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According to the characteristics of the polarizability in frequency domain of three commonmodels of dispersivemedia, the relation
between the polarization vector and electric field intensity is converted into a time domain differential equation of second order
with the polarization vector by using the conversion from frequency to time domain. Newmark 𝛽𝛾 difference method is employed
to solve this equation.The electric field intensity to polarizability recursion is derived, and the electric flux to electric field intensity
recursion is obtained by constitutive relation. Then FDTD iterative computation in time domain of electric and magnetic field
components in dispersive medium is completed. By analyzing the solution stability of the above differential equation using central
difference method, it is proved that this method has more advantages in the selection of time step. Theoretical analyses and
numerical results demonstrate that this method is a general algorithm and it has advantages of higher accuracy and stability over
the algorithms based on central difference method.

1. Introduction

In 1966, the finite difference time domain (FDTD) method
[1] is put forward by Yee. With the further development, the
FDTD method probably becomes the most popular numeri-
cal technique for solving complex electromagnetic problems
[1–8]. FDTD is a time domain algorithm but the constitutive
relation of dispersivemedium is given by a frequency domain
expression. Hence, it is difficult to use FDTDmethod directly
in analyzing electromagnetic characteristics of dispersive
medium.According to the different treatments of constitutive
relation, the FDTD methods used in dispersive medium can
be classified as RC method [5, 6], JEC method [7], PLJERC
method [8], ADE method [9], 𝑍 transform method [10–12],
SO method [13–15], SARC method [16], and so on.

In the case of nondispersive medium, the spatial dis-
cretization of Maxwell curl equation can be determined by
the requirement from numerical dispersion to stability, and
the time discrete can be determined by Courant stability
condition. So the calculation involves just the first order
partial differential equation. The time domain expression of

constitutive relation often can be written as a second order
partial differential equation in the case of dispersive medium.
To obtain an accurate solution of the partial differential
equation, time step must be very small. In this paper, the
general differential equation of dispersive medium is given
and the Newmark method [17–19] is introduced to the
treatment of the constitutive relation in dispersive medium.
This new method has a higher accuracy and stability than
the central difference method. The detailed process is as
follows.

According to the polarizability characteristics in fre-
quency domain of three common models (Debye, Drude,
and Lorentz models) of dispersive medium, the relation in
frequency domain betweenP andE is converted into a second
order differential equation (has a general form to the three
common models) by using the conversion 𝑗𝜔 → 𝜕/𝜕𝑡 from
frequency to time domain. Then the Newmark 𝛽𝛾 method
which is used in FETD is employed to solve the equation.
Hence the E → P recursion is derived, and the D → E
recursion is obtained by constitutive relation.
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2. The General Newmark-FDTD Method

2.1. Maxwell Equation in Dispersive Medium and Constitutive
Relation. Maxwell curl equation in linear isotropic dispersive
medium is

𝜕D
𝜕𝑡

= ∇ ×H,

𝜕H
𝜕𝑡

= −
1

𝜇
0

∇ × E.
(1)

The electric constitutive relation is

D (𝜔) = 𝜀 (𝜔)E (𝜔) = 𝜀
0
[𝜀
∞
+ 𝜒 (𝜔)]E (𝜔) , (2)

where 𝜀(𝜔) and 𝜒(𝜔) are permittivity coefficient and polar-
izability in frequency domain, respectively. 𝜀

∞
is the relative

permittivity when frequency is infinite.
The FDTD iterative computation of E → H → D can

be accomplished by the discretization of (1) according to the
standing Yee cell. And it is needed to deal with constitutive
relation in the iterative computation ofD → E.

2.2. The United Expression of Polarizability Function of Com-
mon Dispersive Medium Models. Three common dispersive
mediummodels are Debyemodel, Drudemodel, and Lorentz
model [2]. Their polarizabilities can be written as [20]

𝜒Debye (𝜔) =
𝐿

∑
𝑙=1

𝜒
Debye
𝑙

(𝜔) =
𝐿

∑
𝑙=1

Δ𝜀
𝑙

1 + 𝑗𝜔𝜏
0,𝑙

,

𝜒Drude (𝜔) =
𝐿

∑
𝑙=1

𝜒Drude
𝑙

(𝜔) =
𝐿

∑
𝑙=1

−𝜔2
𝑙

𝜔2 − 𝑗𝜔]
𝑐,𝑙

,

𝜒Lorentz (𝜔) =
𝐿

∑
𝑙=1

𝜒Lorentz
𝑙

(𝜔) =
𝐿

∑
𝑙=1

Δ𝜀
𝑙
𝜔2
0,𝑙

𝜔2
0,𝑙
+ 2𝑗𝜔]

