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In recent years, the researchers have witnessed the important role of air gesture recognition in human-computer interactive (HCI),
smart home, and virtual reality (VR). The traditional air gesture recognition method mainly depends on external equipment (such
as special sensors and cameras) whose costs are high and also with a limited application scene. In this paper, we attempt to utilize
channel state information (CSI) derived from a WLAN physical layer, a Wi-Fibased air gesture recognition system, namely,
WiNum, which solves the problems of users’ privacy and energy consumption compared with the approaches using wearable
sensors and depth cameras. In the process of recognizing the WiNum method, the collected raw data of CSI should be screened,
among which can reflect the gesture motion. Meanwhile, the screened data should be preprocessed by noise reduction and
linear transformation. After preprocessing, the joint of amplitude information and phase information is extracted, to match and
recognize different air gestures by using the S-DTW algorithm which combines dynamic time warping algorithm (DTW) and
support vector machine (SVM) properties. Comprehensive experiments demonstrate that under two different indoor scenes,
WiNum can achieve higher recognition accuracy for air number gestures; the average recognition accuracy of each motion

reached more than 93%, in order to achieve effective recognition of air gestures.

1. Introduction

With the continuous progress of science and technology,
human-computer interaction technology has been develop-
ing rapidly. The flourish on the Internet of Things (IoT)
and Artificial Intelligence (AI) has boosted human-machine
interaction technology based on human gestures to become
a hot topic in academia and industry. Through the close inte-
gration of the emerging technology, human-computer inter-
action technology has gradually changed from the earliest
mouse and keyboard to now touch screen, voice, and gesture
control to be intelligent, friendly, and highly adaptable [1].
Gesture recognition has strong flexibility and environmental
adaptability and can be widely used in a variety of scenarios
[2]. Traditionally, the primary function of the Wi-Fi signal
is to support high-throughput data communication between
the terminal equipment and the Internet. However, through
the continuous exploration of the Wi-Fi signal, it is found
that a new technology based on the Wi-Fi signal is attracting

more and more attention in academic circles. The CSI [3], in
Wi-Fi signal, can be used as a wireless channel measurement
index which describes how the signal propagates from the
transmitter to the receiver [4], reflecting the signal scattering,
environmental change, power attenuation, and other
influencing factors on each transmission path [5]. As the
WLAN physical layer (PHY) information, CSI can be used
in the fields of indoor localization [6], trajectory tracking
[7, 8], gesture recognition [9-11], keystroke detection [12],
driver activity [13], and lip-reading service [14], which is easy
to implement and very sensitive to the changes of indoor
environment, as well as in low cost.

Behavior awareness technology based on the Wi-Fi signal
has become an essential research direction in the field of HCI
[15]. The existing gesture recognition technologies are
mainly divided into device gesture recognition and device-
free gesture recognition [16]. The advantage of having device
gesture recognition technology is that it can directly obtain
the movement information of gesture motion track and hand
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joint, and its recognition accuracy is high [17], while the user
must carry the measuring equipment [18, 19], which will
influence the experience of the user. It neither can make the
user carry on the human-computer interaction more natural
nor can it embody the human-computer interaction design.
In order to recognize gestures accurately and make users
get a better experience, a large number of researchers began
to pay attention to the device-free gesture recognition tech-
nology without any measuring equipment. The advantages
of Wi-Fi wireless sensing technology in passive gesture rec-
ognition are obvious, especially for its low cost, easy to
obtain, suitable for the user habits, etc., which has become
the focus of research at home and abroad [20, 21].

The process of air gesture recognition can be classified into
three steps: the extraction of motion signal, the preprocessing
of effective signal, and motion classification and matching,
among which the stage of classification and matching is partic-
ularly important [22, 23]. The traditional gesture classification
algorithm uses a single matching algorithm to seek the best
matching for the processed gesture data, which not only leads
to high calculation complexity but also has limited recognition
precision. However, in this paper, we propose a new algorithm
to recognize gesture data, which includes the classification
stage and recognition stage. The improved algorithm
enhances the recognition of precision and shortens the match-
ing time. The S-DTW algorithm [24, 25], in accordance with
the properties of SVM and DTW algorithm, the requirements
of gesture recognition in the classification stage, after extract-
ing the effective gesture data, combined the DTW algorithm
into the kernel function of SVM so as to realize the classifica-
tion and matching of gesture data.

