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Thedynamic behavior of cable-stayed bridges subjected tomoving loads and affected by an accidental failure in the cable suspension
system is investigated.Themain aim of the paper is to quantify, numerically, the dynamic amplification factors of typical kinematic
and stress design variables, by means of a parametric study developed in terms of the structural characteristics of the bridge
components. The bridge formulation is developed by using a geometric nonlinear formulation, in which the effects of local
vibrations of the stays and of large displacements in the girder and the pylons are taken into account. Explicit time dependent
damage laws, reproducing the failure mechanism in the cable system, are considered to investigate the influence of the failure mode
characteristics on the dynamic bridge behavior. The analysis focuses attention on the influence of the inertial characteristics of the
moving loads, by accounting coupling effects arising from the interaction between girder and moving system. Sensitivity analyses
of typical design bridge variables are proposed. In particular, the effects produced by the moving system characteristics, the tower
typologies, and the failure mode characteristics involved in the cable system are investigated by means of comparisons between
damaged and undamaged bridge configurations.

1. Introduction

Cable supported bridges are frequently employed in the
context of long spans, leading to slender structures, in
which, typically, the dead loads are comparable with those
involved in the live load configuration. As a consequence, the
external loads are able to produce high amplifications of the
main bridge kinematic and stress design parameters, leading
to nonstandard excitation modes and unexpected damage
mechanisms in the structural components of the bridge. In
order to simulate the actual behavior of the bridge, the struc-
turalmodeling should be able to reproduce the source of non-
linearities in the cable system, in the girder or in the pylons
due to cable sag or beam-column large deformation effects,
respectively. Moreover, additional complexities arise in the
prediction of the bridge behavior in the presence of damage
mechanisms, which strongly reduce the structural integrity of
the bridge. As amatter of fact, cable-supported structures are,
typically, affected by degradation effects such as corrosion,
abrasion, and fatigue, which may cause a reduction of the
stiffness properties or, in extreme cases, the complete failure

of a single or multiple cable elements. In the literature, many
investigations have been developed to analyze the influence
of the moving loads on the dynamic behavior of cable-
supported bridges, mainly, for undamaged bridge structures.
Actually, many models are devoted to predicting dynamic
bridge behavior by using refined structural schematizations
as well as accurate descriptions of the moving loads [1–4]. In
this framework, the bridge behavior is analyzed by means of
analytical continuum approaches or finite element models, in
which, the behavior of the cable suspension system is typically
described by means of linear equations expressed in terms
of tangent or secant Dischinger elastic moduli [5–8]. This
assumption is frequently supported by experimental evidence
for static analyses [9, 10]. However, in order to reproduce
the dynamic behavior correctly, especially when the bridge
is subjected to extreme loading conditions, local vibration
effects of the cable elements should be, properly, taken into
account [2, 11]. Additional complexities in the prediction of
the dynamic behavior of long span bridges arise from the
description of the interaction behavior betweenmoving loads
and bridge vibrations. At this aim, many papers have been
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developed to analyze the influence of the external mass and
its motion on the bridge behavior, introducing an accurate
description of the inertial forces between bridge deformation
and moving load kinematic [7, 8, 12]. However, a brief litera-
ture review denotes that the behavior of cable-stayed bridges
is mainly analyzed for undamaged structures, whereas the
influence of cable failure mechanisms produced by loss of
stiffness due to cable degradation or due to an accidental
failure is rarely analyzed. Typically, many papers are devoted
to investigating the effects on the dynamic behavior of a
single cable element of a localized or a distributed time
independent damage mechanisms [13], without entering in
detail on time dependence characteristics of the failure mode
or the coupling behavior between damaged and undamaged
elements of the cable system. The results proposed in this
framework show how damage phenomena induce tension
loss and sag augmentation of the static undamaged cable
profile.

Since cable elements are mostly utilized in supported
bridges, studies developed on single cables have been gener-
alized to evaluating the influence of damage phenomena on
realistic cable structures. In particular, damage behavior of
cable-stayed beam has been analyzed by means of numerical
approaches, in which the effects of diffused inelastic damage
concerning the intensity and location characteristics have
been investigated [14]. Such results show how the damage
effects produce relevant modifications with respect to the
undamaged configuration of the natural frequencies and
mode shapes of the structure.Moreover, further investigation
has been developed in the framework of cable-stayed bridge.

It is worth noting that fromadesign point of view, existing
codes on cable-stayed bridges, that is, PTI [15] and SETRA
[16], in order to identify the amplification effects provided
by the failure mechanism in the cable system, recommend to
amplify the results obtained in the framework of quasistatic
analyses by using fictitious amplification factors suggested in
the range between 1.5 and 2.0. In particular, the codes identify
the dynamic characteristics of the failure mode of a generic
element of the cable system, introducing a static loading
configuration, in which the cable failure is reproduced by
means of compression forces to simulate cable release. The
stress distribution arising from such a loading scheme is
combined with the effects of other existing loading schemes
by means of proper factored loading combinations. However,
recent papers have demonstrated that such a simplified
approach becomes unsafe in many cases, leading to dynamic
amplification factors higher than those suggested by existing
recommendations [17–19]. In particular, some parametric
studies have been developed for bridge typologies subjected
to accidental cable failure by using a numerical approach
based on classical standard linear dynamic framework [18,
19]. Such analyses denote that the results obtained by using
such code prescriptions are affected by high underestimations
in the prediction of typical design bridge variables related
to the girder and pylons. However, in order to correctly
reproduce the bridge behavior, additional developments are
required to be simulate the effect produced by the nonlin-
earities and damage mechanisms involved cable system and
by the inertial coupling between girder and moving loads

deformations. Actually, comprehensive analyses that include
suchnon linear dynamic effects are quite rare and thus further
investigations to verify code prescriptions and to quantify the
influence on the bridge behavior of the dynamic excitation
produced by the failure mode characteristics of the cable
system are much required.

In the present paper, the dynamic behavior of cable-
stayed bridges subjected to cable failure mechanisms is
investigated. The numerical study consists on a tridimen-
sional finite element model, in which both A-shaped and
H-shaped pylons are investigated. The aim of the paper is
to propose a parametric study to investigate the influence
on the bridge behavior of the dynamic excitation produced
by damage mechanisms in the cable system and the transit
of moving loads. Differently from existing papers available
in the literature, the proposed modeling reproduces the
inertial description of the moving loads by means of a
refined schematization of the inertial forces produced by
the moving system and girder bridge interaction. Moreover,
local vibrations of the cable elements are taken into account
by reproducing the nonlinearities involved in the cable-sag
effect in the cable system as well as large deformations in
the girder and the pylons. Finally, the stay failure mecha-
nism is formulated, consistently with a Continuous Damage
Mechanics approach, introducing time dependent damage
functions, which control the constitutive behavior of the
failure mechanism and thus the inertial characteristics of the
loss of cable stiffness. The outline of the paper is as follows:
Section 2 presents the general formulation of the cable and
the girder elements, the damage description of the cable
model, and the evaluation of the initial configuration; the
numerical implementation is reported in Section 3; paramet-
ric studies in terms of bridge andmoving loads characteristics
and failure mode typology in the cable system are reported in
Section 4.

2. Bridge Formulation

In this section the governing equations for the bridge
constituents as well as the main assumptions concerning
the kinematic modeling are discussed. In particular, the
main assumptions concerning the kinematic modeling of
the bridge, the damage formulation adopted to simulate
cable failure, and the inertial forces to define the moving
loads/girder interaction are discussed. Such governing equa-
tions represent the basis for the theoretical formulation of
the model, whose numerical implementation is presented in
Section 3.

2.1. Cable System Formulation and Initial Configuration under
Dead Loading. The bridge scheme is based on a tridimen-
sional modeling, in which both in plane and out of plane
deformation modes are considered. The structural model,
reported in Figure 1, is consistent with a fan-shaped and
a self-anchored cable-stayed bridge scheme. Moreover, the
pylons, analyzed by the present paper, refer to A- or H-
shaped typologies. Every single cable of the suspension
system is simulated by using a sequence of the 𝑛 truss



Mathematical Problems in Engineering 3

l L l

L

b

ct

s
c

X

X

KP

H

A

U1(t)

s

(2l+L,t)

KP
A0

P

X

X

b

e
H

U1

3

2

1

3

1

P

b b

e

c A0
c

c Ac

G

EGAG, EGIG2 , E
GIG2 , J

G
t

UG
2 (X1 ,t)

UG
1 (X1 ,t)

−UG
3 (X1 ,t)

−UG
3 (X1 ,t)

−UC
3 (s,t)

ΦG
1 (X1 ,t)

UG
1 (−1 + 1/2, t)

Sc
1A

c

Sc
1A

c

α0α0

∆

α(X1)

Cc, S
c
1

LS
(x)

Figure 1: Cable-stayed bridge scheme: bridge kinematic, pylons, girder, and cable system characteristics.
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Figure 2: Cable-stayed configuration under dead loading: internal stresses and kinematic parameters.

elements, which are connected at the cross-section ends of
the girder profile and at the top cross-section of the tower.
The formulation is consistent with a large deformation theory
based on the Green-Lagrange strain measure and the second
Piola-Kirchhoff stress [20], whereas the material behavior is
assumed to be linearly elastic. Since the cable behavior is
mostly influenced by the preexisting stress and strain status,
the initial configuration under the dead loading must be
identified in advance. In particular, with respect to the final
step of a balanced cantilever construction method, in which
only the central segment of the deck is left, the geometric
shape design of the bridge and the corresponding internal
stresses of the cable system are obtained enforcing the deck
and the top pylon cross-section kinematic variables to remain
in the undeformed configuration, that is, “zero configuration”
[10]. In order to calculate the initial stress distribution in
the cable system, an optimization solving problem should be
developed. In particular, with reference to the cable-stayed

bridge scheme, reported in Figure 2, with 𝑛 number of stays,
the objective functions are represented by the displacement
vector

˜
𝑈 containing the 𝑛 − 2 vertical displacements, that

is, (𝑈𝐺
2
, . . . , 𝑈

𝐺

𝑛−3
, 𝑈

𝐺

𝑛−2
), excluding those points associated

with the anchor stays at the cable/girder connections, and
the horizontal displacements of the top cross-section of the
pylons (𝑈𝑃

𝐿
, 𝑈

𝑃

𝑅
):

