of 𝑋
𝑖
in 𝑄
𝑗
, the preference sequence of 𝑌

𝑗
, makes up a

matrix, labeled as 𝑆 = [𝑠
𝑖𝑗
]10×10, and the preference ordinal

value also makes up a matrix, labeled with 𝑇 = [𝑡
𝑖𝑗
]10×10.

The four matrixes 𝑂, 𝑅, 𝑆, and 𝑇 are presented as follows:

𝑂 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

⌀ ⌀ ⌀ ⌀ 3 1 ⌀ ⌀ 2 ⌀

⌀ 6 7 ⌀ 1 3 2 ⌀ 4 5
4 6 5 ⌀ 2 ⌀ 1 3 ⌀ ⌀

7 ⌀ 6 ⌀ 1 2 3 ⌀ 4 5
⌀ ⌀ 5 ⌀ 2 3 1 4 ⌀ ⌀

9 8 10 7 1 3 2 5 6 4
3 4 ⌀ 2 ⌀ 1 ⌀ ⌀ ⌀ ⌀

4 6 5 8 ⌀ 1 ⌀ 2 3 7
10 8 9 7 1 4 2 3 6 5
8 5 7 4 2 3 1 6 ⌀ ⌀

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑆 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

7 ⌀ 10 ⌀ 6 ⌀ 7 7 9 7
⌀ ⌀ 9 ⌀ ⌀ ⌀ 6 8 7 ⌀

8 5 8 ⌀ ⌀ 3 ⌀ ⌀ 10 ⌀

5 ⌀ 6 ⌀ ⌀ ⌀ ⌀ 5 5 5
4 ⌀ 4 ⌀ 5 ⌀ ⌀ 6 6 6
⌀ 4 5 4 4 2 4 4 8 ⌀

6 3 2 1 1 ⌀ 3 2 1 1
1 1 3 3 3 1 1 ⌀ 2 3
2 ⌀ 1 2 2 ⌀ 2 1 3 2
3 2 7 ⌀ ⌀ ⌀ 5 3 4 4

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑅 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

7 7 7 7 3 1 7 7 2 7
11 6 7 11 1 2.5 2.5 11 4 5
4 6 5 11 2 11 1 3 11 11
7 9 6 9 1 2 3 9 4.5 4.5
8 8 5 8 2 3 1 4 8 8
9 8 10 7 1 3 2 5 6 4
3 4 7.5 2 7.5 1 7.5 7.5 7.5 7.5
4 6 5 8 11 1 11 2 3 7
10 8 9 7 1 4 2 4 6 4
8 5 7 4 2 3 1 6 9.5 9.5

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑇 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

7 11 10 7.5 6 7 7 7 9 7
9.5 11 9 7.5 11 7 6 8 7 9
8 5 8 7.5 11 3 11 9.5 10 9
5 11 6 7.5 11 7 11 5 5 5
4 11 4 7.5 5 7 11 6 6 6
9.5 4 5 4 4 2 4 4 8 9
6 3 2 1 1 7 3 2 1 1
1 1 2 3 3 1 1 9.5 2 3
2.5 11 2 2 2 7 2 1 3.5 2
2.5 2 7 7.5 11 7 5 3 3.5 4

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(11)

After computing matrixes 𝑂, 𝑅, 𝑆, and 𝑇, we can get matrix
𝑑
𝑖𝑗
according to (3) when 𝑞 = 1, 𝑞 = 2, or 𝑞 = +∞.