In this paper, the main contribution of our work is that
we build a gesture recognition system called WiNum. Details
are as follows:

(1) The phase information about CSI, as the auxiliary
information, combined with the amplitude informa-
tion of CSI, which improves the utilization rate of CSI
information and also finds a slight change of air gesture

(2) It can be found that the gesture motion has influ-
enced CSI signal, and the differences of subcarrier
sensitivity of the CSI signal is also proved

(3) With the help of an effective noise reduction filtering
algorithm, the amplitude and phase of CSI signal can
be processed, and the detailed fine-granularity CSI
signal can be used to represent the different meanings
expressed by each gesture motion

(4) Combined with the properties of SVM with DTW
algorithms, the S-DTW gesture matching algorithm
is obtained, which can recognize air gesture motion
quickly and effectively

The rest of the paper is as follows: In Section 2, we intro-
duce the properties of CSI signal and compare the advantages
and disadvantages of the existing gesture recognition
methods. Then, we propose a gesture recognition method
and discuss the key parts of the system specified in Section
3. In addition, we describe the experiment and performance

Wireless Communications and Mobile Computing

analysis that results in Section 4 and finally summarize the
proposed method results in Section 5.

2. Related Work

In this paper, the used Wi-Fi signal data are obtained from
the Intel 5300 network card. Orthogonal Frequency Division
Multiplexing (OFDM) technology is used for modulating the
signal [26]. The transmission channel response can be
extracted in the format of CSI, and CSI is WLAN physical
layer information [27], which is used to estimate the channel
characteristics in the communication link and is helpful to
analyze the signal propagation in the process of gesture rec-
ognition [28]. Using T, R,, and N to represent the number
of antennas transmitted and received and the number of
OFDM subcarriers transmitted in a basic model of channel
transmission, the OFDM system can be modeled in the fre-
quency domain as follows:

Y;=H,X;+N, je[LN], (1)

where Y; and X denote the signal vectors of the receiver and
the transmitter, respectively, H; denotes the channel infor-
mation matrix, and N; denotes the white Gaussian noise.
According to the formula (1), Ng = 30, which His expressed:

H =

) (2)

S

where H is the channel frequency response (CFR) of a wire-
less channel; it can express the variations of the Wi-Fi chan-
nel. Each packet at the receiving end using the Intel 5300
wireless card contains a set of measurements for the CSI:

H(k) = |H (k)" (3)

where |H(k)| and j2H (k) denote the amplitude and phase,
respectively [29, 30]. In the indoor environment, CSI can still
maintain the overall structural stability by using its own char-
acteristics, which is more conducive to the subsequent analy-
sis and extraction of air gesture features.

The gesture is a visual body language with a strong visual
effect, which is easy to understand and contains abundant
information. The gesture motions are aimed at conveying
relevant information, which is the “second language” in peo-
ple’s daily life [31, 32]. Nowadays, perfecting Wi-Fi infra-
structure makes Wi-Fi signals almost everywhere. Through
the study on developing conditions of the motion-sensing
system at home and abroad, it is found that the majority of
the existing Wi-Fi signal sensing systems only use the change
of CSI amplitude to distinguish different behavioral activities
[33, 34]. Using amplitude as a system to measure information
not only wastes the phase information that CSI can provide
but also the use of a single measurement signal may limit
the improvement of system recognition accuracy. Consider-
ing phase as an auxiliary signal not makes full use of CSI
information and improves the utilization rate of information,
but the phase information is more sensitive to motion
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FIGURE 1: Air gesture motion.

changes in different directions; it can capture small motion
changes, which is very vital to deal with the applications
related to the recognition of dynamic motion. In 2013, [35]
introduced WiSee, a Doppler frequency shift method by
using wireless signals to realize the perception and recogni-
tion of gestures. In 2015, the author proposed WiGest in
[36]. The method analyzes the change of Received Signal
Strength Indication (RSSI) received by the Wi-Fi signal to
sense the user’s air gesture. For a single access point and three
access points, the recognition accuracy of WiGest is 0.87 and
0.96. Compared with RSSI, fine-granularity CSI is more suit-
able for gesture recognition. By analyzing the CSI fluctua-
tions caused by the gesture, in [37], the author proposed
WiGeR, a method with an average recognition accuracy of
0.92 among different gestures in five scenarios. In [38],
WiFinger is proposed to extract gesture patterns by principal
component analysis, and the model is used as a feature to rec-
ognize gestures; its accuracy is 0.92.