˜
𝑈
𝑇
= [𝑈

𝑃

𝐿
, 𝑈

𝑃

𝑅
, 𝑈

𝐺

2
, . . . , 𝑈

𝐺

𝑛−3
, 𝑈

𝐺

𝑛−2
] . (1)

Moreover, the design variables, which have to be calcu-
lated, correspond to the internal stress distribution of the
cable system, that is,

˜
𝑆
𝑇
= [𝑆

𝐶

1
, 𝑆
𝐶

2
, . . . , 𝑆

𝐶

𝑛
𝑐
−1
, 𝑆
𝐶

𝑛
]. Since

the relationships between displacements and cable stresses
are essentially nonlinear, a specialized solving procedure to
calculate the initial configuration is required. In particular,
starting from an initial trial distribution in the cable system,
that is,

˜
𝑆
0
, the vertical displacements under the dead loading
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can be expressed to the first order by the Taylor expansion in
terms of the incremental cable stress distribution, by means
of the following linearized equations:

˜
𝑈(

˜
𝑆
0
+ Δ

˜
𝑆, 𝑝) =

˜
𝑈 (

˜
𝑆
0
, 𝑝) +

𝑑

˜
𝑈

𝑑

˜
𝑆








(

˜
𝑆
0
,𝑝)

⋅ Δ

˜
𝑆 + 𝑜






Δ

˜
𝑆
2



,

(2)

where
˜
𝑈(

˜
𝑆
0
, 𝑝) is a vector containing the displacements

in the self weight loading condition and subjected to the
stress distribution

˜
𝑆
0
, 𝑝 is the loading parameter associated

to the application of the dead loading, and (𝑑
˜
𝑈/𝑑

˜
𝑆)|

(

˜
𝑆
0
,𝑝)

is the directional derivative of
˜
𝑈 at

˜
𝑆
0
coinciding with

the flexibility matrix of the structure. In (2), the unknown
quantity is represented by the incremental vector related to
the cable stress distribution, namely,Δ

˜
𝑆, which is determined

enforcing the displacement vector
˜
𝑈(

˜
𝑆 + Δ

˜
𝑆, 𝑝) to be zero

under the action of the dead loading. Since the structure
is affected by a nonlinear behavior, an iterative procedure
based on the Newton-Raphson scheme is adopted. More
details regarding the solving procedure to calculate the zero
configuration are reported in Section 3, which is, essentially,
devoted to analyzing the numerical implementation of the
proposed modeling.

With reference to the structural bridge scheme reported
in Figure 1, it is assumed that the cable system is composed of
undamaged elements and a fixed number of elements, which
are affected during the moving loads by an internal cable
failure mechanism. In particular, the damage formulation is
developed by means of explicit time dependence laws, which
reproduce the phenomenon of the cable release in a short
time step due to an accidental failure in the cable system,
such as the one occurring during a terroristic or vandalism
attack and thus is not related to creep damage. On the
contrary, the remaining stays are assumed to be undamaged
and thus the damage function is set to zero. The stay failure
of the 𝑖th generic stay is simulated, by introducing a damage
evolution law in the constitutive relationships. In particular,
a time dependent damage function is utilized, which reduces,
during the assumed failure time step, the elastic material
properties of the cable as well as the corresponding initial
internal stresses. Among the several approaches available
from the literature, the formulation is assumed to be consis-
tent with the ContinuumDamageMechanicsTheory [21, 22].
In this context, degradation functions, physically based, are
introduced to reproduce a typical damage phenomenon of
the cable system. The definition of the damage function is
developed introducing a scalar variable 𝐷 representative of
the failure mechanism, defined by means of the following
scalar expression:

𝐷(𝑠, 𝑡) =

𝑘 (𝑠, 𝑡) − 𝑘𝑑 (
𝑠, 𝑡)

𝑘 (𝑠, 𝑡)

with 𝐷 ∈ [0, 1] , (3)

where 𝑠 is the curvilinear coordinate used to describe the arc
length of the cable; 𝑘 and 𝑘

𝑑
are the actual and residual stiff-

ness properties, for example, area or modulus, of the cable,
respectively. In order to reproduce the failure mechanism
of the generic cable element, a time dependent damage law
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Figure 3: Initial and current configurations of the cable, support
motion due to girder (𝐺), and pylon (𝑃) deformation.

based on Kachanov or Rabotnov type approach [21, 22] is
introduced. The damage function is expressed through an
explicit evolution law in the failure time domain, defined
by the initial (𝑡0) and the final (𝑡𝑓) times of the failure
mechanism and the critical value of the damage variable 𝐷𝑐,
by means of the following expression:

𝐷(𝑠, 𝑡) = 1 − (1 −

𝑡
𝑓
− (𝑡 − 𝑡

0
)

𝑡
𝑓

)

1/(1+𝑚)

, (4)

with

𝑡
𝑓 =

1 − (1 − 𝐷
𝑐
)
𝑚+1

𝑚 + 1

(

𝑆

𝐴0

)

−𝑚

, (5)

where 𝑚 and 𝐴
0
are material damage parameters. More

details, about the mathematical relationships leading to (4)-
(5) can be found in the appendix. It is worth noting that
the critical damage parameter represents the value corre-
sponding to the occurrence of the complete failure of the
cable element, in which the 𝑖th generic stay does not have
the possibility of transferring any internal stresses from
the girder and the tower and thus can be considered not
to produce any significant effects on the global behavior
of the bridge. Moreover, the above formulation cannot be
considered in the creep damage framework, since the cable
release phenomenon is produced in a short time step and it is
concerned to simulate, essentially, an accidental failure in the
cable system.

The formulation is presented assuming that the cable
element is deformed in its initial cable configuration under
dead loading, that is,Ω

𝑐
, and thus the deformed configuration

of the cable due to the application of the live loads can be
described by the following additive expression (Figure 3):

˜
𝜑 (

˜
𝑋, 𝑡) = (𝑋1

+ 𝑈
𝐶

1
(

˜
𝑋, 𝑡))

˜
𝑛
1
+ (𝑋

2
+ 𝑈

𝐶

2
(

˜
𝑋, 𝑡))

˜
𝑛
2

+ (𝑋3 + 𝑈
𝐶

3
(

˜
𝑋, 𝑡))

˜
𝑛
3
,

(6)

where
˜
𝑋 with

˜
𝑋
𝑇
= [𝑋

1
, 𝑋

2
, 𝑋

3
] is the positional vector of

the cable cross-sections𝑈𝐶
𝑖
with 𝑖 = 1, 3 are the displacement

components in the local reference axis 𝑋
𝑖
described by the

basis 𝑛
𝑖
of the coordinate system. The main equations for
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the generic 𝑖th stay are described by introducing the damage
evolution law defined by (4) in the constitutive law defined
in terms of the Green-Lagrange strain and the second Piola-
Kirchhoff stress as

𝑆
𝐶

1
(

˜
𝑋, 𝑡) = 𝐶

𝐶
[1 − 𝛿

𝑖𝑘
𝐷 (𝑡)] 𝐸

𝐶

1
(

˜
𝑋, 𝑡) + 𝑆

𝐶

0
,

𝐸
𝐶

1
(

˜
𝑋, 𝑡) = 𝑈

𝐶

1,𝑋
1

(

˜
𝑋, 𝑡)

+

1

2

[𝑈
2

1,𝑋
1

(

˜
𝑋, 𝑡) + 𝑈

2

2,𝑋
1

(

˜
𝑋, 𝑡) + 𝑈

2

3,𝑋
1

(

˜
𝑋, 𝑡)]

𝐶

,

(7)

where 𝐶𝐶 is the elastic modulus, 𝛿𝑖𝑘 is the Kronecker delta
function, 𝑆𝐶

1
is the second Piola-Kirchhoff axial stress, 𝐸𝐶

1
is

the Green-Lagrange axial strain, and 𝑆𝐶
0
is the second Piola-

Kirchhoff axial stress in the zero configuration.Thegoverning
equations of the motion of a single cable are expressed by
means of the following partial differential equations [23]:

𝑑

𝑑𝑋
1

[𝑁
𝐶

1
+ 𝑁

𝐶

1

𝑑𝑈
𝐶

1

𝑑𝑋
1

] − 𝑏1 − 𝜇𝑐
�̈�
𝐶

1
= 0,

𝑑

𝑑𝑋
1

[𝑁
𝐶

1

𝑑𝑈
𝐶

2

𝑑𝑋
1

] − 𝜇
𝑐
�̈�
𝐶

2
= 0,

𝑑

𝑑𝑋
1

[𝑁
𝐶

1

𝑑𝑈
𝐶

3

𝑑𝑋
1

] − 𝑏
2
− 𝜇

𝑐
�̈�
𝐶

3
= 0,

with 𝑏1 = 𝜇𝐺𝑔 cos (𝜑1) ,

𝑏
2
= 𝜇

𝐺
𝑔 sin (𝜑

2
) ,

(8)

where 𝑁𝐶
1
is the axial force defined as 𝑁𝐶

1
= 𝑆

𝐶

1
𝐴
𝐶 with

𝐴
𝐶 the area of generic 𝑖th cable element, 𝜑

1
and 𝜑

2
are

the slope angles of the cable along the 𝑋
1
𝑋
2
and 𝑋

1
𝑋
3
,

respectively, and 𝑏
1
and 𝑏

2
are the body load projections

in the 𝑋
1
𝑋
2
and 𝑋

1
𝑋
3
, respectively. In addition to (8),

boundary conditions on the cable kinematic are needed to

describe the support motion produced by the girder and
pylon motion at the corresponding intersection points with
the cable development:

˜
𝑈
𝐶
(

˜
𝑋
0
) =

˜
𝑈
𝑃
, ̇

˜
𝑈

𝐶

(

˜
𝑋
0
) = ̇

˜
𝑈

𝑃

,

˜
𝑈
𝐶
(

˜
𝑋
𝑐
) =

˜
𝑈
𝐺
, ̇

˜
𝑈

𝐶

(

˜
𝑋
0
) = ̇

˜
𝑈

𝐺

,

(9)

where
˜
𝑋
0
and

˜
𝑋
𝑐
correspond to the initial and final cross-

sections of the cable element; (
˜
𝑈
𝑃
, ̇

˜
𝑈

𝑃

) and (
˜
𝑈
𝐺
, ̇

˜
𝑈

𝐺

) are the
displacement and speed of the pylon (𝑃) and girder (𝐺),
respectively, at the corresponding intersections with the cable
development.

