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Wepropose an effective error correction technique for arithmetic codingwith forbidden symbol. By predicting the occurrence of the
subsequent forbidden symbols, the forbidden region is actually expanded and theoretically, a better error correction performance
can be achieved. Moreover, a generalized stack algorithm is exploited to detect the forbidden symbol beforehand. The proposed
approach is combined with the maximum a posteriori (MAP) metric to keep the highly probable decoding paths in the stack.
Simulation results justify that our scheme performs better than the existing MAP methods on the error correction performance,
especially at a low coding rate.

1. Introduction

Traditionally, channel coding is performed after source cod-
ing to protect the compressed bit stream sent over a noisy
channel. For example, an image file is first compressed by
using Discrete Cosine Transformation or arithmetic coding
[1–3] with high coding efficiency. Then, the compressed
sequence is further protected by Turbo code [4] or Hamming
code [5] against channel noise. This traditional separate
scheme lacks the cooperation between source and channel
coding processes and may not result in the optimal perfor-
mance. Recent studies have revealed that the joint operation
of them leads to some advantages when compared with the
traditional separately operated approach [6–9]. As certain
implicit redundancy still exists in the bit streams when the
encoder cannot ideally decorrelate the source symbols, it
can be utilized in the joint scheme to improve the overall
error correcting performance.Thus, it is possible for the joint
scheme to outperform the separate approach [10].

Early works on joint source-channel coding were devoted
to the study of error resilience in variable length codes (VLC).
In particular, most of which were focused on the resynchro-
nization ability of Huffman code [7–9]. The corresponding

hard and soft decoding schemes based on maximum like-
lihood (ML) or MAP metrics are well-studied for a binary
symmetric channel (BSC) with additive white Gaussian noise
(AWGN). As arithmetic coding (AC) represents a source
symbol using a fractional number of bits, it leads to a better
compression efficiency and achieves the optimal entropy
coding. However, the high compression ratio makes the
codeword more sensitive to channel noise and is difficult to
be resynchronized. Therefore, there is a growing interest in
improving the robustness of AC against channel noise.

In [11], a forbidden symbol introduced by a reduction
in the coding interval is adopted to detect the transmission
error continuously. These errors can be detected when the
forbidden region is visited. This continuous nature in error
detection is exploited to improve the overall performance
of the communication system [12]. It provides a tradeoff
between the extra redundancy and the delay in detecting an
error since its occurrence. Instead of the forbidden symbol,
the insertion of markers in some particular positions of the
input sequence plays the role of synchronization between the
encoder and the decoder [13]. The markers which do not
appear in the expected positions indicate transmission errors.
Three strategies for the selection of the markers were studied
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in [13]. A better compression ratio can be achieved using an
adaptive [14] or an artificial marker scheme [15].The adaptive
marker scheme selects the most frequent source symbol as
the marker symbol while the artificial marker scheme creates
an artificial marker with an arbitrary probability. Making
use of the error detection capacity of AC, error correction
is performed by sequential decoding, which successively
removes the erroneous decoding paths. In [16], depth-first
and breadth-first decoding algorithms were proposed with
binary branching based on a null zone. The decoding paths
are discarded due to the error detection capacity of the
forbidden symbol. All the decoding paths with the lowest
Hamming distance from the received sequence are preserved
in a list.

In [17], a MAP criterion based on the context-based AC
was proposed with the insertion of synchronization markers,
where the symbol clock and the bit clock models were
analyzed. The iterative decoding of error resilient AC con-
catenated with a convolutional code is adopted and its error
correcting capability is validated with the transmission of
images over an AWGN channel. A novel MAP decoding
approach based on the forbidden symbol was proposed
in [10], with a high flexibility in adjusting the coding
rate. Sequential decoding algorithms, such as stack algorithm
and 𝑀-algorithm, are adopted and the proposed system
outperforms the separate approach based on convolutional
codes in terms of error correcting capability. It is serially
concatenated with channel codes and iterative decoding is
employed to further improve the overall performance [18,
19]. Chaos phenomenon, which generally exists in complex
systems [20, 21], is also observed during the iterative decoding
procedures.Thus, chaos control techniques can be adopted to
further enhance the error correction performance [22–24]. A
sequential MAP estimation for CABAC coder was proposed
in [25], which employs an improved sequential decoding
technique to determine the tradeoff between complexity and
efficiency. In [26], a look-ahead technique for AC decoder
was proposed to allow quick error detection. Considering
the improvement in the implementation efficiency, AC can
be modeled as a finite-state machine corresponding to a
variable-length trellis code. The trellis code based on AC
was proposed in [27, 28], where a list Viterbi decoding
algorithm is applied on the corresponding trellis code and
a cyclic redundancy check code is employed for detecting
small Hamming-distance errors. The free distance of the
corresponding AC-based VLC and its theoretical error cor-
rection performance were investigated in [29, 30]. Besides
that, the practical implementations on this joint source-
channel coding scheme were studied in [31, 32] for high
coding speed.