Although there are many kinds of research on human
behavior perception through CSI in the field of wireless sen-
sor networks, many problems are still needed to be solved
among detection methods at present. In view of the above
cases, this paper uses fine-granularity CSI to recognize the
air gesture, which combined the amplitude information with
phase information about CSI as a new sensing method of
sending information, which can recognize air gestures effi-
ciently and quickly without wearing any sensors, and work
in line-of-sight (LOS) and non-line-of-sight (NLOS) envi-
ronments. In this paper, a motion gesture is used to recognize
any number in aerial handwritten 0-9, each gesture repre-
sents a different meaning, and the specific gesture motion is
shown in Figure 1.

3. WiNum Design

3.1. System Overview. By using the WiNum method, the rec-
ognition process first collects the raw data packets of CSI,
then selects the collected data; the preprocessing is applied

to the data which can reflect the gesture motion, extracting
the feature information. To establish the joint information
fingerprint database of amplitude and phase, classifying dif-
ferent gesture motions and establishing the air gesture model
finally come to the recognition of the dynamic gesture.

The preprocessing is divided into the amplitude process-
ing and phase processing of the CSI, the amplitude is
denoised by a wavelet, and the phase is unwrapped and cor-
rected, as well as linearly changed. To extract the effective
gesture image by gesture signal preprocessing, then the effec-
tive data is obtained and the data features are extracted to
find the corresponding data of different gestures, finally, with
the help of the SVM algorithm of machine learning in the off-
line so as to train the gesture clustering model of the same
number stage, while in the online stage, by using the DTW
algorithm and taking out the trained model to recognize
the gesture. In this paper, we have proposed the recognition
flow chart of an aerial handwritten number, as is shown in
Figure 2; it is mainly divided into the following four main
stages to study: (1) the selection of dynamic gesture data,
(2) the preprocessing of the selected data, (3) feature match-
ing of dynamic gesture data, and (4) acquisition of the recog-
nition results of gesture motions.

Because the CSI signal is vulnerable to the multipath
effect, signal attenuation, and other interfering factors, the
directly obtained gesture data contains various interference
data, which cannot be directly used for extracting signal fea-
tures, so firstly, it is necessary to preprocess the data; its aim is
to remove the noise data from gesture data. Amplitude and
phase information of CSI are preprocessed to obtain the data
that is needed for the extraction of gesture data feature in the
later stage.

3.2. Amplitude Sanitization. The process of preprocessing for
the amplitude information, which firstly includes the selec-
tion of the subcarriers and the raw data of the selected sub-
carrier CSI amplitude, should be processed; the raw data
are subjected to noise reduction and smoothing by using
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FIGURE 2: Structure diagram of system WiNum.

the wavelet threshold value in the course of processing, so as
to show the local features of the change of each gesture corre-
sponding to the subcarrier more clearly. Through theoretical
analysis, it is found that the larger the variance of subcarrier
amplitude in the same group data stream, the more sensitive
it is to the change of environment. The simple CSI amplitude
information cannot well reflect the characteristics of each
gesture motion and can only represent the changes of the
whole sequence caused by different gesture motion, and the
changes and CSI values of each subcarrier are also different.
Therefore, the variance is selected as the eigenvalue. For the
CSI sequence corresponding to any motion, the distribution
of the variance in each selected time slot can reflect the degree
of dispersion of the CSI amplitude, and at the same time, it
can also reflect the change of the corresponding gesture
motion; hence, it is reasonable and effective to extract the fea-
tures of each motion by calculating the variance of the CSI
value [39]. As is shown in Figure 3, data stream 2 is more sen-
sitive to the change of the environment than that of data
stream 1; meanwhile, the variance of the former is larger than
the latter. Therefore, the variance is selected as eigenvalue,
and to the CSI sequences that are corresponding to any
motion, the distribution of the variance can reflect the disper-
sion degree of the CSI amplitude in each of the selected time
slots and the change of the corresponding gesture motion,
serving as the features of each motion.