2.2. Girder and Moving Loads Interaction. Girder and towers
are described by tridimensional geometric nonlinear beam
elements bymeans of a formulation based on Euler-Bernoulli
kinematic assumptions and a Green-Lagrange strain mea-
sure.The girder is connected with the cable system at the end
points of the cable cross-sections and at the bottom cross-
section ends of the towers, consistently defined with “H-”
or “A-” shaped typologies. With reference to Figure 4(a), the
displacements of the cross-section for a generic point located
at the (𝑋1, 𝑋2, 𝑋3) coordinate, that is, (𝑈

𝐺

1
, 𝑈

𝐺

2
, 𝑈

𝐺

3
), are

expressed by the following relationships:

𝑈

𝐺

1
(𝑋

1
, 𝑋

2
, 𝑋

3
, 𝑡) = 𝑈

𝐺

1
(𝑋

1
, 𝑡) + Φ

𝐺

2
(𝑋

1
, 𝑡) 𝑋

3

− Φ
𝐺

3
(𝑋

1
, 𝑡) 𝑋

2
,

𝑈

𝐺

2
(𝑋

1
, 𝑡) = 𝑈

𝐺

2
(𝑋

1
, 𝑡) ,

𝑈

𝐺

3
(𝑋

1
, 𝑋

2
, 𝑋

3
, 𝑡) = 𝑈

𝐺

3
(𝑋

1
, 𝑡) + Φ

𝐺

1
(𝑋

1
, 𝑡) 𝑋

2
,

(10)

where (𝑈𝐺
1
, 𝑈

𝐺

2
, 𝑈

𝐺

3
) and (Φ𝐺

1
, Φ

𝐺

2
, Φ

𝐺

3
) are the displacement

and rotation fields of the centroid axis of the girder with
respect to the global reference system, respectively.

The external loads are assumed to proceed with constant
speed c from left to right along the bridge development and
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are supposed to be located, eccentrically with respect to the
geometric axis of the girder. The moving system descrip-
tion refers to railway vehicle loads, which are reproduced
by means equivalent uniformly distributed loads, perfectly
connected to the girder profile. As a result, the kinematic
parameters of the moving system coincide with the ones
defined by the girder, neglecting frictional forces arising from
the external loads, roughness effects of the girder profile,
and local loading distribution produced by railway load
components. However, these assumptions are quite recurrent
in the framework of cable supported bridges with long
spans, in which, typically, such interaction forces produced
by localized dynamic effects are negligible with respect to
the global bridge vibration [24]. Moreover, it is assumed that
the damping energy is practically negligible. This hypothesis
is verified in the context of long span bridges, where it has
been proved that the bridge damping effects tend to decrease
as span length increases [25, 26]. Detailed results about the
influence of damping effects on DAFs have been presented
in [5, 6], from which it transpires that the assumption of
an undamped bridge system leads to greater DAFs. With
reference to the structural scheme reported in Figure 4(b),
the infinitesimal reaction forces produced by themoving load
on the girder profile can be expressed as a function of time
dependent positional variable 𝑠, with 𝑠(𝑡) = 𝑐𝑡, by means of
the balance of linear momentum, as follows:

𝑑𝑅
𝑋
3

= 𝑑𝑋
1

{

{

{

𝜆𝑔+

𝑑

𝑑𝑡

[

[

𝜆

𝑑
̇
𝑈

𝑚

3

𝑑𝑡

(𝑠 (𝑡))
]

]

}

}

}












𝑠=𝑋
1

= 𝑑𝑋
1

{

{

{

𝜆𝑔+

𝑑𝜆

𝑑𝑡

𝑑
̇
𝑈

𝑚

3

𝑑𝑡

(𝑠 (𝑡))+𝜆

𝑑
2 ̇
𝑈

𝑚

3

𝑑𝑡
2
(𝑠 (𝑡))

}

}

}












𝑠=𝑋
1

,

𝑑𝑅
𝑋
2

= 𝑑𝑋
1

{

{

{

𝑑

𝑑𝑡

[

[

𝜆

𝑑
̇
𝑈

𝑚

2

𝑑𝑡

(𝑠 (𝑡))
]

]

}

}

}












𝑠=𝑋
1

= 𝑑𝑋
1

{

{

{

𝑑𝜆

𝑑𝑡

𝑑
̇
𝑈

𝑚

2

𝑑𝑡

(𝑠 (𝑡)) + 𝜆

𝑑
2 ̇
𝑈

𝑚

2

𝑑𝑡
2
(𝑠 (𝑡))

}

}

}












𝑠=𝑋
1

,

𝑑𝑅
𝑋
1

= 𝑑𝑋
1

{

{

{

𝑑

𝑑𝑡

[

[

𝜆

𝑑
̇
𝑈

𝑚

1

𝑑𝑡

(𝑠 (𝑡))
]

]

}

}

}












𝑠=𝑋
1

= 𝑑𝑋
1

{

{

{

𝑑𝜆

𝑑𝑡

𝑑
̇
𝑈

𝑚

1

𝑑𝑡

(𝑠 (𝑡)) + 𝜆

𝑑
2 ̇
𝑈

𝑚

1

𝑑𝑡
2
(𝑠 (𝑡))

}

}

}












𝑠=𝑋
1

,

(11)

where 𝑔 is the gravitational acceleration, 𝜆 is the external
mass per unit length, and 𝑈𝑚

𝑖
with 𝑖 = 1, 3 are the displace-

ment functions along 𝑋
𝑖
axis of the moving mass, identified

by the girder kinematic by using (10), as 𝑈𝑚
𝑖
= 𝑈

𝑖
. It

is worth noting that in (11).1, at right hand side, the first
term represents the dead loading contribution, whereas, the
second term is produced by the unsteady mass distribution

in the system due to time dependence character of the mass
function arising from the moving loads. Finally, the third
term must be calculated taking into account the relative
motion between bridge and the moving mass as follows [27]:

𝑑𝑈

𝑚

𝑖

𝑑𝑡

=

𝜕𝑈

𝑚

𝑖

𝜕𝑡

+

𝜕𝑈

𝑚

𝑖

𝜕𝑠

𝜕𝑠

𝜕𝑡

=

𝜕𝑈

𝑚

𝑖

𝜕𝑡

+

𝜕𝑈

𝑚

𝑖

𝜕𝑠

𝑐,

(12)

𝑑
2
𝑈

𝑚

𝑖

𝑑𝑡
2
=

𝑑

𝑑𝑡

[

𝜕𝑈

𝑚

𝑖

𝜕𝑡

+

𝜕𝑈

𝑚

𝑖

𝜕𝑡

𝜕𝑠 (𝑡)

𝜕𝑡

]

=

𝜕
2
𝑈

𝑚

𝑖

𝜕𝑡
2
+ 2𝑐

𝜕
2
𝑈

𝑚

𝑖

𝜕𝑡𝜕𝑠

+ 𝑐
2
𝜕
2
𝑈

𝑚

𝑖

𝜕𝑠
2
.

(13)

It is worth noting that the Eulerian description of the
moving system introduces in (13) three terms corresponding
to standard, centripetal, and Coriolis acceleration functions,
respectively. However, the last two contributions in the
acceleration function for the transverse and longitudinal
displacements, that is, when 𝑖 = 1, 2, are typically negligible
in comparison to the term associated with the standard
acceleration and thus they are not considered in the following
computations. Substituting (10) into (11) with 𝑈𝑚

𝑖
= 𝑈𝑖,

and making the use of (12)-(13), the reaction forces per unit
length produced by the moving system are described by the
following expressions:

𝑝
𝑋
3

=

𝑑𝑅
𝑋
3

𝑑𝑋1

= 𝜆𝑔 +

𝑑𝜆

𝑑𝑡

[(

𝜕𝑈
𝐺

3

𝜕𝑡

+ 𝑒

𝜕Φ
𝐺

1

𝜕𝑡

) + 𝑐(

𝜕𝑈
𝐺

3

𝜕𝑋
1

+ 𝑒

𝜕Φ
𝐺

1

𝜕𝑋
1

)]

+ 𝜆[

𝜕
2
𝑈
𝐺

3

𝜕𝑡
2
+ 2𝑐

𝜕
2
𝑈
𝐺

3

𝜕𝑡𝜕𝑋
1

+ 𝑐

𝜕
2
𝑈
𝐺

3

𝜕𝑋1

2
]

+ 𝜆 ⋅ 𝑒 [

𝜕
2
Φ
𝐺

1

𝜕𝑡
2
+ 2𝑐

𝜕
2
Φ
𝐺

1

𝜕𝑡𝜕𝑋
1

+ 𝑐

𝜕
2
Φ
𝐺

1

𝜕𝑋
1

2
] ,

𝑝
𝑋
2

=

𝑑𝑅
𝑋
2

𝑑𝑋
1

=

𝑑𝜆

𝑑𝑡

𝜕𝑈
𝐺

2

𝜕𝑡

+ 𝜆

𝜕
2
𝑈
𝐺

2

𝜕𝑡
2
,

𝑝
𝑋
1

=

𝑑𝑅𝑋
1

𝑑𝑋
1

=

𝑑𝜆

𝑑𝑡

[(

𝜕𝑈
𝐺

1

𝜕𝑡

− 𝑒

𝜕Φ
𝐺

3

𝜕𝑡

)] + 𝜆

𝜕
2
𝑈
𝐺

1

𝜕𝑡
2
− 𝜆 ⋅ 𝑒

𝜕
2
Φ
𝐺

3

𝜕𝑡
2

=

𝑑𝜆

𝑑𝑡

[(

𝜕𝑈
𝐺

1

𝜕𝑡

− 𝑒

𝜕
2
𝑈
𝐺

2

𝜕𝑡𝜕𝑋
1

)] + 𝜆

𝜕
2
𝑈
𝐺

1

𝜕𝑡
2
− 𝜆 ⋅ 𝑒

𝜕
3
𝑈
𝐺

3

𝜕𝑡
2
𝜕𝑋

1

,

(14)

where 𝑒 is the eccentricity of the moving loads with respect
to the girder geometric axis. Moreover, in (14), the mass
function during the external load advance can be expressed
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with respect to the global reference system assumed from the
left end of the bridge as