We first set 𝜆 as 1, namely, without threshold constraint; the
results solved through CPLEX based on branch-and-bound
algorithm are as follows: when 𝑞 = 1, the optimal solution,
labeled as Solution 1, is that 𝑥

16
, 𝑥
27
, 𝑥
31
, 𝑥
4,10, 𝑥53, 𝑥65, 𝑥74,

𝑥
89
, 𝑥
98
, and 𝑥

10,2 are 1 and the rest are 0; when 𝑞 = 2, the
optimal solution, labeled as Solution 2, is that 𝑥

15
, 𝑥
27
, 𝑥
31
,

𝑥
4,10, 𝑥53, 𝑥66, 𝑥74, 𝑥89, 𝑥98, and 𝑥

10,2 are 1 and the rest are 0;
when 𝑞 = +∞, the optimal solution, labeled as Solution 3, is
that 𝑥

11
, 𝑥
29
, 𝑥
32
, 𝑥
4,10

, 𝑥
53
, 𝑥
67
, 𝑥
74
, 𝑥
86
, 𝑥
95
, and 𝑥

10,8 are 1
and the rest are 0. Now we compare these three solutions in
the following six different criteria.
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Table 1: Matching sets 𝑋 and 𝑌 and preference sequences 𝑃 and 𝑄 in Case 1.