Therefore, it is reasonable and effective to extract the fea-
tures of each motion by calculating the variance of the CSI
value. For each gesture, CSI amplitude streams are obtained
from the 30 subcarriers of the same data stream. Assuming
that the number of samples is m, the matrix used for storing
the CSI amplitude stream includes rows and 30 columns, cal-
culating the variance of each column of the matrix, filtering
out the subcarriers of the small variance, and selecting the
subcarriers of the maximum variance as the selected raw
data. Selecting the No. 27 subcarrier with the biggest vari-
ance, this is shown in Figure 4.

After selecting the subcarrier signal which can depict the
change of gesture motion, due to the features of the CSI sig-
nal, the noise of the subcarrier signal will cause serious inter-

ference to the quality of the signal, which will directly affect
the process of motion detection, feature extraction, and so
on, leading to the deviation or even error for the later gesture
recognition results, so it is requisite to further reduce the
noise and smooth the selected signal. The amplitude of the
selected subcarrier data should be denoised by the wavelet
threshold, s(i) = f(i) + e(i) (i=1,2,---,n— 1), in which the
raw signal is represented by f(i), the noise signal is repre-
sented by e(i), and the raw signal with noises is represented
by s(i) and transformed by a discrete wavelet transform.

JS(i)‘I’j’k(t)dt = Jf(i)‘f’j’k(t)dﬁ Jo‘e(i)‘f’j)k(t)dt, (4)

where ¥ () is the discrete wavelet primary function; the
raw signal can be represented as

where §; is the signal with noise, (i) is the wavelet coeffi-
cients of each layer after wavelet transforms, F; is the wave-
let transform coefficients of the raw signal f(i), E; is the
noise signal, and e(i) is the wavelet transform coefficients of
the noise signal E;;. According to the statistical characteris-

tics of the useful signal and noise wavelet coeflicient, the soft
threshold function is used as follows:

g {Sgn (Si) (IS5 =4)> [Sj] =2, ©)
=
0, S| <A

where A is the general threshold A = 0+/2InN, N is the signal
length, and o is the noise standard deviation after the wavelet
threshold function is processed, compared with the raw data
effect; the effect of the mutation data is eliminated, a rela-
tively smooth data curve is fitted, and after the CSI data pro-
cessing, the complete CSI gesture graph shown in Figure 5 is
obtained, which lays a foundation for the later-period
WiNum feature extraction of amplitude information.
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FIGURE 4: Raw CSI amplitude.

3.3. Phase Sanitization. Combined features of CSI phase
information with the analysis of the properties of the
802.11n protocol [40], it can be seen that Figure 6 shows
the collected raw CSI phase information; the existence of
clock synchronization and random noise in the raw CSI
phase information is not available for any kind of detection.
By using the symmetry of the center frequency of the
802.11n communication protocol, it is clear that the phase
information can be used to realize the perception of human
motion after the linear change of the raw phase information
[41, 42].

The phase of the i subcarrier of the measured CSI signal is
¢;, then

8,.=¢1.—2n%6+5+z. (7)

Among them, ¢, is the real phase, § is the time offset
between the receiver and the transmitter, which is the main
factor causing the phase error, f3 is the unknown phase offset,

Z is the noise introduced in the measurement process, k; is
the subcarrier index of the i subcarrier, respectively, the sub-
carrier index of the 30 subcarriers is -28, -26, -24, see, -4, -2,
-1, 1, 3,5, eee, 25,27, 28, and N is the number of FFT points.

In order to eliminate the influence of & and f3, two vari-
ables A and V are defined.

1 1¢ 2
;Z J_;z J'_N_;

Assuming that the frequency of the subcarrier is
completely symmetric, that is, if there is ZJ 1k;j=0, then V
can be expressed as

138 o)
j=1
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The linear variable Ak; —V is subtracted from the mea-

sured phase /qS\i, and the linear combination of the real phase
to remove the random phase offset is obtained.