𝜆 (𝑠
1
, 𝑡) = 𝜆ML𝐻(𝑠1 + 𝐿𝑝 − 𝑐𝑡)𝐻 (𝑐𝑡 − 𝑠1) , (15)

where 𝐻(⋅) is the Heaviside step function, 𝐿𝑝 is the length
of the moving loads, 𝑠1 is the referential coordinate located
at the left end of the girder cross-section, that is, 𝑠1 = 𝑙 +
𝐿/2 + 𝑋

1
, and 𝜆

𝑀
is the mass linear density of the moving

system.
The kinematic model is consistent with the geomet-

ric nonlinear Euler-Bernoulli theory, in which moderately
large rotations are considered [26]. The torsional behavior
owing to eccentric loading is described by means of the
classical De Saint Venant theory. In particular, the strains
are based on the Green-Lagrange measure in which only
the square of the terms 𝑈2𝐺

𝑖,𝑋
1

representing the rotations
of the transverse normal line in the beam is consid-
ered. Therefore, starting from (10), the following relation-
ships between generalized strain and stress variables are
obtained:

𝑁
𝐺

1
= 𝑁

0(𝐺)

1
+ 𝐸𝐴

𝐺
𝜀
𝐺

1

= 𝑁
0(𝐺)

1
+ 𝐸

𝐺
𝐴
𝐺
{𝑈

𝐺

1,𝑋
1

+

1

2

[𝑈
2𝐺

1,𝑋
1

+ 𝑈
2𝐺

2,𝑋
1

+ 𝑈
2𝐺

3,𝑋
1

]} ,

𝑀
𝐺

2
= 𝑀

0(𝐺)

2
+ 𝐸𝐼

𝐺

2
𝜒
𝐺

2

= 𝑀
0(𝐺)

2
+ 𝐸

𝐺
𝐼
𝐺

2
Φ
𝐺

2,𝑋
1

= 𝑀
0(𝐺)

2
− 𝐸𝐼

𝐺

2
𝑈
𝐺

3,𝑋
1
𝑋
1

,

𝑀
𝐺

3
= 𝑀

0(𝐺)

3
+ 𝐸𝐼

𝐺

3
𝜒
𝐺

3

= 𝑀
0(𝐺)

3
+ 𝐸

𝐺
𝐼
𝐺

3
Φ
𝐺

3,𝑋
1

= 𝑀
0(𝐺)

3
+ 𝐸𝐼

𝐺

3
𝑈
𝐺

2,𝑋
1
𝑋
1

,

𝑀
𝐺

1
= 𝐺𝐽

𝐺

𝑡
Θ
𝐺
= 𝐺

𝐺
𝐽
𝐺

𝑡
Φ
𝐺

1,𝑋
1

,

(16)

where 𝐸𝐴𝐺 and 𝜀𝐺
1
are the axial stiffness and strain, 𝜒𝐺

2
and

𝜒
𝐺

3
or 𝐸𝐺𝐼𝐺

2
and 𝐸𝐺𝐼𝐺

3
are the curvatures or the bending

stiffnesses with respect to the 𝑋2 and 𝑋3 axes, respectively,
Θ
𝐺 and 𝐺𝐺𝐽𝐺

𝑡
are the torsional curvature and stiffness,

respectively,𝑁𝐺
1
is the axial stress resultant,𝑀𝐺

2
and𝑀𝐺

3
are

the bending moments with respect to the 𝑋
2
and 𝑋

3
axes,

respectively,𝑀𝐺

1
and 𝐺𝐺𝐽𝐺

𝑡
are torsional moment and girder

stiffness, respectively, and (⋅)0 represents the superscript con-
cerning the variables associatedwith the “zero configuration.”
On the basis of (16), taking into account of (14)-(15) and
notation reported in Figure 4(a), the following governing

equations are derived by means of the local form of dynamic
equilibrium equations:

𝑑

𝑑𝑋
1

{𝑁
𝐺

1
(1 +

𝑑𝑈
𝐺

1

𝑑𝑋
1

)} − 𝜇
𝐺
�̈�
𝐺

1
+ 𝑝

𝑋
1

= 0,

− 𝐸
𝐺
𝐼
𝐺

2

𝑑
4
𝑈
𝐺

3

𝑑𝑋
4

1

−

𝑑

𝑑𝑋
1

(𝑁
𝐺

1

𝑑𝑈
𝐺

3

𝑑𝑋
1

)

− 𝜇
𝐺
�̈�
𝐺

3
− Φ̈

𝐺

2,𝑋1
𝐼
𝐺

02
− 𝑝

𝑋
3

= 0,

𝐸
𝐺
𝐼
𝐺

3

𝑑
4
𝑈
𝐺

2

𝑑𝑋
4

1

−

𝑑

𝑑𝑋
1

(𝑁
𝐺

1

𝑑𝑈
𝐺

2

𝑑𝑋
1

)

− 𝜇
𝐺
�̈�
𝐺

2
− Φ̈

𝐺

3,𝑋1
𝐼
𝐺

03
+ 𝑝

𝑋
2

= 0,

𝐺
𝐺
𝐽
𝐺

𝑡

𝑑
2
Φ
𝐺

1

𝑑𝑋
2

1

− (𝐼
𝐺

01
+ 𝜆

0

ML) Φ̈
𝐺

1
− 𝑝𝑋

3

𝑒 = 0,

(17)

where 𝜆0ML is the per unit length torsional girder mass; 𝜇
𝐺

is the girder mass per unit length. Additional equations
are required to take into account interelement continuity
and initial conditions concerned with solving the dynamic
problem, which can be expressed with reference to the 𝑖th
girder element as follows:

𝑈
𝐺

𝑘
(0) = 0, �̇�

𝐺

𝑘
(0) = 0,

𝑈
𝑖(𝐺)

𝑘
(0) = 𝑈

𝑖−1(𝐺)

𝑘
(𝑙
𝑖−1

𝑒
) , 𝑈

𝐺

𝑘
(𝑙
𝑖

𝑒
) = 𝑈

𝑖+1

𝑘
(0) ,

Φ
𝐺

𝑘
(0) = 0, Φ̇

𝐺

𝑘
(0) = 0,

Φ
𝑖(𝐺)

𝑘
(0) = Φ

𝑖−1(𝐺)

𝑘
(𝑙
𝑖−1

𝑒
) , Φ

𝐺

𝑘
(𝑙
𝑖

𝑒
) = Φ

𝑖+1

𝑘
(0) ,

(18)

where the superscripts 𝑖 + 1 and 𝑖 − 1 indicate the previous or
the next girder elements and the subscript 𝑘, with 𝑘 = 1, 2, 3
defines the displacement and rotation directions with respect
to the coordinate reference system.

3. Finite Element Implementation

The governing equations reported in the previous section
introduce a nonlinear partial differential system, whose
analytical solution is quite complex to be extracted. As
a consequence, a numerical approach based on the finite
element formulation is utilized. In particular, starting from
(8) and (17), the corresponding weak forms for the 𝑖th finite
element related to the girder (𝐺) and the cable system (𝐶),
respectively, are defined by the following expressions.

Girder

∫

𝑙
𝑖

𝑒

𝑁
𝐺

1
(1 + 𝑈

𝐺

1,𝑋
1

)𝑤
1,𝑋
1

𝑑𝑋
1
− 𝜇

𝑔 ∫

𝑙
𝑖

𝑒

�̈�
𝐺
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𝑤
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𝑑𝑋
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𝑙
𝑖

𝑒

[−𝛿
1
+ 𝛿

2
] �̇�

𝐺
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𝑤
2
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𝑙
𝑖

𝑒

𝐻
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𝐻
2
�̈�
𝐺

1
𝑤
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𝑑𝑋

1

−

2

∑

𝑗=1

𝑁
𝐺

1𝑗
𝑈
𝐺

1𝑗
= 0,
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∫

𝑙
𝑖

𝑒

{−𝑀
𝐺
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𝑤
2,𝑋
1
𝑋
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𝐺

1
𝑈
𝐺
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1
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1,𝑋
1

)𝑤
4
𝑑𝑋

1

−

2

∑

𝑗=1

𝑀
𝐺

1𝑗
Φ
𝐺

1𝑗
= 0.

(19)

Cable System

∫

𝑙
𝑖

𝑒

𝑁
𝐶

1
(1 + 𝑈

𝐶

1,𝑋1
)𝑤

1,𝑋
1

𝑑𝑋
1
− 𝜇

𝑐 ∫

𝑙
𝑖

𝑒

�̈�
𝐶

1
𝑤
1
𝑑𝑋

1

− ∫

𝑙
𝑖

𝑒

𝑏1𝑤1𝑑𝑋1 −

2

∑

𝑗=1

𝑁1𝑗
𝑈
𝐶

1𝑗
= 0,

∫

𝑙
𝑖

𝑒

𝑁
𝐶

1
𝑤
2,𝑋
1

𝑑𝑋
1
− 𝜇

𝑐 ∫

𝑙
𝑖

𝑒

�̈�
𝐶

2
𝑤
2
𝑑𝑋

1
−

2

∑

𝑗=1

𝑇
𝐶

2𝑗
𝑈
𝐶

2𝑗
= 0,

∫

𝑙
𝑖

𝑒

𝑁
𝐶

1
𝑤3,𝑋

1

𝑑𝑋1 − 𝜇𝑐 ∫

𝑙
𝑖

𝑒

�̈�
𝐶

3
𝑤3𝑑𝑋1

− ∫

𝑙
𝑖

𝑒

𝑏
3
𝑤
3
𝑑𝑋

1
−

2

∑

𝑗=1

𝑇
𝐶

3𝑗
𝑈
𝐶

3𝑗
= 0,

(20)

where 𝐻
1
= 𝐻(𝑠

1
+ 𝐿

𝑝
− 𝑐𝑡), 𝐻

2
= 𝐻(𝑐𝑡 − 𝑠

1
), 𝛿

1
=

𝛿(𝑠
1 + 𝐿𝑝 − 𝑐𝑡), 𝛿2 = 𝛿(𝑐𝑡 − 𝑠1), 𝛿(⋅) represents the delta

Dirac functions, (𝑁1𝑖, 𝑇2𝑖, 𝑇3𝑖,𝑀2𝑖,𝑀3𝑖)
𝑘 with 𝑘 = 𝐶, 𝐺 and

𝑖 = 1, 2 represents the internal forces applied at the end node
𝑖 of the generic cable (𝐶) or girder (𝐺) element. Moreover,
the pylon governing equations can be easily obtained from
(19), by removing all the terms related to the moving loads
and changing the relative variables from the superscript (⋅)𝐺

to (⋅)𝑃and the parameters concerning the mechanical and
material characteristics. As a consequence, for conciseness,
the governing equations concerning the pylon dynamic
behavior are not reported.