The error detecting capability of AC was analyzed in our
previous paper [15]. Here we extend our previous work to
tackle the problem of error correction in AC. An effective
error correction technique utilizing the forbidden symbol is
proposed, which predicts the occurrence of the subsequent
forbidden symbols. With our approach, the forbidden region
is theoretically expanded and so a better error correction
performance is achieved. Furthermore, a generalized stack

1

0

0.8

0.8

0

0.64
“1”

0.8

0.768

0.768

0.7424 

0.7424

0.72192

0.72192

0.640.640.640.64

0.705536

“0”“0”“0”“0”

Figure 1: The arithmetic coding steps for encoding the sequence
“01000.”

algorithm (SA) extending 2𝑘 branches from the best node
is also studied for the detection of the forbidden symbol
beforehand. The MAP metric [10] is integrated with our
approach to preserve the most probable decoding paths
in the stack. The idea of our approach was briefly pre-
sented in [33], which mainly focuses on the forecasting of
the forbidden symbols. Here, the procedures of AC with
forecasted forbidden symbols are described in detail. More
analyses and simulation results are provided to justify that the
proposed scheme outperforms the look-ahead scheme [26]
and the original MAP scheme [10] on the error correction
performance, especially at a low coding rate.

The rest of this paper is organized as follows. The back-
ground of AC is reviewed in Section 2. The proposed
scheme is described in Section 3, where the estimation of the
subsequent forbidden symbols and the generalized SA are
introduced. Simulation results are presented in Section 4 to
show the improvement of our scheme. Finally, conclusions
are drawn in Section 5.

2. Background of Arithmetic Coding

Arithmetic coding is an iterative operation, which recursively
assigns the coding interval to a sequence of source symbols.
In general, a prior source model is required, which initializes
the coding interval according to the occurrence probabilities
of the source symbols. Considering the binary case that the
occurrence probabilities of “0” and “1” are correspondingly
0.8 and 0.2, the coding units [0, 0.8) and [0.8, 1) are then
assigned to the symbols “0” and “1,” respectively. The arith-
metic coding steps for encoding the source sequence “01000”
are illustrated in Figure 1.

At last, the final coding unit [0.64, 0.72192) is obtained,
within which any real value can be selected and exported
as the compressed bits. Theoretically, it is guaranteed to
obtain a compressed sequence with the shortest length using
⌈− log(0.72192 − 0.64)⌉ = 4 bits (1011) in this example. In
the decoding process, the received codeword sequence (1011)
is firstly put after the decimal point to make it 0.1011 which
is within the range [0, 1). Then the representation 0.1011
is converted to the decimal value 0.6875. As it falls into
the intervals [0, 0.8], [0.64, 0.8], [0.64, 0.768], [0.64, 0.7424],
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Function AC Encoder
Input: 𝑠

𝑘
, c, 𝑙
𝑘
, 𝑢
𝑘

Output: b
Set 𝑙𝑘+1 = 𝑙𝑘 + (𝑢𝑘 − 𝑙𝑘 + 1)𝑐(𝑠𝑘) and 𝑢𝑘+1 = 𝑙𝑘 + (𝑢𝑘 − 𝑙𝑘 + 1)𝑐(𝑠𝑘 + 1) − 1
While(True)
If 𝑢𝑘+1 < Half

Set 𝑙𝑘+1 = 2 × 𝑙𝑘+1 and 𝑢𝑘+1 = 2 × 𝑢𝑘+1 + 1
Emit a bit 0 and 𝑓𝑘+1 bits 1 to b
Set 𝑓𝑘+1 = 0

Else If 𝑙𝑘+1 ≥ Half
Set 𝑙𝑘+1 = 2 × (𝑙𝑘+1 − 𝐻𝑎𝑙𝑓) and 𝑢𝑘+1 = 2 × (𝑢𝑘+1 − 𝐻𝑎𝑙𝑓) + 1
Emit a bit 1 and 𝑓𝑘+1 bits 0 to b
Set 𝑓𝑘+1 = 0