𝑋
𝑖

𝑃 𝑌
𝑖

𝑄

𝑋
1

𝑃
1
= {𝑌
6
, 𝑌
9
, 𝑌
5
} 𝑌

1
𝑄
1
= {𝑋
8
, (𝑋
9
, 𝑋
10

), 𝑋
5
, 𝑋
4
, 𝑋
7
, 𝑋
1
, 𝑋
3
}

𝑋
2

𝑃
2

∗
= {𝑌
5
, (𝑌
7
, 𝑌
6
), 𝑌
9
, 𝑌
10

, 𝑌
2
, 𝑌
3
} 𝑌

2
𝑄
2

∗
= {𝑋
8
, 𝑋
10

, 𝑋
7
, 𝑋
6
, 𝑋
3
}

𝑋
3

𝑃
3

∗
= {𝑌
7
, 𝑌
5
, 𝑌
8
, 𝑌
1
, 𝑌
3
, 𝑌
2
} 𝑌

3
𝑄
3
= {(𝑋

9
, 𝑋
7
, 𝑋
8
), 𝑋
5
, 𝑋
6
, 𝑋
4
, 𝑋
10

, 𝑋
3
, 𝑋
2
, 𝑋
1
}

𝑋
4

𝑃
4
= {𝑌
5
, 𝑌
6
, 𝑌
7
, (𝑌
9
, 𝑌
10

), 𝑌
3
, 𝑌
1
} 𝑌

4
𝑄
4
= {𝑋
7
, 𝑋
9
, 𝑋
8
, 𝑋
6
}

𝑋
5

𝑃
5
= {𝑌
7
, 𝑌
5
, 𝑌
6
, 𝑌
8
, 𝑌
3
} 𝑌

5
𝑄
5

∗
= {𝑋
7
, 𝑋
9
, 𝑋
8
, 𝑋
6
, 𝑋
5
, 𝑋
1
}

𝑋
6

𝑃
6
= {𝑌
5
, 𝑌
7
, 𝑌
6
, 𝑌
10

, 𝑌
8
, 𝑌
9
, 𝑌
4
, 𝑌
2
, 𝑌1, 𝑌3} 𝑌

6
𝑄
6
= {𝑋
8
, 𝑋
6
, 𝑋
3
}

𝑋
7

𝑃
7
= {𝑌
6
, 𝑌
4
, 𝑌
1
, 𝑌
2
} 𝑌

7
𝑄
7

∗
= {𝑋
8
, 𝑋
9
, 𝑋
7
, 𝑋
6
, 𝑋
10

, 𝑋
2
, 𝑋
1
}

𝑋
8

𝑃
8

∗
= {𝑌
6
, 𝑌
8
, 𝑌
9
, 𝑌
1
, 𝑌
3
, 𝑌
2
, 𝑌
10

, 𝑌
4
} 𝑌

8
𝑄
8
= {𝑋
9
, 𝑋
7
, 𝑋
10

, 𝑋
6
, 𝑋
4
, 𝑋
5
, 𝑋
1
, 𝑋
2
}

𝑋
9

𝑃
9
= {𝑌
5
, 𝑌
7
, (𝑌
8
, 𝑌
6
, 𝑌
10

), 𝑌
9
, 𝑌
4
, 𝑌
2
, 𝑌
3
, 𝑌
1
} 𝑌

9
𝑄
9
= {𝑋
7
, 𝑋
8
, (𝑋
9
, 𝑋
10

), 𝑋
4
, 𝑋
5
, 𝑋
2
, 𝑋
6
, 𝑋
1
, 𝑋
3
}

𝑋
10

𝑃
10

= {𝑌
7
, 𝑌
5
, 𝑌
6
, 𝑌
4
, 𝑌
2
, 𝑌
8
, 𝑌
3
, 𝑌
1
} 𝑌

10
𝑄
10

= {𝑋
7
, 𝑋
9
, 𝑋
8
, 𝑋
10

, 𝑋
4
, 𝑋
5
, 𝑋
1
}

Criterion 1 (concordance rate on the first item, labeled as
𝑐
1
). We define the number of matching pairs in which one

element matches its first preference item (including tied
ranking and the same below) as 𝑁

1
and the number of all

matching pairs as 𝑁. 𝑐
1
is the ratio between 𝑁

1
and 𝑁.

Obviously, 𝑐
1
has a positive correlation with matching effect:

the higher the rate value, the better the matching effect. Take
Solution 1 as an example; to set 𝑋, only 𝑋

1
and 𝑋

6
match

their first preference items, so concordance rate of 𝑋 is 20%;
to set 𝑌, only 𝑌

4
and 𝑌

8
match their first preference items,

so concordance rate of 𝑌 is also 20%. Hence the average
concordance rate on the first item of Solution 1 is 20%.
Similarly, the average concordance rate on the first item of
Solutions 2 and 3 is 10% and 20%, respectively.

Criterion 2 (concordance rate on the first three items (includ-
ing tied ranking and the same below), labeled as 𝑐

2
).Wedefine

the number of matching pairs in which one element matches
one of its first three preference items as𝑁

3
, and the number of

all matching pairs is still denoted by𝑁. 𝑐
2
is the ratio between

𝑁
3
and 𝑁. 𝑐

2
also has a positive correlation with matching

effect: the higher the rate value, the better thematching effect.
In Solution 1, to set 𝑋, 𝑋

1
, 𝑋
2
, 𝑋
6
, 𝑋
7
, 𝑋
8
, and 𝑋

9
match

elements in their first three preference items, so concordance
rate of 𝑋 is 60%; to set 𝑌, 𝑌

2
, 𝑌
4
, 𝑌
8
, and 𝑌

9
match elements

in their first three preference items, so concordance rate of 𝑌
is 40%. Hence the average concordance rate on the first three
items of Solution 1 is 50%. Similarly the average concordance
rate on the first three items of Solutions 2 and 3 is 60% and
40%, respectively.

Criterion 3 (concordance rate on all the items, labeled as
𝑐
3
). We define the number of matching pairs in which one

element matches the item in its preference sequence as 𝑁
0
,

and the number of allmatching pairs is still denoted by𝑁. 𝑐
3
is

the ratio between 𝑁
0
and 𝑁. 𝑐

3
also has a positive correlation

with matching effect: the higher the rate value, the better the
matching effect. In Solution 1, to set 𝑋, all elements in 𝑋

match elements in their preference sequence, so concordance
rate of 𝑋 is 100%; to set 𝑌, all elements except 𝑌

6
match

elements in their preference sequences, so concordance rate
of 𝑌 is 90%. Hence the average concordance rate on the
first three items of Solution 1 is 95%. Similarly the average

concordance rate on all items of Solutions 2 and 3 is 100%
and 95%, respectively.