𝑐,𝑙
− 𝜔2

,

(3)

where 𝐿 is numbers of poles, 𝑙 represents the 𝑙th pole, Δ𝜀
𝑙
=

𝜀
𝑠,𝑙
− 𝜀
∞
, 𝜀
𝑠,𝑙

is the relative permittivity at zero frequency,
𝜏
0,𝑙

is the relaxation time of pole, ]
𝑐,𝑙

is collision frequency,
𝜔
𝑙
is Drude frequency, and 𝜔

0,𝑙
is the natural frequency of

oscillator.
Let

𝜉
𝑙
(𝜔) =

1

𝜒
𝑙 (𝜔)

. (4)

𝜉
𝑙
(𝜔) of the three dispersive medium models in (3) can be

written as a united form:

𝜉
𝑙
(𝜔) = 𝑀

𝑙
⋅ (𝑗𝜔)

2
+ 𝐶
𝑙
⋅ (𝑗𝜔) + 𝐾

𝑙
, (5)

where

𝑀
𝑙
= 0, 𝐶

𝑙
=
𝜏
0,𝑙

Δ𝜀
𝑙

, 𝐾
𝑙
=

1

Δ𝜀
𝑙

Debye

𝑀
𝑙
=

1

𝜔2
𝑙

, 𝐶
𝑙
=
]
𝑐,𝑙

𝜔2
𝑙

, 𝐾
𝑙
= 0 Drude

𝑀
𝑙
=

1

Δ𝜀
𝑙
𝜔2
0,𝑙

, 𝐶
𝑙
=

2]
𝑐,𝑙

Δ𝜀
𝑙
𝜔2
0,𝑙

, 𝐾
𝑙
=

1

Δ𝜀
𝑙

Lorentz.

(6)

2.3. Constitutive Relations in Time Domain and Its Newmark’s
Solution. Polarization vector P is introduced:

P (𝜔) = 𝜒 (𝜔)E (𝜔) . (7)

The constitutive relation equation (2) can be rewritten as

D (𝜔) = 𝜀0𝜀∞E (𝜔) + 𝜀0P (𝜔) . (8)

Let

P
𝑙
(𝜔) = 𝜒

𝑙
(𝜔)E (𝜔) . (9)

Then from (3) and (7) we know that

P (𝜔) =
𝐿

∑
𝑙=1

P
𝑙
(𝜔) . (10)

From (4) and (9), we have

E (𝜔) = 𝜉
𝑙
(𝜔)P
𝑙
(𝜔) . (11)

After substituting (5) into (11) and using conversion 𝑗𝜔 →
𝜕/𝜕𝑡 from frequency to time domain, we have

E (𝑡) = 𝑀
𝑙

𝑑2

𝑑𝑡2
P
𝑙
(𝑡) + 𝐶

𝑙

𝑑

𝑑𝑡
P
𝑙
(𝑡) + 𝐾

𝑙
P
𝑙
(𝑡) . (12)

E(𝑡) in the above differential equation with second order time
derivative is equivalent to a excitation source. In the year of
1959, a time-stepping algorithm for solving the differential
equations like (12) is given by Newmark according to the
time derivative difference approximate solution of Taylor
series and the mean value theorem. This algorithm provides
higher accuracy and stability [17]. By the deriving method of
Zienkiewicz, solution of (12) is [18]

P𝑛+1
𝑙

= 𝑤
1,𝑙
P𝑛
𝑙
+ 𝑤
2,𝑙
P𝑛−1
𝑙

+ 𝑢
0,𝑙
E𝑛+1 + 𝑢

1,𝑙
E𝑛 + 𝑢

2,𝑙
E𝑛−1, (13)

where

𝑤
1,𝑙
=
2𝑀
𝑙
− (1 − 2𝛾) Δ𝑡𝐶

𝑙
− ((1/2) + 𝛾 − 2𝛽) (Δ𝑡)2𝐾𝑙
𝑆
𝑙

,

𝑤
2,𝑙
=
−𝑀
𝑙
− (𝛾 − 1) Δ𝑡𝐶

𝑙
− ((1/2) − 𝛾 + 𝛽) (Δ𝑡)2𝐾𝑙
𝑆
𝑙

,

𝑢
0,𝑙
=
(Δ𝑡)2𝛽

𝑆
𝑙

, 𝑢
1,𝑙
=
(Δ𝑡)2 ((1/2) + 𝛾 − 2𝛽)

𝑆
𝑙

,

𝑢
2,𝑙
=
(Δ𝑡)2 ((1/2) − 𝛾 + 𝛽)

𝑆
𝑙

,

𝑆
𝑙
= 𝑀
𝑙
+ 𝛾Δ𝑡𝐶

𝑙
+ 𝛽(Δ𝑡)

2𝐾
𝑙
.