U b~ 1
D; = ¢; - Ak=V=¢,- in_lzbl ki - ZZ% (10)
n 1 j

J=1

It can be found that the phase signal no longer con-
tains the error term of random noise. Although the phase
obtained after linear calibration is not the real CSI phase,
the linear transformation value of its real phase, it is clear
that the variance of the phase before and after calibration
satisfies a certain mathematical relationship. Assuming
that ¢, about frequency is independent and the same dis-
tribution, it should be

K2 1
sz = cia(/)iz, =1+ i + =,

P E—— 11
l (k, —ky)? .

There is only one constant multiplier of frequency ¢;
between the calibrated phase variance and the real phase
variance. That is to say, the changing trend of the cali-
brated phase signal can be used to reflect the fluctuation
of the real phase, which theoretically solves the problem
that the phase cannot be used because of the random dis-
tribution of the real phase. In order to prove the effect of
actual phase processing, the CSI phase of the first time of

the hand potential signal is processed by using the linear
calibration algorithm, and the results of the CSI phase cor-
responding to different subcarriers after processing is
shown in Figure 7, the phase distribution of the calibrated
CSI has a strong regularity, and the distribution of the
phase processing value, which is removed from random
noise and other factors, is no longer too random, and it
is possible to distinguish different motions. Similar conclu-
sions can be obtained from repeated testing of data
packets at other times.

3.4. Feature Extraction. In the process of studying air gesture
recognition, feature extraction of the gesture data is a partic-
ularly important link. The amplitude and phase of the signal
are calculated after the gesture data are collected, but a uni-
fied feature measure is still needed. The information of the
raw data cannot be directly recognized by the classifier, so
it is necessary to extract and select the features that can best
represent the gesture from the raw gesture data. While ges-
ture motion exists, the difference between amplitude and
phase is significantly larger than that in the static case.
Figure 8 further illustrates the difference of influence on a
subcarrier in the presence of gesture motion and stillness.
The difference between amplitude and phase will be two good
indicators of gesture motion. Variance cannot be directly
used as a feature of detection, because it is related to signal
power, so it cannot be extended to different scenarios in dif-
ferent link states. The preprocessed amplitude and phase are
used as the input of gesture recognition, and the features are
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extracted from the covariance matrix. The |H| and ¢ are rep-
resented as amplitude and phase sequences, and then, their
covariance matrices are corresponding to each other.

2.[H|= [COV(Hp, Hy)], o

$4=[cov(3.)] ., "

In the above two matrices, the lower covariance repre-
sents the stillness or the case that no motion and the higher
covariance can indicate the occurrence of gesture motion,
and the covariance of different gesture motion is different.
In order to extract the features for further detection, the
eigenvalues of the two matrices are calculated, and the max-
imum eigenvalues of each matrix are selected. Finally, a
binary group F=[a, 8] of joint information features are
formed.

« = max (eigen (Zlﬁ | ),

(13)
B = max (eigen (Zg_b) .

3.5. Motion Detection. As for human gesture recognition,
great attentions should be attached to the classification of
gesture data features. The algorithm of SVM was originally
designed to solve the binary classification problem, but when
it comes to a multiclassification problem, it can be con-
structed into multiclass classifiers by direct and indirect
methods. In this paper, air gestures are recognized as mul-
ticlassification problems. According to the properties of
the SVM algorithm and the various types of gestures, the
indirect one-versus-one method is used. Since the CSI sig-
nal is a time-varying signal, the duration of gesture work
is variable and unpredictable, which leads to the scale of
the extracted feature matrix being variable, while the tradi-
tional SVM kernel function can only deal with a vector of
equal length, and the inner product of the CSI signal fea-
ture matrix of two gesture motions cannot be directly cal-
culated. The matching process is to extend the measured
data evenly until it is consistent with the length of the ref-
erence template. The similarity of different length data can
be obtained by using the idea of DTW and algorithm
dynamic programming. And the time difference of the
data can be adjusted to make the matching closest.