Else If 𝑙𝑘+1 ≥ First quarter and 𝑢𝑘+1 <Third quarter
Set 𝑙
𝑘+1
= 2 × (𝑙

𝑘+1
− 𝐹𝑖𝑟𝑠𝑡 𝑞𝑢𝑎𝑟𝑡𝑒𝑟) and 𝑢

𝑘+1
= 2 × (𝑢

𝑘+1
− 𝐹𝑖𝑟𝑠𝑡 𝑞𝑢𝑎𝑟𝑡𝑒𝑟) + 1

Set 𝑓𝑘+1 = 𝑓𝑘 + 1
Else

Break;

Algorithm 1: Pseudocode of the encoder.

Function AC Decoder
Input: 𝑏𝑘, 𝑐, 𝑙𝑘, 𝑢𝑘, V 𝑙𝑘, V 𝑢𝑘
Output: s
If 𝑏𝑘 == 0

Set V 𝑙𝑘+1 = V 𝑙𝑘 and V 𝑢𝑘+1 = ((V 𝑢𝑘 − V 𝑙𝑘 + 1)/2) − 1
Else

Set V 𝑙𝑘+1 = (V 𝑢𝑘 − V 𝑙𝑘 + 1)/2 and V 𝑢𝑘+1 = V 𝑢𝑘
Set 𝑉 = 𝑙𝑘 + (𝑢𝑘 − 𝑙𝑘 + 1) × 𝑐(1)
While(True)

If 𝑉 > V 𝑢𝑘+1
Emit source symbol “0” to s
Set 𝑙𝑘+1 = 𝑙𝑘 and 𝑢𝑘+1 = 𝑉 − 1
Scale the intervals [V 𝑙𝑘+1, V 𝑢𝑘+1] and [𝑙𝑘+1, 𝑢𝑘+1] as done in AC Enocder

Else If 𝑉 ≤ V 𝑙𝑘+1
Emit source symbol “1” to s
Set 𝑙
𝑘+1
= 𝑉 and 𝑢

𝑘+1
= 𝑢
𝑘

Scale the intervals [V 𝑙𝑘+1, V 𝑢𝑘+1] and [𝑙𝑘+1, 𝑢𝑘+1] as done in AC Enocder
Else
Break;

Algorithm 2: Pseudocode of the decoder.

and [0.64, 0.72192], the decoder will sequentially export
the symbols “0,” “1,” “0,” “0,” and “0.”The decoded sequence is
exactly the same as the source sequence since AC is a lossless
source coding scheme.

A practical problem encountered in the implementation
of AC is that the interval will continue to shrink in the
iterative encoding steps. Thus, a high precision is needed to
represent the very small real numbers encountered in the
coding process. A solution to this problem is to use integer
representation, where the coding interval can be rescaled
when the most significant bits in the representation of the
lower andupper bounds are the same. Suppose that the binary
source sequence represented by s = {𝑠1, 𝑠2, . . . , 𝑠𝑁}with 𝑝(𝑠 =
0) = 𝑝0 and𝑝(𝑠 = 1) = 𝑝1, where (𝑝0+𝑝1 = 1), is encoded as a

variable-length codeword b = {𝑏1, 𝑏2, . . . , 𝑏𝐿}. In Algorithm 1,
the pseudocode of the encoder is given, where 𝑙𝑘 and 𝑢𝑘
are, respectively, the lower and upper bounds for encoding
the source symbol 𝑠𝑘. The vector c represents the cumulative
probabilities of the source model with 𝑐(0) = 0, 𝑐(1) = 𝑝0
and 𝑐(2) = 1. The initial lower and upper bounds are set to 0
and 2𝑃 − 1, respectively, where 𝑃 is the length of the register
for storing the value of the bounds. The number of bits not
emitted in the interval rescaling operations is recorded by 𝑓𝑘.
The values of First quarter, Half and Third quarter are fixed
and are set to 2𝑃−2, 2𝑃−1, and 3 × 2𝑃−2, respectively.