Criterions 4 and 5 (average preference ordinal value and
the standard deviation of it, labeled as 𝑐

4
and 𝑐
5
, resp.). In

Solution 1, preference ordinal value of the elements in set 𝑋

to set 𝑌 is 1, 2.5, 4, 4.5, 5, 1, 2, 3, 4, and 5, so the average
preference ordinal value and standard deviation are 3.2 and
1.53; preference ordinal value of the elements in set 𝑌 to set
𝑋 is 7, 6, 8, 5, 4, 4, 1, 2, 1, and 2, so the average preference
ordinal value and standard deviation are 4 and 2.49; take sets
𝑋 and 𝑌 as a whole; the average preference ordinal value
and standard deviation are 3.6 and 2.06. Similarly, we can get
the average preference ordinal value and standard deviation
in Solutions 2 and 3. Obviously, 𝑐

4
has a positive correlation

with matching effect, while 𝑐
5
has a negative correlation with

matching effect.

Criterion 6 (the total sum of disagreements of two sides,
labeled as 𝑐

6
). It equals the total sum of all the absolute

differences between two sides’ preference ordinal values,
which measures the difference of two sides. So 𝑐

6
is defined

as follows:

𝑐6 = ∑

𝑖∈𝐼

∑

𝑗∈𝐽

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑖𝑗
− 𝑟
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖𝑗
, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽. (12)

Criterion 6 also has a negative correlation with matching
effect: the lower the total sum of disagreements, the better
the matching effect. The values on Criterion 6 in Solutions
1, 2, and 3 are 26, 21, and 12.5, respectively.

The value on these six criteria in three solutions is shown
in Table 2, and we can see that no solution performs better
than the rest on all the criteria: Solution 1 performs better
on Criterions 1 and 4, for it has a higher concordance rate
on the first item and the least average preference distance if
taking 𝑋 and 𝑌 as a whole; Solution 3 performs better on
Criterions 1 and 6, for it has the same performance as Solution
1 on Criterion 1 and the least total sum of disagreements
of two sides; Solution 2 performs better on Criterions 2,
3, and 5, for it has a higher concordance rate on the first
three items and concordance rate on all the items and the
least standard deviation no matter whether it is on set 𝑋 or
set 𝑌 or sets 𝑋 and 𝑌 together. What is more, Solution 2
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Table 2: Solutions and the value on six criteria based in Case 1.

Solution 1 (q = 1) Solution 2 (q = 2) Solution 3 (q = +∞)