Taking the [a, B8] in feature data F=[a, 8] of the stage
of feature extraction as the classification input feature of
the support vector machine, after classifying the gesture
data, the template receipt F,, =[a,,f,],m=1,2,---,n for
each kind of gesture is calculated. Finally, the characteris-
tic value of the gesture signal data F;=[ay, 3,],d=1,2,
--,n to be tested is compared with the template data,
and the recognition of the gesture to be tested is realized
by using the DTW algorithm. The DTW algorithm uses
the idea of dynamic programming to calculate the similar-
ity of the data of different lengths. And the time difference
of the data can be adjusted to make the matching closest.
The distance matrix from the characteristic value of the
gesture to the eigenvalue of the template gestures can be
represented as DS[F,,, F,|, and the shortest matching dis-
tance D between each data can be obtained according to
different conditions.

D = min
n

M=

I
—_

DS[Fm,Fd<w<n>>}}, (14)
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where w(n) is the time warping function; the time axis of
the data to be measured is nonlinearly mapped to the
timeline of the template.

Because of the properties of air gestures, the signal values
of each gesture motion are not fixed, and the time of occur-
rence will also be different. While in the SVM algorithm,
the kernel function is the classification of the vector of equal
appearance. Therefore, according to the time-varying prop-
erties of the air gesture signal, the use of the DTW algorithm
can effectively process the time-varying properties of the sig-
nal. In the combination of DTW and SVM, the kernel func-
tion directly affects the accuracy and operation time.
Combined with the properties of the gesture signal, the radial
basis kernel function is used in this paper.

K(x,x;) = el s} (15)

(16)

where D is obtained by the formula (14), by replacing the
value of (15) kernel function |x — x;| with the shortest match-
ing distance, get the new kernel function (16), which can
solve the problem of the time-varying characteristics of air
gestures and the equal length signal required by the kernel
function. For the whole construction process of the S-DTW
algorithm, the existing SVM training methods can be used
directly. The whole mechanism is summarized in Figure 9
for a better understanding.

K(x,x;) = e{’DZ/JZ},

4. Experimental Validation

4.1. Experimental Data Acquisition. The performance of
WiNum is verified by a large number of experiments. The
PC1 with Intel 5300 NIC wireless network card is used as a
receiver (DP) to receive signals, and another PC2 with Intel
5300 NIC wireless network card is used as a transmitter
(MP) to transmit signals on channel 149 at 5.74 GHz. The
detailed parameter setting is listed as Table 1. The network
card device driver is modified to read the CSI value, which
is a parsed 802.11n CSI tool that put forward Halperin and
others [40, 43], and the data is processed by MATLAB soft-
ware. The experiment evaluated the method in the multipath
laboratory and open conference room. Ten air gestures of the
handwritten number 0-9 were selected. The number of sam-
ples collected for each gesture was 1000, 70% of which were
used as train samples and the other 30% as test samples.

TaBLE 1: Parameter setting.

Parameters DPp MP
Mode Injection Monitor
Channel number 5.74 GHz (channel 149)
Bandwidth 20 MHz
Channel sample rate 200 times per second
Number of subcarriers 30

. [-28,-26,...,-4,-2,-1, 1,3, ..,
Index of subcarriers 27, 28]
Transmit power 8dBm

The tester did handwritten numeral gestures under two envi-
ronments. At the same time, the CSI information needed in
the experiment was obtained by the CSI tool at the receiving
end, and the gesture motion recognition was carried out by
the WiNum method.

Figure 10(a) shows the plan of the laboratory. Under this
scene, there are a lot of items, such as office desks, chairs,
bookcases, computers, flowers, and people’s interferences.
The size of the laboratory is 7 meters * 8 meters, and
Figure 10(b) is the floor plan in a conference room; the rela-
tively empty conference room is 6 meters * 4 meters in size.
The gesture database is established in two environments:
indoor emptiness and indoor multipath. The database con-
tains the above ten kinds of test gestures. Each gesture has a
period of static time before and after the test behavior, and
the gesture motion lasts for 4 seconds. The tester experimen-
ted repeatedly in two scenarios.

4.2. Analysis of Different Information on Accuracy. In the
process of the experiment, the following indexes are used to
test and evaluate the performance of WiNum. The perfor-
mance index of the system is the key to the quality of the
air gesture model, and all the indicators are surrounded com-
paring the differences between the recognition situation and
the real situation. The effectiveness of the method can be ver-
ified by comparing the recognition accuracy of different ges-
tures, while the robustness of the method can be verified by
comparing the performance changes in different environ-
ments. There is no absolute standard for the selection of the
performance index of the system, which is usually based on
the actual function and performance index that needed for
the natural selection.