In Algorithm 2, the pseudocode of the corresponding
sequential decoder is listed, which avoids the decoding delay.
Once both the bounds, 𝑑 𝑙𝑘+1 and 𝑑 𝑢𝑘+1, of the decoding
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Figure 2: A block diagram of the transmission system.

interval for the compressed bit 𝑏𝑘 are located in the encoding
interval of a particular source symbol, the symbol can be
decoded out. The encoding and decoding intervals are then
rescaled as performed in the encoder. The lower and upper
bounds of the decoding interval are also initialized to 0 and
2
𝑃
− 1, respectively. The details of this kind of AC encoding

and decoding can be found in [1, 34].

3. The Proposed Algorithm

Assume that the variable-length codeword b = {𝑏1, 𝑏2, . . . , 𝑏𝐿}
is transmitted over a channel with transition probability 𝑃(r |
b). The receiver obtains the demodulated sequence r =
{𝑟1, 𝑟2, . . . , 𝑟𝐿}, with which the recovered message ŝ is found
using the generalized stack algorithm.Ablock diagramof this
transmission system is depicted in Figure 2.

3.1. MAP Metric. In our scheme, the MAP metric [10] is
employed for finding the most probable message ŝ from all
possible sequences 𝑠, by maximizing the likelihood 𝑃(s | r),
as expressed by

ŝ = argmax
𝑠
𝑃 (s = 𝑠 | r) . (1)

The Bayesian relationship states that

𝑃 (s | r) = 𝑃 (r | s) 𝑃 (s)
𝑃 (r)

=
𝑃 (r | b) 𝑃 (s)
𝑃 (r)

. (2)

In the case of memoryless channels, it is straightforward to
represent (2) in an additive form

𝑚 = log𝑃 (s | r) = log𝑃 (r | b) + log𝑃 (s) − log𝑃 (r) . (3)

For each bit of r,

𝑚𝑘 = log𝑃 (𝑟𝑘 | 𝑏𝑘) + log𝑃 (s𝑘) − log𝑃 (𝑟𝑘) , 𝑘 ∈ [1, 𝐿] ,
(4)

where the vector s𝑘 contains the decoded source symbols
when the compressed bit 𝑏𝑘 is shifted into the decoder. It
should be noticed that s𝑘 can be empty when no source
symbol is outputted from the decoder. There are three terms
at the right-hand-side of (4). The first term log𝑃(𝑟𝑘 | 𝑏𝑘)
is the channel transition probability while the second term
log𝑃(s𝑘) represents the a priori probabilities of the source
symbols. The first two terms can be evaluated based on
the channel and source models, respectively. The last term
log𝑃(r) is complicated, which needs to sum up all the
log𝑃(r | b)𝑃(b) terms, as follows:

log𝑃 (r) = log∑
b
𝑃 (r | b) 𝑃 (b) . (5)

As the full knowledge on the codeword b with length 𝐿 is
required, it is impractical to evaluate (5) exactly. However,
assuming that the codeword b has equal probabilities of
occurrence of “0” and “1,” this term can be approximated by

𝑃 (𝑟𝑘) = 𝑃 (𝑟𝑘 | 𝑏𝑘 = 0) 𝑃 (𝑏𝑘 = 0) + 𝑃 (𝑟𝑘 | 𝑏𝑘 = 1) 𝑃 (𝑏𝑘 = 1)

=
𝑃 (𝑟𝑘 | 𝑏𝑘 = 0) + 𝑃 (𝑟𝑘 | 𝑏𝑘 = 1)

2
.

(6)

When hard decoding is adopted in an AWGN channel
using binary phase-shift keying (BPSK) modulation with a
signal-to-noise ratio (SNR) 𝐸𝑏/𝑁0, the channel transition
probability is

𝑃 (𝑟𝑘 | 𝑏𝑘) = {
1 − 𝑝, if 𝑟𝑘 = 𝑏𝑘
𝑝, if 𝑟𝑘 ̸= 𝑏𝑘,

(7)

where 𝑝 = (1/2) erfc√𝐸𝑏/𝑁0. By (6), 𝑃(𝑟𝑘) = (𝑝+1−𝑝)/2 =
1/2 in this case. Therefore,

𝑚𝑘 = {
log (1 − 𝑝) + log𝑃 (s𝑘) + log 2, if 𝑟𝑘 = 𝑏𝑘
log𝑝 + log𝑃 (s𝑘) + log 2, if 𝑟𝑘 ̸= 𝑏𝑘.