Solution (𝜆 = 1)
𝑋
1
∼𝑌
6

𝑋
2
∼𝑌
7

𝑋
3
∼𝑌
1

𝑋
4
∼𝑌
10

𝑋
5
∼𝑌
3

𝑋
6
∼𝑌
5

𝑋
7
∼𝑌
4

𝑋
8
∼𝑌
9

𝑋
9
∼𝑌
8

𝑋
10

∼𝑌
2

𝑋
1
∼𝑌
5

𝑋
2
∼𝑌
7

𝑋
3
∼𝑌
1

𝑋
4
∼𝑌
10

𝑋
5
∼𝑌
3

𝑋
6
∼𝑌
6

𝑋
7
∼𝑌
4

𝑋
8
∼𝑌
9

𝑋
9
∼𝑌
8

𝑋
10

∼𝑌
2

𝑋
1
∼𝑌
1

𝑋
2
∼𝑌
9

𝑋
3
∼𝑌
2

𝑋
4
∼𝑌
10

𝑋
5
∼𝑌
3

𝑋
6
∼𝑌
7

𝑋
7
∼𝑌
4

𝑋
8
∼𝑌
6

𝑋
9
∼𝑌
5

𝑋
10

∼𝑌
8

Criterion 1 X: 20%, Y : 20%, Avg.: 20% X: 0%, Y : 20%, Avg.: 10% X: 20%, Y : 20%, Avg.: 20%
Criterion 2 X: 60%, Y : 40%, Avg.: 50% X: 60%, Y : 60%, Avg.: 60% X: 40%, Y : 40%, Avg.: 40%
Criterion 3 X: 100%, Y : 90%, Avg.: 95% X: 100%, Y : 100%, Avg.: 100% X: 90%, Y : 100%, Avg.: 95%
Criterion 4 X: 3.20, Y : 4.00, X and Y : 3.60 X: 3.60, Y : 3.70, X and Y : 3.65 X: 3.85, Y : 3.90, X and Y : 3.88
Criterion 5 X: 1.53, Y : 2.49, X and Y : 2.06 X: 1.05, Y : 2.45, X and Y : 1.84 X: 2.21, Y : 2.18, X and Y : 2.14
Criterion 6 26 21 12.5

Table 3: Matching number rate when 𝜆 and 𝑞 vary in Case 1.

𝑞 𝜆 ∈ [60%, 1] 𝜆 = 50% 𝜆 = 40% 𝜆 = 30% 𝜆 = 20% 𝜆 = 10% 𝜆 = 0
q = 1 100% 100% 90% 60% 40% 30% 10%
q = 2 100% 90% 60% 40% 40% 30% 10%
q = +∞ 100% 70% 40% 40% 30% 10% 10%

is also the only one in which the elements matched are
all in their preference sequences. When 𝑞 varies from 1,
2, and +∞, the value on Criterion 4 increases, while the
value on Criterion 6 decreases; namely, the performance on
Criterions 4 and 6 moves in an opposite direction; however
the value on Criterion 5 goes down at first and then rises
up. Among Criterions 4∼6, each solution performs better on
one criterion and worse on the other two criteria. So which
kind of preference distancewill be used depends on the actual
decision background; for example, the decisionmaker should
first balance the importance of each evaluation criterion and
then choose an appropriate solution in terms of its different
performance on these criteria.

When 𝜆 varies from 0 to 1, as the influence of threshold
constraint, matching number also will vary. Matching num-
ber rate is the ratio between the actual number of matching
pairs in the optimal solution and the maximum possible
number of matching pairs, and the latter one equals the
smaller value between𝑚 and 𝑛 obviously.The rate is shown in
Table 3 when 𝜆 and 𝑞 have a different value. We can see that
the range scope of 𝜆 which has effect on matching number
rate is wider in high normdistance than in lownormdistance;
that is to say, 𝜆 is more sensitive to matching number when
𝑞 grows. This has a guiding significance to set an appropriate
value of 𝜆 in the actual decision situation: the constraint on
threshold is stricter when 𝑞 grows, so if we want to have
the same level of matching number rate in different norm
distance, we should set 𝜆 of a larger value with the increasing
of 𝑞.

We also take the numerical case in [22] as an example
and name it as Case 2, for it compares its own approach and
the approach put forward in [14]. The preference sequences
are complete, but the number of elements in two sides is
not equal, and the information of matching sets and their
preference sequences are shown in Table 4. We label the
solving approaches when 𝑞 = 1, 𝑞 = 2, and 𝑞 = +∞

as Approaches 1, 2, and 3 and label the approaches in [22]

and [14] as Approaches 4 and 5, respectively.We use these five
approaches to solve two-sided matching problem in Table 4
and get three solutions, labeled as Solutions𝐴, 𝐵, and𝐶. Each
solution and its value on the six criteria mentioned above are
just presented in Table 5.