Finite element expressions are written starting from the
weak forms previously reported, introducing Hermit cubic
interpolation functions (𝜉

𝑖
) for the girder and pylon flexures

in the𝑋
1
𝑋
2
and𝑋

2
𝑋
3
deformation planes and Lagrange lin-

ear interpolation functions (𝜁
𝑖
) for the cable system variables

and the remaining variables of the girder and the pylons:

˜
𝑈
𝐶
(

˜
𝑟, 𝑡) =

˜
𝑁
𝐶
(

˜
𝑟)

˜
𝑞
𝐶
(𝑡) ,

˜
𝑈
𝐺
(

˜
𝑟, 𝑡) =

˜
𝑁
𝐺

˜
𝑞
𝐺
(𝑡) ,

˜
𝑈
𝑃
(

˜
𝑟, 𝑡) =

˜
𝑁
𝑃

˜
𝑞
𝑃
(𝑡) ,

(21)

where
˜
𝑞
𝐶
and

˜
𝑞
𝐺
are the vectors collecting the nodal degrees

of freedom of the cable, girder respectively,
˜
𝑁
𝐶
,

˜
𝑁
𝐺
, and

˜
𝑁
𝑃

are the matrixes containing the displacement interpolation
function for cable element (𝐶), girder (𝐺), and pylons (𝑃),
and

˜
𝑟 is the local coordinate vector of the 𝑖th finite element.

The discrete equations in the local reference system of the 𝑖th
element are derived substituting (21) into (19)-(20), leading to
the following equations in matrix notation:

(

˜
𝑀
𝐺

𝑆
+

˜
𝑀
𝐺

NS)
̈

˜
𝑈

𝐺

+ (

˜
𝐶
𝐺

𝑆
+

˜
𝐶
𝐺

NS) ˜
�̇�

𝐺

+ (

˜
𝐾
𝐺

𝑆
+

˜
𝐾
𝐺

NS) ˜
𝑈
𝐺
=

˜
𝑃
𝐺
+

˜
𝑄
𝐺
,

˜
𝑀
𝑃
̈

˜
𝑈

𝑃

+

˜
𝐶
𝑃

˜
�̇�

𝑃

+

˜
𝐾
𝑃

˜
𝑈
𝑃
=

˜
𝑃
𝑃
+

˜
𝑄
𝑃
,

˜
𝑀
𝐶
̈

˜
𝑈

𝐶

+

˜
𝐶
𝐶

˜
�̇�

𝐶

+

˜
𝐾
𝐶

˜
𝑈
𝐶
=

˜
𝑈
𝐶
+

˜
𝑄
𝐶
,

(22)

where
˜
𝑀
𝑖
is the mass matrix,

˜
𝐶
𝑖
is the damping matrix,

˜
𝐾
𝑖
is

the stiffnessmatrix,
˜
𝑃
𝑖
is the load vector produced by the dead

and live loading,
˜
𝑄
𝑖
is the unknown force vector collecting

the point sources, and the subscripts (⋅)
𝑆
or (⋅)NS refer to

standard or nonstandard terms, respectively, introduced in
the discrete equations. Most of the matrixes reported in (22)
can be easily recovered from the literature [26]. Contrarily,
the matrixes

˜
𝑀NS, ˜

𝐶NS, and ˜
𝐾NS collect the nonstandard

terms arising from the inertial description of the live loads
and the interaction behavior between moving loads and
bridge motion and are defined by the following expressions:

(

˜
𝑀
𝐺

NS) = ∫
𝑙
𝑖

𝑒

𝐻
1
𝐻
2
(

˜
𝑁
𝐺(𝑇)

˜
Λ
𝑀
1 ˜
𝑁
𝐺
) 𝑑𝑋

1
,

(

˜
𝐶
𝐺

NS)𝑖𝑗
= ∫

𝑙
𝑖

𝑒

[(−𝛿
1
+ 𝛿

2
) (

˜
𝑁
𝐺(𝑇)

˜
Λ
𝐶
1 ˜
𝑁
𝐺
)

+𝐻
1
𝐻
2
(

˜
𝑁
𝐺(𝑇)

,𝑋
1 ˜
Λ
𝐶
2 ˜
𝑁
𝐺
)] 𝑑𝑋

1
,
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(

˜
𝐾
𝐺

NS)𝑖𝑗
= ∫

𝑙
𝑖

𝑒

[(−𝛿
1
+ 𝛿

2
) (𝑁

∼

𝐺(𝑇)

1,𝑋
1 ˜
Λ
𝐾
1 ˜
𝑁
𝐺
)

+𝐻
1
𝐻
2
(

˜
𝑁
𝐺(𝑇)

,𝑋
1
𝑋
1 ˜
Λ
𝐾
2 ˜
𝑁
𝐺
)] 𝑑𝑋

1
,

(23)

where the matrixes
˜
Λ
𝑀
1

,

˜
Λ
𝐶
1,2

, and
˜
Λ
𝐾
1,2

, which assemble the
coefficients associated with the inertial contribution arising
from the moving loads and girder interaction, are defined as:

Λ
𝑀
1

= diag [𝜆ML, 𝜆ML, 𝜆ML, 𝜆ML𝑒 + 𝜆
0

ML, 0, 0] ,

Λ
𝑀
1

= diag [0, −𝑒𝜆ML, 0, 0, 0, 0] ,

Λ
𝐶
1

= diag [𝜆ML, 𝜆ML, 𝜆ML, 𝜆ML𝑒 + 𝜆
0

ML, 0, −𝜆ML𝑒] ,

Λ𝐶
2

= diag [0, 0, 2𝑐𝜆ML, 2𝑐 (𝜆ML𝑒 + 𝜆
0

ML) , 0, 0] ,

Λ
𝐾
1

= diag [0, 0, 𝑐𝜆ML, 𝑐 (𝜆ML𝑒 + 𝜆
0

ML) , 0, 0] ,

Λ𝐾
2

= diag [0, 0, 𝑐2𝜆ML, 𝑐
2
(𝜆ML𝑒 + 𝜆

0

ML) , 0, 0] .

(24)

In order to reproduce the bridge kinematic correctly,
additional relationships to define the connections between
girder, pylon, and cable system are necessary. In particular,
the cable system displacements should be equal to those of
the girder and the pylons at the corresponding intersection
points; thus, the bridge kinematic is restricted by means of
the following constrain equations:

𝑈
𝐺

3
(

˜
𝑋
𝐶
𝑖

, 𝑡) + Φ
𝐺

1
(

˜
𝑋
𝐶
𝑖

, 𝑡) 𝑏 = 𝑈
𝐶

3
(

˜
𝑋
𝐶
𝑖

, 𝑡) ,

𝑈
𝐺

1
(

˜
𝑋𝐶
𝑖

, 𝑡) − Φ
𝐺

3
(

˜
𝑋𝐶
𝑖

, 𝑡) 𝑏 = 𝑈
𝐶

1
(

˜
𝑋𝐶
𝑖

, 𝑡) ,

𝑈
𝑃

1
(

˜
𝑋
𝑃
, 𝑡) = 𝑈

𝐶

1
(

˜
𝑋
𝑃
, 𝑡) ,

𝑈
𝑃

2
(

˜
𝑋
𝑃
, 𝑡) = 𝑈

𝐶

2
(

˜
𝑋
𝑃
, 𝑡) ,

𝑈
𝑃

3
(

˜
𝑋𝑃, 𝑡) = 𝑈

𝐶

3
(

˜
𝑋𝑃, 𝑡) ,

(25)

where
˜
𝑋
𝐶
𝑖

and
˜
𝑋
𝑃
represent the vectors containing the inter-

section positions of the 𝑖th cable element and the pylon top
cross-section, respectively. Finally, starting from (22), taking
into account (25) as well as the balance of secondary variables
at the interelement boundaries, the resulting equations of the
finite element model are

˜
𝑀 ̈

˜
𝑄 +

˜
𝐶 ̇

˜
𝑄 +

˜
𝐾

˜
𝑄 =

˜
𝑃, (26)

where
˜
𝑄with

˜
𝑄 =

˜
𝑈
𝐵
∪

˜
𝑈
𝐺
∪

˜
𝑈
𝑃
is the generalized coordinate

vector containing the kinematic variables associated with
the girder, the pylons, and the cable system,

˜
𝑀,

˜
𝐶, and

˜
𝐾

are the global mass, stiffness, and damping matrixes, and
˜
𝑃

is the loading vector. Since the structural behavior of each
element depends on the deformation state of the members,
the governing equations defined by (26) will change continu-
ously as the structure deforms. Moreover, the external loads
owing to the presence of its own moving mass determine
a time dependent mass distribution function on the girder

profile. Consequently, the discrete equations are affected by
nonlinearities in the stiffness matrix and time dependence in
the mass matrix.

The governing equations are solved numerically, using a
user customized finite element program, that is, COMSOL
Multiphysics TM version 4.1 [27]. The analysis is performed
by means of two different stages. Initially, a preliminary
analysis is devoted to calculating the initial stress distribution
in the cable system, that is, “zero configuration.” In this
context, the shape optimization procedure is developed,
consistently with a Newton-Raphson iteration scheme. Since
the loading condition refers to the application of dead loading
only, the analysis is developed in the framework of a static
analysis. In particular, with reference to (2), at the 𝑘th
iteration, the incremental value of the cable system stresses
Δ

˜
𝑆
𝑘
is determined by neglecting the second order residuum

obtained by the Taylor expansion, that is, 𝑜‖Δ
˜
𝑆
2

𝑘
‖ and by

solving the linear equation system enforcing the bridge
deformations to verify the constraint equations given by the
zero configuration, namely,

˜
𝑈(

˜
𝑆
𝑘
+ Δ

˜
𝑆
𝑘
, 𝜆) = 0, as.