(8)

In the soft decoding process, each bit in b is mapped to
t by 𝑡𝑘 = √𝐸𝑏(2𝑏𝑘 − 1) before transmitted over the AWGN
channel. The decoder receives the noisy signal 𝑟𝑘 = 𝑡𝑘 + 𝑛𝑘,
where 𝑛𝑘 is the additive white noise with standard deviation
𝛿. Given the input sequence b, the conditional probability of
the received signal r is

𝑃 (𝑟𝑘𝑏𝑘) =
1

√2𝜋𝛿2
exp(−

(𝑟𝑘 − 𝑡𝑘)
2

2𝛿2
)

=

{{{{{

{{{{{

{

1

√2𝜋𝛿2
exp(−

(𝑟𝑘 + √𝐸𝑏)
2

2𝛿2
) , if 𝑏𝑘 = 0

1

√2𝜋𝛿2
exp(−

(𝑟𝑘 − √𝐸𝑏)
2

2𝛿2
) , if 𝑏𝑘 = 1.

(9)

Making use of (6), we have

𝑃 (𝑟𝑘) = (
1

√2𝜋𝛿2
exp(−

(𝑟𝑘 + √𝐸𝑏)
2

2𝛿2
)

+
1

√2𝜋𝛿2
exp(−

(𝑟𝑘 − √𝐸𝑏)
2

2𝛿2
)) ⋅ 2

−1
.

(10)



Mathematical Problems in Engineering 5

0 1
p0(1 − 𝜀) p1(1 − 𝜀) 𝜀

Figure 3: Source symbol model with forbidden symbol.

Thus,

log𝑃 (𝑟𝑘) = log( 1

√2𝜋𝛿2
exp(−

(𝑟𝑘 + √𝐸𝑏)
2

2𝛿2
)

⋅ (1 +

exp (− (𝑟𝑘 − √𝐸𝑏)
2
/2𝛿
2
)

exp (− (𝑟𝑘 + √𝐸𝑏)
2
/2𝛿2)

))

− log 2

= −
(𝑟𝑘 + √𝐸𝑏)

2

2𝛿2
− log√2𝜋𝛿2

+ log(1 + exp(
2√𝐸𝑏𝑟𝑘

𝛿2
)) − log 2,

(11)

𝑚𝑘 =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

log𝑃 (s𝑘) + log 2

− log[1 + exp(
2√𝐸𝑏𝑟𝑘

𝜎2
)] , if 𝑏𝑘 = 0

log𝑃 (s𝑘) + log 2 +
2√𝐸𝑏𝑟𝑘

𝜎2

− log[1 + exp(
2√𝐸𝑏𝑟𝑘

𝜎2
)] , if 𝑏𝑘 = 1.

(12)

3.2. Forecasted Forbidden Symbols. In order to embed error
detecting capacity into AC, a forbidden symbol 𝜇 with
probability of occurrence 𝜀 is inserted in the source model,
as shown in Figure 3. The probabilities of “0” and “1” are
changed to 𝑝0(1− 𝜀) and 𝑝1(1− 𝜀), respectively.The overhead
of this approach is a lower coding rate as the available coding
space for AC shrinks. This accounts for 𝑅𝜇 = −log2(1 − 𝜀)
additional bits for each source symbol. The expected length
of the compressed sequence is 𝐿 = 𝑁(𝐻 + 𝑅𝜇) when the
forbidden symbol is adopted, where 𝐻 = −𝑝0 log𝑝0 −
𝑝1 log𝑝1 is the memoryless source entropy rate. As the
forbidden symbol is never encoded, the decoder can assure
that some estimated bits are erroneous once it observes
the forbidden symbol in the decoding process. Thus, the
erroneous decoding path can be pruned. Theoretically, the
number of symbols decoded before an error is detected is
greater than 𝑛 at a probability of (1 − 𝜀)𝑛. Therefore, as more
source symbols after the erroneous bits are decoded, the error
can be detected with a higher probability. Moreover, a large
value of 𝜀 enables short error detection delay at the expense
of compression efficiency.