Wireless Communications and Mobile Computing

FiGURE 10: Experimental scenarios. (a) Laboratory scene; (b) conference room.

(i) The true positive rate (TPR): the TPR of gesture A is
defined as the percentage of gesture A that is cor-
rectly recognized as gesture A

(ii) The false-positive rate (FPR): the FPR of gesture A is
defined as the percentage of all test gestures except A
that are mistakenly recognized as A

(iii) Recognition accuracy: the percentage of the correct
number of gesture motion recognition in the total
number of tests

(iv) Average accuracy: the average accuracy of gesture
motions experimenting in two indoor environments

In order to test the recognition performance of WiNum,
using the single signal data compared with the joint data
under two different experimental scenarios, “single data”
means that in the feature extraction stage, only the amplitude
information that is collected in the CSI signal of gesture
motion is used as the gesture motion recognition signal,
and the phase information is ignored. “Joint data” represents
that in the feature extraction stage, not only the amplitude
information in the CSI signal is used but also the amplitude
information and the phase information are used as fusion

information to prevent the loss of related information. In
order to further analyze the FPR and TPR under different
conditions, in the course of the experiment, the control vari-
able method is used to ensure that the environmental factors
such as testers and hardware parameters remain unchanged.
In most cases, the evaluation results are shown in
Figures 11(a) and 11(b), the recognition of different indoor
environments. 80% of FPR in multipath laboratories is lower
than 5%. In the open conference room, the TPR of most ges-
tures is higher than 95%, and the FPR is lower than 3%.
Therefore, the joint signal data proposed by WiNum reduces
the recognition error and is beneficial to the recognition of
the motion.

4.3. Optimization Analysis of Hardware Parameters. We
mainly study the recognition of Wi-Fi signals for air gestures
in the 5GHz band. Therefore, in order to verify that the
5GHz band is more beneficial to the recognition of human
perception, we selected the common 10 handwritten number
gestures to do experiments repeatedly. In the experiment, the
effects of the two signals on the accuracy are compared under
the 2.4 GHz and 5 GHz band signals, at three different packet
transmission rates. In order to ensure the stability of the
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FiGgure 11: Comparison of TPR and FPR of different reference information. (a) Under multipath laboratory environment; (b) under a

spacious conference room environment.

experimental results, in the process of the two scenarios, the
tester and the experimental equipment are kept unified, and
the test is carried out at the same time. The experimental
results are shown in Figure 12(a) that the accuracy of the
5GHz band is 7% higher than that of the 2.4 GHz band,
and the accuracy of the 5 GHz band is 4% higher than that
of the 2.4 GHz band. The accuracy of 300 packets/second
packet rate is 3% higher than that of the 2.4 GHz band on
average, which indicates that the 5 GHz band is more suitable
for indoor human behavior, perception, and different packet
transmission rates usually having a great influence on exper-
imental recognition. No matter the Wi-Fi signal is 2.4G or
5G, the accuracy of the conference room is higher than the
lab area, because the conference room is more spacious than
the lab area. In the following experiments, the 5 GHz signal is
used uniformly and the transmission rate is set to 200 packets
per second so that the experimental results can achieve the
best results.

The number of antennas at the receiving end and the
transmitting end is different, and the effect of the experiment
is greatly influenced. The number of transmit antenna TX
(transmitting antennas) and receive antenna RX (receiving
antennas) determines the number of communication links
and can also more finely characterize the selective channel.
In this paper, the numbers of 2-6 antennas are selected for
comparison, the result of the recognition is the most pre-
ferred, and the same number is identified as the final result.
The experimental results are shown in Figure 12(b), the CSI
gesture data is acquired in two different scenes, the gesture
recognition accuracy is the highest when the number of the
antennas is 1TX-3RX, the identification accuracy is reduced
when the number of the selected antennas is greater than 4,
and the generated data amount is large; it also leads to as fol-
lows: the data processing process is complicated, the identifi-
cation precision is reduced, and the number of subsequent
experimental antennas is set to 4 antennas of 1TX-3RX.
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antennas; (c) influence of different distances.