When comparing these three solutions, is there a solu-
tion which performs better than the rest of the solutions
definitely? Unfortunately, we cannot find it when not giving
a determinate evaluation system of decision making. It is
obvious that each approach makes the value in its own
optimal objective better than other approaches; for example,
Approach 1 is to minimize the total sum of one-norm
distances, which is equivalent to minimizing the total sum
of preference ordinal values, so Approach 1 has the minimum
total sum of preference ordinal values, compared with other
approaches. Approaches 2 and 3 are similar to Approach 1;
they perform better in the total sum of two-norm distances
or positive-infinity-norm distances. Approach 4 has a better
satisfactory degree which highly depends on transition func-
tion put forward by itself. Approach 5 guarantees that the
solution is a stable matching. So we list some other criteria
which are different from their original optimal objectives to
evaluate the matching effect. Three solutions have the same
performance onCriterion 3 because the preference sequences
are complete. Solutions𝐴 and 𝐵 perform better than Solution
𝐶 on Criterion 2 but worse than that on Criterion 1. And
Solution 𝐴 has the least average preference ordinal value,
and Solution 𝐵 has the least standard deviation of preference
ordinal value, if taking sets 𝑋 and 𝑌 together. Meanwhile,
Solution 𝐵 also has the least total sum of disagreements of
two sides. It is worth mentioning that when the number of
matching pairs is a constant value, Criterion 4 is linearly
equivalent with the total sum of one-norm distances. After
comparing on these criteria, we can find that Solutions
𝐴, 𝐵, and 𝐶, solved with five different approaches, have
their own advantages. Before giving more specific evaluation
information, we cannot regard any of them to be better than
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Table 4: Matching sets 𝑋 and 𝑌 and preference sequences 𝑃 and 𝑄 in Case 2.

𝑋
𝑖

𝑃 𝑌
𝑖

𝑄

𝑋
1

𝑃
1
= {𝑌
1
, (𝑌
3
, 𝑌
4
) , 𝑌
2
, 𝑌
8
, 𝑌
5
, 𝑌
6
, 𝑌
7
} 𝑌

1
𝑄
1
= {(𝑋

2
, 𝑋
6
), 𝑋
1
, 𝑋
5
, 𝑋
3
, 𝑋
4
}

𝑋
2

𝑃
2
= {𝑌
1
, (𝑌
4
, 𝑌
3
), 𝑌
2
, 𝑌
7
, 𝑌
6
, 𝑌
8
, 𝑌
5
} 𝑌

2
𝑄
2
= {𝑋
1
, 𝑋
3
, 𝑋
2
, 𝑋
5
, 𝑋
6
, 𝑋
4
}

𝑋
3

𝑃
3
= {𝑌
4
, 𝑌
1
, 𝑌
2
, (𝑌
3
, 𝑌
5
), 𝑌
7
, 𝑌
6
, 𝑌
8
} 𝑌

3
𝑄
3
= {𝑋
5
, 𝑋
4
, (𝑋
2
, 𝑋
6
), 𝑋
3
, 𝑋
1
}

𝑋
4

𝑃
4
= {𝑌
3
, 𝑌
1
, 𝑌
4
, 𝑌
5
, 𝑌
6
, 𝑌
2
, 𝑌
7
, 𝑌
8
} 𝑌

4
𝑄
4
= {𝑋
3
, 𝑋
2
, 𝑋
4
, 𝑋
1
, 𝑋
5
, 𝑋
6
}

𝑋
5

𝑃
5
= {𝑌
3
, 𝑌
4
, 𝑌
2
, 𝑌
1
, 𝑌
7
, 𝑌
8
, 𝑌
6
, 𝑌
5
} 𝑌

5
𝑄
5
= {𝑋
2
, (𝑋
3
, 𝑋
6
), 𝑋
5
, 𝑋
1
, 𝑋
4
}

𝑋
6

𝑃
6
= {(𝑌

2
, 𝑌
6
), 𝑌
1
, 𝑌
4
, 𝑌
5
, 𝑌
7
, 𝑌
8
, 𝑌
3
} 𝑌

6
𝑄
6
= {𝑋
1
, 𝑋
2
, 𝑋
5
, 𝑋
3
, 𝑋
4
, 𝑋
6
}

𝑌
7

𝑄
7
= {𝑋
6
, 𝑋
3
, 𝑋
2
, 𝑋
1
, (𝑋
4
, 𝑋
5
)}

𝑌
8

𝑄
8
= {𝑋
3
, (𝑋
5
, 𝑋
6
), 𝑋
1
, 𝑋
4
, 𝑋
2
}

Table 5: Solutions and the value on six criteria in Case 2.