Thanks to the iterative nature of the AC encoding process,
the forbidden symbols after the currently encoded source
symbol can actually be estimated beforehand. This is useful
in detecting the errors at an earlier stage, so as to prune

the erroneous decoding tree quickly and to increase the
chance for the correct decoding tree to remain in the stack.
As shown in Figure 4(a), the second forbidden symbols in
the original coding regions for “0” and “1” are forecasted, the
lengths of which are 𝑝0(1 − 𝜀)𝜀 and 𝑝1(1 − 𝜀)𝜀, respectively.
Similarly, the third forbidden symbols shown in Figure 4(b)
are predicted with the corresponding lengths 𝑝0𝑝1(1 − 𝜀)

2
𝜀

and𝑝1
2
(1−𝜀)

2
𝜀.Theoretically, the lengths of all the successive

forecasted forbidden symbols can be summed up as 𝑝0(1 −
𝜀)𝜀∑
𝑛−1

𝑖=0
𝑝1
𝑖
(1 − 𝜀)

𝑖 and 𝜀∑𝑛
𝑖=0
𝑝1
𝑖
(1 − 𝜀)

𝑖 in the two coding
units, where 𝑛 is the number of the forecasted forbidden
symbols.When 𝑛 tends to∞, we have the length of forecasted
forbidden regions 𝑓𝑠(1) and 𝑓𝑠(2) as follows:

𝑓𝑠 (1) = 𝑝0 (1 − 𝜀) 𝜀

∞

∑

𝑖=0

𝑝1
𝑖
(1 − 𝜀)

𝑖
=
𝑝0 (1 − 𝜀) 𝜀

1 − 𝑝1 (1 − 𝜀)
,

𝑓𝑠 (2) = 𝜀

∞

∑

𝑖=0

𝑝1
𝑖
(1 − 𝜀)

𝑖
=

𝜀

1 − 𝑝1 (1 − 𝜀)
.

(13)

They are the theoretical limit for the length of successive
forbidden symbols. As shown in Figure 4(c), the forecasted
forbidden region is much larger than that in Figure 3, which
obviously improves the error correcting capability.

On the other hand, the look-ahead technique [26] usually
employed in AC decoders can detect forbidden symbol
quickly by decoding the source symbol even when the
decoding interval bounds 𝑑 𝑙𝑘+1 and 𝑑 𝑢𝑘+1 are located in
the encoding intervals for a particular source symbol and the
forbidden region by assuming that it is error-free. An example
of which is given in Figure 5, where the source symbol “1”
is decoded in Figure 5(a) and then the forbidden symbol
can be detected in Figure 5(b). Compared with the look-
ahead technique in AC decoders, our forecasted forbidden
regions can effectively detect the possible errors that may
be found by the look-ahead technique. For example, the
forbidden symbol in Figure 5(b) can also be detected with
our forecasted forbidden regions without the need to decode
source symbol “1” in advance. Besides that, the forecasted
forbidden regions in the middle of the source symbols “0”
and “1” enable the adoption of generalized stack algorithm
introduced in Section 3.3. The look-ahead technique can be
adopted in our scheme to further enhance the overall correc-
tion performance. An example of this scenario is depicted in
Figure 5(c) that the source symbol “1” is decoded in advance.
The improvement of our scheme is further validated by the
simulation results to be reported in Section 4.

With the look-ahead technique adopted in our scheme,
it is possible that 𝑑 𝑙𝑘+1 < 0 and 𝑑 𝑢𝑘+1 > 2

𝑃
− 1 in

the implementation of AC. The pseudocode of the modified
decoder for error detection can be found in Algorithm 3.

3.3. Generalized Stack Algorithm. The generalized SA is a
variation of SA, which is a metric first search algorithm. In
the original SA, all the explored decoding paths with better
metric are stored in an ordered stack with size 𝑀. The best
decoding path, which has the maximum value given by (8) or
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Figure 4: (a) The second forecasted forbidden symbol; (b) the third forecasted forbidden symbol; (c) theoretical length of all the successive
forecasted forbidden symbols.

d lk+1 d uk+1
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d lk+1 d uk+1

(c)

Figure 5: (a) Decode source symbol “1” using look-ahead technique; (b) detect forbidden symbol using look-ahead technique; (c) the use of
look-ahead technique in our scheme.

(12), is usually stored at the top of the stack. It is extended to
two branches after the current decoding node by estimating
the subsequent decoding bits as “0” and “1,” respectively.Then
the top node is removed and the two child nodes are inserted
into the stack. Once the stack is full, the one with the worst
metric will be discarded. In the generalized SA, 2𝑘 branches
instead of 2 branches are extended from the top node. As the
coding region assigned to the forbidden symbol is small, it
usually needs more bits to make sure that the decoder will
visit the forbidden region or not. Thus, 2𝑘 branches from the
best node are able to result in a fast detection and the removal
of erroneous decoding paths. This in turn means a higher
probability to preserve the correct path in the stack. It is noted
that the generalized SA is not applicable in the original MAP
algorithm and the look-ahead technique as the underflow
problem may happen when 2𝑘 branches are extended from
the very small decoding interval. However, as the forbidden
regions in the middle of source symbols “0” and “1” are
forecasted in our scheme, it guarantees that the decoding
interval is not smaller than the length of the intermediate
forbidden region. Therefore, the underflow problem can be
avoided.