Wireless signals propagate in straight lines indoors,
reflecting and refracting on the ground, walls, equipment,
and so on. When the air gesture motion occurs, the propaga-
tion path of the wireless signal will be changed, but when the
tester is in the same straight line as the transmitter and the
receiver, and the distance between the transmitter and the
receiver is different, the influence degree on the CSI signal
is different. In this paper, the straight distance between the
transmitter and the receiver varies from 0.8 m to 4m in two
different indoor scenes. The experimental results show that
the accuracy decreases sharply to about 75% with the
increase of distance to 4 meters. Therefore, if the distance
between devices is too far, it is likely that it will not be recog-
nized effectively. The tests were carried out at 0.8 m, 1.5m,
2m, 25m, 3m, and 4m distances, respectively.
Figure 12(c) describes the effect of distance variation on
WiNum performance. Under initial conditions, due to the
unrelated body movement and serious multipath effect, the
average accuracy of gesture motion is the lowest, and the rec-
ognition effect is the best at 2.5 meters.

4.4. Optimization Analysis of Sample Number and Eigenvalue
Quantity. In order to determine the influence of other
parameter changes on the accuracy of the handwritten num-
ber gesture recognition, this experiment has tested the feature

value of different number of tuples in the feature extraction
stage, taking the maximum number of eigenvalues of ampli-
tude and phase, 2-tuple characteristic value represents maxi-
mum (amplitude, phase), 4-tuple characteristic value
represents maximum first two amplitude and phase, and 6-
tuple characteristic value represents maximum first three
amplitude and phase, and the comparative analysis under
different numbers of training samples. Figure 13 shows the
recognition average accuracy of using different tuple charac-
teristics under different training sample sets and compares
the data processing execution time in different cases. As can
be seen from the figure, when the characteristic tuple is 2,
the recognition result is poor as the characteristic tuple is
too small, and when the characteristic tuple is 6 and the num-
ber of samples is increased, the identification result is con-
fused and the level accuracy is not high; when the
characteristic tuple is 6 and the number of samples is 500,
the identification accuracy is better. The shorter the number
of samples and the smaller the characteristic tuples, the
shorter the data processing execution time, but the accuracy
of the data processing is not high. Therefore, when the num-
ber of samples is 500, the characteristic value is 4-tuple, the
identification effect is the best, and the number of samples
was collected for each gesture, 70% of which were used as
train samples and the other 30% as test samples.
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4.5. The Comprehensive Performance Analysis of the System.
In addition, in order to further evaluate the performance of
the WiNum method, the recognition of different gestures
under the optimal conditions is described, that is, using
5GHz signal, and the sending rate is set to 200 packets per
second, the number of antennas is 1TX-3RX, and the dis-
tance between the devices is 2.5 m. When processing the data,
the quaternion features are selected, and two kinds of indoor
scene tests are carried out in this case, and the recognition
rate is compared with the recognition rate of the same
scheme WiFinger and WiGeR under the same experimental
conditions, as shown in Figure 14, which shows not only
the recognition rate of all gestures but also the average recog-
nition rate in different environments; its recognition effect is
maintained at a high level and better than the same kind of
schemes. This also verifies the effectiveness of the WiNum
air gesture data processing method and matching algorithm.

5. Conclusions

In this paper, we proposed an air gesture recognition system
WiNum that is based on WLAN physical layer information-
CSL The joint information of amplitude information and

Wireless Communications and Mobile Computing

phase information of CSI is regarded as a new method of per-
ceptual information. Firstly, signal acquisition, data process-
ing, effective gesture extraction, etc. are carried out. Then, the
S-DTW matching algorithm, which combines the features of
the SVM algorithm with the DTW algorithm is used to iden-
tify different gesture motions. This method has great effec-
tiveness and stability. According to the indoor scenes in
different environments, the parameters can be adjusted
accordingly, and 10 handwritten number gestures in the air
can be recognized stably and efficiently, so as to realize the
purpose of air gesture recognition. The overall experimental
results show that the WiNum system has good performance
in sensitivity, robustness, accuracy, and so on. The system
should be improved in the future work, which can promote
its application prospect so as to make good use in the home
environment.
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