Solution A Solution B Solution C

Solution (𝜆 = 1) 𝑋
1
∼𝑌
2

𝑋
2
∼𝑌
1

𝑋
3
∼𝑌
4

𝑋
4
∼𝑌
3

𝑋
5
∼𝑌
8

𝑋
6
∼𝑌
7

𝑋
1
∼𝑌
2

𝑋
2
∼𝑌
1

𝑋
3
∼𝑌
4

𝑋
4
∼𝑌
6

𝑋
5
∼𝑌
3

𝑋
6
∼𝑌
5

𝑋
1
∼𝑌
2

𝑋
2
∼𝑌
1

𝑋
3
∼𝑌
4

𝑋
4
∼𝑌
5

𝑋
5
∼𝑌
3

𝑋
6
∼𝑌
6

Approach Approach 1 Approaches 2, 3, and 5 Approach 4
Criterion 1 X: 50%, Y : 50%, Avg.: 50% X: 50%, Y : 50%, Avg.: 50% X: 67%, Y : 67%, Avg.: 67%
Criterion 2 X: 67%, Y : 100%, Avg.: 83% X: 67%, Y : 83%, Avg.: 75% X: 67%, Y : 67%, Avg.: 67%
Criterion 3 X: 100%, Y : 100%, Avg.: 100% X: 100%, Y : 100%, Avg.: 100% X: 100%, Y : 100%, Avg.: 100%
Criterion 4 X: 3.17, Y : 1.50, X and Y : 2.33 X: 2.83, Y : 2.00, X and Y : 2.42 X: 2.08, Y : 2.75, X and Y : 2.42
Criterion 5 X: 2.48, Y : 0.63, X and Y : 1.93 X: 2.04, Y : 1.58, X and Y : 1.79 X: 1.50, Y : 2.52, X and Y : 2.01
Criterion 6 13 6 10

the rest. We should still choose an appropriate approach
according to the specific decision background, though some
different approaches have the same one solution, just like
Solution 𝐵.

7. Conclusion

Two-sided matching based on preference sequences has
different solutions under different optimal objectives. We list
six criteria to evaluate the matching solutions: concordance
rate on the first item, concordance rate on the first three
items, concordance rate on all the items, average preference
ordinal value, standard deviation of preference ordinal value,
and total sum of disagreements of two sides. All of these
six criteria are determined by preference ordinal value of
the elements in matching sets. As no approach performs
better than other approaches on all or most of the criteria,
we think that no approach mentioned above applies for all
two-sided matching decision situations. In fact, if we regard
these six criteria as the decision objectives, Solutions 1∼3
or Solutions 𝐴 ∼ 𝐶 are all noninferior solutions. We have
three ways to deal with multiobjective optimal problem, just
mentioned in Section 4. As we have no further information
about weight value of each objective, Approaches 1∼5 are all
conducted in the second way. The model we construct holds
that maximizing the matching number and minimizing the
total sum of preference distances are the most important and
appropriate objectives for two-sided matching problem on
the condition that uncertain preference sequences are the
only decision information source.

Compared with other approaches, the model we con-
struct extends preference sequence from a complete and
strong to an incomplete andweak one and adds the constraint
on threshold to guarantee matching effect of each matching
pair is not too bad. Through adjusting 𝜆 from 0 to 1, we
can strengthen or slack the threshold constraint. We also
adopt different norms to represent different kinds of distance
and promote the applicability in the decision background.
Through adjusting 𝑞 from 1, 2, and 𝑞 = +∞, we can use
this universal decision model in different decision ground,
which is our advantage to other approaches. Besides, the
model we construct is succinct and explicit, which is classified
into 0-1 integer programming problem in the field of linear
optimization, and can be solved with branch-and-bound
algorithm. We think it is a better method to solve two-
sided problemswith uncertain preference sequences in actual
decision situation.
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