Δ

˜
𝑆
𝑘
= −[

𝑑

˜
𝑈

𝑑

˜
𝑆










−1

(˜
𝑆
𝑘
,𝜆)

]

𝑘
˜
𝑈 (

˜
𝑆
𝑘
, 𝜆) . (27)

The iterative values of the cable stresses are determined
from (27) as

˜
𝑆
𝑘+1

=

˜
𝑆
𝑘
+ Δ

˜
𝑆
𝑘
, whereas the final quantities

are obtained by means of an incremental-iterative procedure,
which is developed on the basis of a tolerance convergence
criterion. In particular, the residual norm is checked to be
lower than a fixed prescribed tolerance, that is, ‖

˜
𝑈(

˜
𝑆
𝑘
+

Δ

˜
𝑆
𝑘
, 𝜆)‖ ≤ toll; if it is not verified, new values of the stresses

are determined by means of an iterative scheme defined on
the basis of (27). Once the initial configuration is determined
in terms of the initial cable stress and strain distribution, a
sequential dynamic analysis is developed. Since the governing
equations introduce essentially a time dependent nonlinear
equation system, an incremental and iterative integration
scheme is required. The algebraic equations are solved by
a direct integration method, which is based on an implicit
time integration scheme. In particular, an implicit temporal
discretization of order two using a Backward Differentiation
Formula (BDF-2) with an adaptative time step is utilized.
Moreover, a Newton-Raphson scheme in the time step
increment based on the secant formulation is utilized for
the nonlinearities involved in the governing equations [28].
In order to guarantee accuracy in the predicted results,
particular attention is devoted to the choice of the time
integration step, which, assuming small vibrations about the
nonlinear equilibrium configuration under dead loads, can
be defined as a function of the periods of those vibration
mode shapes having a relevant participation on the response.
However, in the case of moving load excitation, the dynamic
solution strongly depends on the speed of themoving system,
since different vibration frequencies are activated for low or
large transit speeds [27]. In the present analyses, the initial
integration time step, which is automatically reduced due to
the time adaptation procedure, is assumed as at least 1/1000
of the observation period defined as the time necessary for
the moving train to cross the bridge. This value turns out to
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be always lower than 1/100 of the 50th natural period of the
bridge structure, the first natural period being the largest one.

4. Results

Results are proposed to investigate the behavior of cable-
stayed bridge subjected to an accidental failure in the cable
system. From the design point of view, existing codes on this
argument, that is, PTI [15] and SETRA [16], recommend to
reproduce the effects of such loading scheme by performing
a quasistatic analysis and taking into account the dynamic
amplification effects by means of amplification factors in the
range between 1.5–2.0. For this reason, the purpose of the
following results is to identify the dynamic amplification
effects produced by the cable failure by using a refined
dynamical formulation in place of a simplified quasi-static
one. In order to quantify the amplification effects produced
by themoving loads over the static solution, numerical results
are proposed in terms of dynamic amplification factors for
undamaged (UD) and damaged (𝐷) cable-stayed structures
in terms of the moving loads and the bridge characteristics. It
is worth noting that UD cable-stayed configurations refer to
a bridge structures, in which the stays are not affected by any
damage mechanisms. Contrarily, damaged (𝐷) cable-stayed
scheme corresponds to bridge configurations, in which one
ormore stays are subjected to the explicit damagemechanism
defined on the basis of (3). Moreover, in the following
results, the cross-section exposed to damage is assumed to
be located at the intersection between the stay and girder.The
dynamic amplification factors (DAFs) for the generic variable
𝑋 under investigation related to damaged or undamaged
structural configuration, namely,Φ𝐷

𝑋
andΦUD

𝑋
are defined by

the following relationships:

Φ
𝐷

𝑋
=

max (𝑋𝐷, 𝑡 = 0 ⋅ ⋅ ⋅ 𝑇)
𝑋
𝐷

ST
,

Φ
UD
𝑋
=

max (𝑋UD
, 𝑡 = 0 ⋅ ⋅ ⋅ 𝑇)

𝑋
UD
ST

,

(28)

where 𝑇 is the observation period and the subscript (⋅)ST
refers to the value of the variable determined in a static
analysis. Moreover, an additional description of the DAF
is proposed to quantify the relationship between damaged
and undamaged configurations by means of the following
expression:

Φ
𝐷−UD
𝑋

=

max (𝑋𝐷, 𝑡 = 0 ⋅ ⋅ ⋅ 𝑇)
𝑋

UD
ST

. (29)

It is worth noting that the formulation of theDAF defined
by (30) characterizes the dynamical amplification effects of
the investigated variable with respect to the static response in
the undamaged structural configuration of the bridge. This
parameter can be useful for design purpose, since when this
kind of DAF is known in advance the designer is able to
control the amplification effects of a generic bridge variable
due to the combined action produced by the failure mecha-
nism and the inertial forces, avoiding the analysis suggested

by the existing codes on the argument [15, 16]. The bridge
andmoving load dimensioning is selected in accordance with
the values utilized in practical applications and due, mainly,
to both structural and economical reasons. The parametric
study is developed by using dimensionless parameters, which
are typically utilized to identify the structural andmechanical
properties of a long-span bridge and moving loads. In
particular, the cross-sectional stay areas are designed in
such a way that the tensile stresses in the cables are always
less than a design maximum allowable value, namely, 𝜎𝑎,
adopted on the basis of fatigue requirements. Such value is
defined by the existing codes and it is considered as a known
quantity, depending on the cross-section configuration and
material technology [9, 10], which is, typically, provided by
the manufactures of the cables and assumed as a fraction
of the rupture stress of the steel [29]. At first, the stay
dimensioning procedure is defined on the basis of the self-
weight configuration. The stresses of a generic stay or the
anchor stays are assumed to be equal to fixed working stress
values, namely, 𝜎

𝑔
and 𝜎

𝑔0
, respectively, which are defined in

the basis of the ratio between live and self-weight loads, the
allowable stay stress, and the geometric characteristics of the
bridges, bymeans of the following relationships [7, 10, 29–31]:

𝜎
𝑔
=

𝑔

𝑔 + 𝑝

𝜎
𝑎

𝜎
𝑔0
= 𝜎

𝑎
{1 +

𝑝

𝑔

[1 − (

2𝐿

𝑙

)

2

]

−1

}

−1

.

(30)

It is worth noting that since the stress increments in the
stays can be supposed to be proportional to the live loads
𝑝, 𝜎

𝑔
and 𝜎

𝑔0
, defined on the basis of (28), are able to

control the stress variation in the cable system produced
by the live load application, avoiding that internal stresses
in the stays exceed the allowable stress 𝜎

𝑎
. Moreover, since

the present analysis is devoted to investigate the behavior of
long span bridges, it is reasonable to consider the girder as
practically free from bending moments for reduced values
of the stay spacing step and thus that it is dominated by
means of a prevailing truss behavior [9, 10, 29, 30]. As a
consequence, it is possible to regard the deck as a continuous
structure supported by a continuous distribution of stays,
whose reaction forces can be calculated by using simple equi-
librium relationships, able to provide cable dimensioning. In
particular, the cross-sectional of the 𝑖th stay area, namely,
𝐴
𝐶

𝑖
, is designed in such a way that the dead loads produce

a constant stress level over all the distributed elements equal
to 𝜎

𝑔
. Similarly, for the anchor stays the cross-sectional

geometric area𝐴𝐶
0
is designed in such away that the allowable

stress 𝜎𝑔0 is obtained for live loads 𝑝 applied to the central
span only. Therefore, the geometric measurement for the
cables system can be expressed by the following equations
[7–10, 30]:

𝐴
𝐶

𝑖
=

𝑔Δ
𝑖

𝜎
𝑔
sin𝛼

𝑖

,

𝐴
𝐶

0
=

𝑔𝑙

2𝜎
𝑔0

[1 + (

𝑙

𝐻

)

2

]

1/2

[(

𝐿

2𝑙

)

2

− 1] ,

(31)
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where 𝛼
𝑖
is the slope of a generic stay element with respect

to the reference system, (𝐿, 𝑙,𝐻) are representative geometric
lengths of the bridge structure, and Δ is the stay spacing step.
Moreover, aspect ratio, pylon stiffness, allowable cable stress
and bridge, and moving loads characteristics are assumed as
equal to the following representative values [7–10]:

𝐿

2𝐻

= 2.5,

ℓ

𝐻

=

5

3

,

𝐿

Δ

=

1

100

,

𝑎 = (

𝛾
2
𝐻
2
𝐸
𝐶

12𝜎
3

𝑔

) , (bridge geometry)

𝐼
𝐺

2

𝐼
𝐺

3

=

1

10

,

𝐼
𝐺

02

𝐼
𝐺

03

=

1

10

,

𝐽
𝐺

𝑡

𝐴
2
= 100,

𝐼
𝑃

2

𝐼
𝑃

3

=

1

10

,

𝐸
𝐺,𝑃

𝐶
𝐶
= 1 (girder and pylon)

𝜀
𝐹
= (

4𝐼
𝐺

2
𝜎
𝑔

𝐻
3
𝑔

)

1/4

,

𝐾
𝑃

𝑔

= 50, (girder and pylon)

𝜆
0

ML
𝜇
𝐺
𝑏
2
= 1,

𝜆ML
𝜇
𝐺

= 1,

𝑝

𝑔

= 1,

𝑒

𝑏

= 0.5, (moving loads)

𝐴
𝐶

0
𝐸
𝐶

𝑔𝐿

= 100, 𝜏0 =

𝑐𝑡0

𝐿

, 𝑚 = 1,

𝜎
𝑎

𝐶
𝐶
=

7.2E8
2.1E11

(cable system) ,
(32)

where 𝐻 is the pylon height, 𝐶𝐶 is the modulus of elasticity
of the cable, 𝐾

𝑃
is the in-plane flexural top pylon stiffness,

𝑏 is half girder cross-section width, 𝑡
0
is the initial time

in which the damage mechanism starts the degradation
effects, 𝜏

0
is the normalized failure time, and 𝑚 is the

parameter which controls the time evolution of the damage
curve.