There are three conditions for discarding decoding paths
in the generalized SA.The first condition is that the forbidden
symbol is encountered. The second corresponds to the situ-
ation that the number of decoded symbols is equal to 𝑁 but
the number of decoded bits is smaller than 𝐿.The third case is
that the number of decoded bits is equal to 𝐿 but the number
of decoded symbol is smaller than 𝑁. The generalized SA
stops when the 𝐿 decoded bits can exactly recover 𝑁 source
symbols or the stack is empty. A diagram illustrating the
generalized SA is shown in Figure 6, with 𝑘 = 2. Therefore,
four child nodes are extended from the best nodes that are

identified with gray color. The one marked with X is deleted
as it visits the forbidden region.

4. Simulations

In this section, the proposed scheme is compared with the
original MAP scheme [10] and the look-ahead scheme [26].
Binary source symbols with 𝑝0 = 0.8667 are randomly
generated, which correspond to the memoryless source
entropy 𝐻 = 0.567. This entropy is the same as that of the
simulation data used in [10]. Each packet consists of 2304
binary symbols. It is then encoded by arithmetic coding with
forbidden symbol to generate the variable-length compressed
sequence b. The packet length and the priori bit probability
𝑝0 are sent to the decoder as side information. They are
protected by a high-redundant channel code to guarantee
their correctness. Each packet is terminated with an EOS
(End of Sequence) symbol having probability 10−5, which
protects the last few bits of b. The stack size 𝑀 is chosen
as 256 for all the algorithms. The value of 𝑘 is set to 8
in the generalized SA. All the simulations are run for 105
times over an AWGN channel with BPSK modulation. The
number of forecasted forbidden symbols is selected as 4. As
the originalMAP scheme [10] has already been shown to have
a better error correction performance than the traditional
separated source and channel coding scheme, a comparison
with the latter scheme is not repeated here. As the placement
of the forbidden symbol can affect the error correction
performance [26, 29], two placements are considered in our
simulations, which are identified with source models A and
B in Figures 7(a) and 7(c). The corresponding forecasted
forbidden symbols in source models A and B are illustrated
in Figures 7(b) and 7(d). Note that the performance of
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Function AC FS Decoder
Input: 𝑏

𝑘
, 𝑐, 𝑙
𝑘
, 𝑢
𝑘
, 𝑑 𝑙
𝑘
, 𝑑 𝑢
𝑘

Output: s
If 𝑏𝑘 == 0

Set 𝑑 𝑙𝑘+1 = 𝑑 𝑙𝑘 and 𝑑 𝑢𝑘+1 = ((𝑑 𝑢𝑘 − 𝑑 𝑙𝑘 + 1)/2) − 1
Else

Set 𝑑 𝑙𝑘+1 = (𝑑 𝑢𝑘 − 𝑑 𝑙𝑘 + 1)/2 and 𝑑 𝑢𝑘+1 = 𝑑 𝑢𝑘
While(True)

Find two estimated forbidden regions in the encoding interval;
If 𝑑 𝑙𝑘+1 and 𝑑 𝑢𝑘+1 are completely located in the forecasted forbidden regions
or out of the encoding interval
Then delete the decoding path and break;
Set 𝑉 = 𝑙𝑘 + (𝑢𝑘 − 𝑙𝑘 + 1) × 𝑐(1) and 𝑉𝑓𝑠 = 𝑙𝑘 + (𝑢𝑘 − 𝑙𝑘 + 1) × (𝑐(1) − 𝑓𝑠(1))
If 𝑉 > 𝑑 𝑢𝑘+1

Emit source symbol “0” to s
Set 𝑙𝑘+1 = 𝑙𝑘 and 𝑢𝑘+1 = 𝑉 − 1
Rescale the intervals [𝑑 𝑙𝑘+1, 𝑑 𝑢𝑘+1] and [𝑙𝑘+1, 𝑢𝑘+1] as done in AC Enocder

Else If 𝑉
𝑓𝑠
≤ 𝑑 𝑙
𝑘+1

and 𝑑 𝑢
𝑘+1
≤ 𝑢
𝑘

Emit source symbol “1” to s
Set 𝑙𝑘+1 = 𝑉 and 𝑢𝑘+1 = 𝑢𝑘
Rescale the intervals [𝑑 𝑙

𝑘+1
, 𝑑 𝑢
𝑘+1
] and [𝑙

𝑘+1
, 𝑢
𝑘+1
] as done in AC Enocder

Else
Break;

Algorithm 3: Pseudocode of the modified decoder for error detection using forecasted forbidden symbols.
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Figure 6: A diagram illustrating the generalized SA.

the compared schemes is evaluated by the packet error rate
(PER).

The PERs of the proposed, the look-ahead, and the
originalMAP schemes with sourcemodels A and B at various
channel SNRs are plotted in Figure 8. The value of 𝜀 is set
to 0.185 in Figure 8, which corresponds to the coding rate of
2/3. Considering source model A, in which many forbidden
symbols can be forecasted as indicated by Figure 7(b), it

contributes to the major improvement of our scheme and the
look-ahead scheme when compared with the original MAP
scheme. The simulation results plotted in Figure 8 validate
that the look-ahead scheme performs much better than the
original MAP scheme while ours achieves the best results.
However, the results obtained with source model B are better
than that with source model A in all algorithms. These
observations show that the error correcting capacity of source
model B is better than that of source model A. Although
many forbidden symbols can be forecasted in source model
A, it will cause a lot of forbidden symbols assigned in the
upper bound of the coding interval and leads to weak error
detection in the errors occurring in the lower bound of the
coding interval. In summary, our scheme performs much
better than the look-ahead scheme and the original MAP
scheme at all SNRs for the two source models. Of course,
the best results in soft and hard decoding are found by using
our scheme with source model B, which achieves a coding
gain of around 0.5 dB for hard decoding and 0.25 dB for soft
decoding, when compared with the original MAP scheme.
Moreover, the values of 𝜀 at 0.097 and 0.05 are also selected
for source model B, which correspond to the coding rate of
4/5 and 8/9, respectively. The PERs of our, the look-ahead,
and the original MAP schemes are plotted in Figures 9-10. As
indicated in these twofigures, the coding gain decreaseswhen
the value of 𝜀 becomes small. The graphs reveal that, for large
𝜀, our scheme has a much better performance than the look-
ahead and the original MAP schemes. In other words, it is
especially effective at a low coding rate.

Figure 11 shows the error correction performance with
source model B at various 𝜀 using soft and hard decoding.
In this figure, soft decoding is applied in our, the look-ahead,
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Figure 7: (a) Sourcemodel A; (b) sourcemodel Awith forecasted forbidden symbols; (c) source symbol B; (d) sourcemodel Bwith forecasted
forbidden symbols.
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Figure 8: Error correction performance of our, the look-ahead, and
the original MAP schemes at 𝜀 = 0.185.

and the original MAP schemes with the channel SNR fixed at
3.5 dB. The PERs are plotted against the 𝜀 value ranging from
0.04 to 0.16. With the increase of 𝜀, the PERs of all schemes
drop accordingly.This is reasonable as a large value of 𝜀 leads
to more redundant bits for error detection, which are helpful
in removing the erroneous decoding paths. When 𝜀 is large,
the gain of our scheme over the look-ahead scheme and the
originalMAP schemebecomes apparent, which also indicates
that our scheme performs much better at a low coding rate.
Considering hard decoding in a channel with SNR 5.5 dB, the
PERs of our, the look-ahead, and the original MAP schemes
are also depicted in Figure 11 with various 𝜀 between 0.04 and
0.16. Results similar to those obtained using soft decoding
are observed and they further confirm the superiority of our
scheme at a low coding rate.
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PE
R

Original-soft
Lookahead-soft
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Eb/N0
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10−2

10−3

10−4

Figure 9: Error correction performance of our, the look-ahead, and
the original MAP schemes at 𝜀 = 0.097.

5. Conclusions

We have proposed an effective error detection technique
based on the forecasting of forbidden symbols, which widens
the forbidden region by estimating the occurrence of the
subsequent forbidden symbols. A generalized SA is also
adopted to detect the forbidden symbol beforehand and to
remove the erroneous decoding paths earlier. As a result, the
chance of preserving the correct decoding path increases and
the error correction performance is improved. Simulation
results validate the superiority of our approach over the look-
ahead and the original MAP schemes, especially at a low
coding rate.
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