At first, the failure condition, located at the girder/cable
intersection, is supposed to be produced in one anchor
stay, located laterally to the longitudinal axis of the girder.
The time of the failure mode is assumed to be consistent
with values typically observed in experimental tests, whose
representative value in the computations is assumed to be
0.005 sec [16]. It is worth noting that additional analyses, not
reported for the sake of brevity, show that the influence of
the failure time step on the dynamical amplification factors
is practically negligible and within 8% up to very high
moving load speeds, that is, 𝑐 = 160m/s. Moreover, in this
preliminary analysis it is assumed that the failure of the stay
starts when the moving load front reaches the midspan, that
is, 𝑡

𝑅
= 𝑐/(𝑙 + 𝐿/2). This configuration can be considered as

an average value with respect to the position which assumes
the moving system on the bridge development and will be
taken as a reference in the subsequent developments, in
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Figure 5: Dynamic amplification factors of the midspan vertical
displacement for a bridge structure with A-shaped tower as a
function of the normalized speed parameter: effect of the failure
mechanism and moving load schematization.

which different instants where failure starts are considered.
The behavior of the bridge is analyzed to investigate the
relationship between dynamic amplification factors (DAFs)
and the normalized speed parameter of the moving system,
that is, Θ = 𝑐(𝜇

𝐺
𝜎
𝑔
/𝐸
𝐺
𝑔𝐻)

1/2as a function of the tower
topology and the moving mass schematization. Moreover,
the dynamic response of the bridge is evaluated by means
of comparisons between damaged (𝐷) or undamaged bridge
(UD) structures. The results, reported in Figures 5, 6, 7,
and 8, are defined through the relationships between moving
system normalized speed and dynamic amplification factors
for the midspan vertical displacement and bending moment.
Nevertheless, the DAF evolution curves denote a tendency
to increase with the speeds of the moving system. The
results show that the DAFs developed for bridge structures
affected by a failure mechanisms in the cable system are,
typically, larger than those obtained assuming undamaged
bridge configurations. Moreover, underestimations in the
DAF predictions are observed in those cases, in which
the inertial contributions arising from the external moving
mass are completely neglected. The analyses presented above
in terms of the DAFs Φ𝐷−UD

𝑋
for both the damaged and

undamaged configurations point out that bridge structures
with A- or H-shaped typologies undergoing damage are
characterized by large dynamic amplifications with respect
to the undamaged case. As a matter of fact, the ranges of
maximum value of the DAFs increase from [1.47–1.52] in the
undamaged configuration to [2.5–3.6] in the damaged one
for the midspan displacement, and similarly from [2.5–4.5]
to [5.4–8.3] for the midspan bending moment. It is worth
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Figure 6: Dynamic amplification factors of the midspan vertical
displacement for a bridge structure with H-shaped tower as a
function of the normalized speed parameter: effect of the failure
mechanism and moving load schematization.

noting that the DAFs from the undamaged bridge configu-
ration are affected by large amplifications, especially for the
variables concerning the bending moments. This behavior
can be explained in view of the prevailing truss behavior
of the structure and the nonstandard inertial forces arising
from the moving load application, which produce larger
bending moments with respect to the ones obtained in the
static configuration [8]. For all investigated cases, the bridge
structures based on H-shaped tower topology are affected
by larger dynamic amplifications than those structures based
on A-shaped tower. This behavior can be explained in view
of the differences in the cable stress distribution between
undamaged and damages structures. In particular, the H-
shaped tower bridges with respect to the A-shaped ones,
owing to the failure of the lateral anchor stay, are affected by
an unbalanced distribution of the internal stresses in the cable
system, which produce larger torsional rotations and vertical
displacements of the tower and the girder, respectively.
To this aim, in Figure 9(a), a comparison of A- and H-
shaped towers in terms of the DAFs (Φ

Φ
𝐺

1

) and maximum
observed value of the torsional rotation (Φ1) at the midspan
cross-section is reported. These results show how the
H-shaped towers are much more affected by the investigated
failure condition than the A-shaped towers, since lager
torsional rotations of the tower and the girder are expected.
In Figure 9(b), a synoptic representation of this deformation
scheme affecting H-shaped tower bridges is reported. Finally,
the influence of the failure mode characteristics on the DAFs
concerning the position which the moving system assumes
on the bridge development is investigated. In particular, for
a fixed value of the moving system speed, that is, 𝜗 = 0.102,
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Figure 7: Dynamic amplification factors of the midspan bending
moment for a bridge structure with A-shaped tower as a function
of the normalized speed parameter: effect of the failure mechanism
and moving load schematization.

analyses are developed in terms of normalized failure time
𝜏
0
. The analyzed cases correspond to failure modes in which

the moving load front is located at the entrance, the exit
configurations, or at specified positions on the bridge devel-
opment, that is, 𝑋

1
/𝐿 = [𝑙/𝐿, (𝑙 + 𝐿/2)/𝐿, (𝑙 + 𝐿)/𝐿, (2𝑙 +

𝐿)/𝐿]. The results, reported in Tables 1 and 2 in terms of
DAFs of the midspan vertical displacement and bending
moment, show how the dynamic behavior is quite influenced
by 𝜏

0
variable, since from a numerical point of view the

values of the DAFs change, significantly, in the investigated
ranges. Moreover, the results show that DAFs for damaged
structures, much more for H-shaped tower bridges, are
typically larger than those evaluated for undamaged bridge
cases.

Additional results are developed to investigate the effects
of the bridge geometry on the DAFs and on the maximum
values of typical bridge design variables for both damaged
and undamaged bridge configurations. In particular, results
are proposed in terms of the dimensionless parameter 𝑎,
which describes the bridge size characteristics of the struc-
ture, and refer to a failure mechanism involving the complete
failure of one lateral anchor stay of the cable system. The
analyzed structures are consistent with a long-span bridge
geometry, whose main span length varies from 500 to 1300m
and thus with a total length of the bridge between 900m
and 2100m. The results, reported in Figures 10, 11, 12, 13,
14, and 15 concerning the undamaged configurations, show
a tendency to decrease with increasing values of the bridge
size variable. Contrarily, for damaged structures, the DAFs
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as well as the maximum values of the investigated kinematic
and stress parameters display an oscillating behavior and
some local peaks in curve development. The comparisons
between damaged or undamaged bridge structures in terms
of the tower typology show, essentially, that H-shaped tower
structures are much more affected by damage failure. As
a matter of fact, the DAFs defined by the ratios between
dynamic damage value and the corresponding undamaged
static quantity, that is, Φ𝐷−UD

𝑋
, show that, for the analyzed

cases regarding H-shaped tower typology, the displacements
or the bending moments are typically greater than the bridge
structures based onA-shaped tower typology. Similar conclu-
sions can be drawn in terms of the maximum values of the
observed variables. In particular, the comparisons between
damaged and undamaged bridge behavior indicate that the
A-shaped tower is able to reduce the increments produced
by the failure mechanism, since the ratios defined in terms
of displacements or bending moments are equal to 1.57
and to 1.66, respectively. Contrarily, the results concerning
H-shaped tower denote that the undamaged variables are
amplified with respect to factors equal to 2.2 and 2.5 for
displacement and bendingmoments, respectively. A different
behavior is observed with regard to the axial stresses of the
undamaged anchor stay. In particular, the results reported in
Figures 14 and 15 show that the H-shaped tower bridges are
affected by higher DAFs but lower maximum stresses with
respect to the bridge structures based on A-shaped towers.

Finally, the behavior of the cable-stayed bridges is ana-
lyzed in terms of the failure mode, which affects the bridge

structure. In particular, for both H- or A-shaped tower
typologies, different damagemechanisms on the cable system
are supposed on the cable system and the effects on the bridge
structures are examined. The failure conditions, reported in
Figure 16, are supposed to produce the complete collapse
of the lateral anchor stay (Mode A) or the last three stays
on both sides of the central part of the main span (Mode
B). Additional modes of failure, concerning the damage to
a number of internal stays of the cable system, are also
investigated.However, since they do not produce any relevant
effect on the investigated variables, for the sake of brevity,
they are not discussed. The analyses are developed involving
a typical geometry of the bridge structure, which is consistent
with a long-span bridge-based typology.The results, reported
in Figures 17, 18, 19, 20, 21, and 22, are proposed by means of
comparisons of damaged and undamaged behavior, in terms
of time histories and DAFs of the following cinematic and
stress quantities:

(i) midspan displacements along 𝑋3 axis of the girder,
midspan torsional rotation of the girder;

(ii) bending moment in the𝑋
1
𝑋
3
plane of the girder and

undamaged anchor stay axial stress.

The analyses are developed for a fixed transit speed of the
moving system, whereas the failure mechanism is supposed
to begin when the moving system front reaches the midspan
of the bridge, that is, Θ = 0.102 and 𝜏0 = 0.87, respectively.
The results show that the larger amplification effects on the
vertical midspan displacement are obtained for the case in
which the mode of failure affects the lateral anchor stay of
the cable system, that is, Mode A. In this context, the vertical
displacements from the undamaged bridge configuration are
significantly amplified with respect to a multiplicative factor
equal to 1.48 or to 2.28 for the A- or H-shaped tower topolo-
gies, respectively. Moreover, the DAFs for the investigated
configurations are equal to 1.45 or 1.94, whereas the DAFs
defined as the ratio between 𝐷 on the UD quantities, that
is, Φ𝐷−UD

𝑈
𝐺

3

, are equal to 2.1 or to 3.2, respectively. The results
concerning the bending moments indicate that the greater
effects are produced by the damage mechanism affecting the
central part of the cable system, that is, Mode B. In this
context, the increments of the bendingmoments with respect
to the undamaged values are equal to 3.2 or 4.1 for bridge
configurations based on H- or A-shaped tower topology,
respectively. Moreover, the maximumDAFs are equal to 4.63
and 8.19 for A- and H-shaped tower typologies, respectively,
and both of them refer to a damage condition involving
the failure of the anchor stay. It is worth noting that the
results concerning the cases of undamaged bridge structures
based on A- or H-shaped towers denote, essentially, the
same prediction on the investigated variables. Contrarily,
when damage mechanisms affect the cable system, notable
amplifications of the investigated parameters are observed.
In particular, the comparisons developed in terms of tower
typologies indicate that H tower-based structures are much
more affected by the damage mechanisms of the cable system
than the A-shaped ones. This behavior can be explained by
the fact that the failure of the anchor stay (Mode A) or



14 Mathematical Problems in Engineering

0.02 0.04 0.06 0.08 0.1 0.12

0

1

2

3

4

5

b b

e

b b

e

H-st A-st

ΦD−UDΦUD

Θ

0

0.2

0.4

0.6

0.8
Φ1

Φ
Φ

G 1

Φ1

Φ1

(a)

Φ1

(b)

Figure 9: (a) Dynamic amplification factors and maximum value of the midspan torsional rotation as a function of the normalized speed
parameter Θ. (b) Schematic deformation produced by the failure mechanism.

Table 1: DAFs of the midspan bending moments as a function of the normalized time of failure on the bridge development comparisons in
terms of A and H shaped.

𝜏
0

H-shaped tower A-shaped tower
Φ
𝐷

Φ
𝐷−UD

Φ
UD

Φ
𝐷

Φ
𝐷−UD

Φ
UD

0.00 6.26 9.48 2.81 5.85 6.84 3.24
0.50 5.89 8.92 2.81 5.49 6.42 3.24
0.87 7.52 11.39 2.81 6.10 7.13 3.24
1.25 6.45 9.77 2.81 6.20 7.25 3.24
1.62 4.82 7.30 2.81 5.84 6.82 3.24
2.00 5.67 8.58 2.81 5.33 6.23 3.24
2.50 1.38 2.09 2.81 3.26 3.81 3.24

Table 2: DAFs of the midspan vertical displacements as a function of the normalized time of failure on the bridge development comparisons
in terms of A and H shaped.

𝜏
0

H-shaped tower A-shaped tower
Φ
𝐷

Φ
𝐷−UD

Φ
UD

Φ
𝐷

Φ
𝐷−UD

Φ
UD

0.00 1.973 3.046 1.451 1.62 2.03 1.60
0.50 1.890 2.918 1.451 1.58 1.98 1.60
0.87 2.032 3.137 1.451 1.75 2.20 1.60
1.25 2.096 3.237 1.451 1.72 2.15 1.60
1.62 2.264 3.495 1.451 1.61 2.02 1.60
2.00 2.238 3.456 1.451 1.65 2.07 1.60
2.50 0.940 1.451 1.451 1.26 1.59 1.60

the stays in the central part (Mode B) produce unbalanced
forces in the cable system and thus on the girder leading
to high rotations of the pylons and the girder along vertical
𝑋
3
and 𝑋

3
axes, respectively. This behavior is confirmed

by the results reported in Figures 21 and 22, in which time
histories of the torsional rotation and anchor stay axial force
in terms of the damage mechanism and tower typology are
reported. The analyses show that bridge structures based
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on A-shaped tower are practically unaffected by the failure
modes, since the same prediction on the maximum torsional
rotations is observed. On the contrary, the H-shaped tower
bridges owing to the concurrent rotations of the girder and
the pylons are affected by greater deformations and DAFs.
Moreover, the results shown in terms of the anchor stay axial

1

1.5

2

2.5

3

3.5

4

4.5

5  

 

 

0.025 0.05 0.075 0.1
a

0.125 0.15

0.005

0.004

0.003

0.002

0.001

0

 D
 UD

ΦD

ΦD−UD

MG
2

2/gL

e/b = 0.5, a = 0.1, εF = 0.1, τ0 = 0.87

b b

e

Φ
M

G 2

MG
2

2/gL

MG
2

2/gL
ΦUD

Figure 12: Dynamic amplification factors of the midspan bending
moment for a bridge structure with A-shaped tower: response of
damaged and undamaged bridge structures as a function of the
bridge size parameter 𝑎.

1

2

3

4

5

6

7

8
 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.025 0.05 0.075 0.1
a

0.125 0.15

 D
 UD

e/b = 0.5, a = 0.1, εF = 0.1, τ0 = 0.87

b b

eΦ
M

G 2

ΦD−UD

ΦUD

ΦD

MG
2

2/gL

MG
2

2/gL

MG
2

2/gL

Figure 13: Dynamic amplification factors of the midspan bending
moment for a bridge structure with H-shaped tower: response of
damaged and undamaged bridge structures as a function of the
bridge size parameter 𝑎.

stresses, reported in Figure 22, denote that “Mode A” failure
mechanism produces high increments in the axial stress,
mainly, for the A-shaped tower typology. This behavior can
be explained by the geometric configuration of the A-shaped
pylon and by its ability to redistribute the internal stresses
from the damaged to the undamaged anchor stay.
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5. Conclusions

Long-span bridges under moving loads have been ana-
lyzed by means of tridimensional deformation modes, in
terms of dynamic impact factors and maximum values of
typical design bridge variables. The proposed model takes
into account nonlinearities involved by large displacements
effects, whereas in those stays affected by internal damage,
time dependent damage functions are introduced in the
constitutive relationships. The purpose of this investigation
is to analyze the amplification effects of the bridge structure
produced by the moving load application and damage mech-
anisms in the cable system. The analyses have shown that
the presence of damage mechanism in the cable system is
able to produce larger DAFs then those obtained for undam-
aged bridge configurations. The DAFs strongly depend on
the moving system speeds and the mass schematization.
Underestimations in prediction of DAFs and maximum
design bridge variables are noted for the cases in which
the inertial description of the moving mass is not properly
taken into account. The results developed in terms of the
damage mechanism configuration, movingmass description,
and bridge properties have shown that recommendations
provided by existing codes, that is, PTI [15] and SETRA [16],
become unsafe in many cases. As a matter of fact, results
developed in terms of the damage mechanism characteristics
have shown that the damage mode which produces the
worse effects on the bridge behavior is that associated with
the failure of the anchor stay. In particular, the analyses
have pointed out that damage mechanisms involving the
failure of the lateral anchor stay are able to produce large
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Figure 15: Dynamic amplification factors of the undamaged anchor
stay axial stress for H-shaped tower bridge configurations: damaged
and undamaged bridge response as a function of the bridge size
parameter 𝑎.

amplifications in the investigated parameters, whose ranges
with respect to the static undamaged value are equal to 2.5–
3.5 for vertical midspan displacement, to 5.5–8.5 for midspan
bending moment, to 1.3–2.8 for midspan torsional rotation,
and to 1.9–2.3 for the anchor stay axial stress. The results
developed in terms of the damage mechanism characteristics
have shown that the damage mode, which produces the
worse effects on the bridge behavior is that associated with
the failure of the anchor stay. Comparisons developed in
terms of tower topology have shown that the H-shaped tower
bridge is much more affected than the A-shaped one, since
the failure modes produce an unbalanced distribution of
the internal stresses in the cable system, leading to larger
torsional rotations and vertical displacements of the tower
and the girder, respectively. It is worth noting that, in the
present paper, only the effects produced by moving loads
are considered in the results. However, in the framework
of cable-stayed bridges, another severe loading condition is
the one related to wind effects. As a matter of fact, damage
mechanisms in the cable system, among which a typical
example is the one considered in the present paper, may
amplify the resonance effects related to aeroelastic instability
phenomena, leading to a premature bridge collapse.However,
the study of the coupled aeroelastic and damage effects is
beyond the scope of the present paper and will be an object
of future investigation.

Appendix

The damage description is developed by means of a phe-
nomenological approach based on the Continuum Damage
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Figure 22: Time history of the dimensionless of the undamaged anchor stay axial force: comparisons in terms of the failure mode and tower
typology.

Mechanics. The damage evolution is determined by means
of a Kachanov type law based on the following expression
[22]:

𝑑𝐷 (𝑠, 𝑡)

𝑑𝑡

= [

𝑆

𝐴
0 (
1 − 𝐷 (𝑠, 𝑡))

]

𝑚

, (A.1)

where𝐴
0
and𝑚 are two characteristic damage coefficients for

the material. Introducing the initial condition corresponding

to the undamaged state, that is, 𝐷(0) = 0, and, integrating
(A.1), the damage evolution law is obtained as

𝐷(𝑠, 𝑡) = 1 − [−

𝐴
𝑚

0
𝑆
−𝑚

(𝑚 + 1) 𝑡 − 𝑆
−𝑚
𝐴
𝑚

0

]

1/(𝑚+1)

. (A.2)

The time to failure (𝑡
𝑓
) is obtained from (A.2) and

enforcing the failure condition defined in terms of
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the critical damage value by means of the following
relationships:

𝐷(𝑠, 𝑡
𝑓
) = 𝐷

𝑐
, 𝑡

𝑓
=

1 − (1 − 𝐷
𝑐
)
𝑚+1

𝑚 + 1

(

𝑆

𝐴0

)

−𝑚

. (A.3)

Finally, substituting (A.3) into (A.2), the damage law can be
expressed by the following relationship:

𝐷(𝑠, 𝑡) = 1 − (1 −

𝑡
𝑓
− (𝑡 − 𝑡

0
)

𝑡
𝑓

)

1/(1+𝑚)

, (A.4)

Nomenclature

(⋅)
𝐺: Stiffening girderproperty

(⋅)
𝑃: Pylon property

(⋅)
𝐶: Cablesystemproperty

(⋅)
𝑚: Movingmassproperty

𝛼
𝑖
: Longitudinal geometric slope of 𝑖th stay

𝛼
0
: Longitudinal anchor stay geometric slope

𝐴
𝐺: Girder cross sectional area
𝐴
𝐶: Stay cross sectional area of the 𝑖th stay
𝐴
𝐶

0
: Anchor stay cross sectional area

𝑏: Half girder cross section width
𝐶
𝐶: Stay elastic modulus
𝑐: Moving system speed
Δ: Stay spacing step
𝐷: Damage variable
𝐷𝑐: Critical value of the damage variable
𝐸
𝐺: Elasticity modulus of the girder
𝑒: Eccentricity of the moving loads with respect to the

girder geometric axis
𝑔: Girder self-weight per unit length
𝛾: Stay specific weight
𝐻: Pylon height
𝐼
𝑖
: Moment of inertia with respect to the 𝑖-axis
𝐼
0𝑖
: Polar moment of inertia around the 𝑖-axis

𝐽
𝑡
: Factor torsional stiffness
𝐾
𝑃
: Flexural top pylon stiffness

𝑘: Undamaged stiffness of the stay
𝑘
𝑑
: Damaged stiffness of the stay

𝜆ML: Moving load mass per unit length
𝜆
0

ML: Torsional polar mass moment of moving load per
unit length

𝐿: Central bridge span
𝐿
𝑝
: Length of the moving loads

𝑙: Lateral bridge span
𝜇
𝐶
: Stay mass per unit length

𝜇𝐺: Girder mass per unit length
𝑝: Live loads
𝑈𝑖: Component of the displacement field along 𝑖 axis
Φ𝑖: Component of the rotation field around 𝑖 axis
𝜎𝑔
: Design stay stress under self-weight loading

𝜎𝑎: Allowable stay stress
𝑆𝑖
: Stay stress in the “zero configuration”
𝑆
0
: Initial trial stay stress

𝜏
0
: Normalized failure time

𝑡
0
: Initial time of the failure mechanism
𝑡
𝑓
: Final time of the failure mechanism

𝑡𝑅: Duration of the failure mechanism
𝑋
𝑖
: Component of the positional vector
of the cable cross section.
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