(14)

Equation (13) is called two-step or Newmark 𝛽𝛾method [19].
The calculation ofP𝑛+1

𝑙
involves the values ofP𝑛

𝑙
andP𝑛−1

𝑙
.The

coefficients in (13) include two variables 𝛽 and 𝛾.The stability
and accuracy of (12) when selecting different 𝛽 and 𝛾 are also
discussed in [19] in detail. Usually, 0 ≤ 𝛾 ≤ 1 and 0 ≤ 𝛽 ≤ 1/2.
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To assure the accuracy, it is needed to choose an appropriate
𝛾 and 𝛽 ≥ 0.25(0.5 + 𝛾)2. According to [19], unconditional
convergence can be obtained by taking 𝛽 = 0.25, 𝛾 = 0.5. The
time-stepping calculation from E𝑛+1 to P𝑛+1

𝑙
can be finished

by (13).
After converting the constitutive relation equation (8)

into discrete time domain, we have

D𝑛+1 (𝑡) = 𝜀0(𝜀∞E
𝑛+1

(𝑡) +
𝐿

∑
𝑙=1

P𝑛+1
𝑙

(𝑡)) . (15)

Substituting (13) into (15), we know that

(𝜀
∞
+
𝐿

∑
𝑙=1

𝑢
0,𝑙
)E𝑛+1 = D𝑛+1

𝜀
0

−
𝐿

∑
𝑙=1

(𝑤
1,𝑙
P𝑛
𝑙
) −
𝐿

∑
𝑙=1

(𝑤
2,𝑙
P𝑛−1
𝑙

)

−
𝐿

∑
𝑙=1

𝑢
1,𝑙
⋅ E𝑛 −

𝐿

∑
𝑙=1

𝑢
2,𝑙
⋅ E𝑛−1.

(16)

Then the time-stepping calculation fromD𝑛+1, P𝑛
𝑙
to E𝑛+1 can

be accomplished.
In conclusion, the general Newmark-FDTD method in

dispersive medium can be reduced as follows.

(1) Use the difference discrete expressions in curl (1) to
get E → H → D.

(2) Use (16) to getD,P → E.
(3) Use (13) to get E → P.
(4) Back to step 1.

3. The Advantages of Algorithm in This Paper

For the second order differential equations like

𝑀
𝑑2

𝑑𝑡2
𝜙 + 𝐶

𝑑

𝑑𝑡
𝜙 + 𝐾𝜙 = 0. (17)

After using central difference method, we have

(𝑀 +
𝐶

2
Δ𝑡) 𝜙𝑛+1 − [2𝑀 − 𝐾(Δ𝑡)

2] 𝜙𝑛

+ [𝑀 −
𝐶

2
Δ𝑡] 𝜙𝑛−1 = 0.

(18)

The time domain solution stability of the above differen-
tial equation can be analyzed by using the 𝑍 transform. To a
time series of 𝑥(𝑛𝑇) (𝑛 = 0, 1, 2...), its 𝑍 transform is defined
as

𝑋 (𝑧) =
∞

∑
𝑛=0

𝑥 (𝑛𝑇) 𝑧
−𝑛. (19)

𝑋(𝑧) is the 𝑍 transform of the sampling sequence 𝑥(𝑛𝑇).
𝑍 transform is proposed to (18); we know that

(𝑀 +
𝐶

2
Δ𝑡)𝑍2 − [2𝑀 − 𝐾(Δ𝑡)

2] 𝑍 + [𝑀 −
𝐶

2
Δ𝑡] = 0.

(20)

According to the final value theorem, time domain
function 𝑥(𝑛𝑇) (𝑛 = 0, 1, 2...) has time stable solutions
when the poles of 𝑋(𝑧) located in a unit circle on complex
plane in 𝑍 domain. An analysis of the solution stability of
second order homogeneous differential equationwithout first
order derivative is made in [21]. In this paper, the case of
including first order derivative is analyzed. Equation (20) is
considered as a quadratic equation with one unknown using
𝑍 as dependent variable. The equation can be solved and let
−1 ≤ 𝑍 ≤ 1; we know that

𝐾𝐶(Δ𝑡)
3 + 2𝑀𝐾(Δ𝑡)

2 − 4𝑀𝐶Δ𝑡 − 8𝑀2 ≤ 0. (21)

The corresponding cubic equation with one unknown to
the above inequality has three solutions:

Δ𝑡
1
= −2

𝑀

𝐶
, Δ𝑡

2
= −2√

𝑀

𝐾
, Δ𝑡

3
= 2√

𝑀

𝐾
. (22)

Let𝑀,𝐶,𝐾 be all positive quantities.The derivative of the
cubic equation with one unknown is 8𝑀𝐶+8𝑀√𝑀𝐾 atΔ𝑡

3
,

which is an increasing function satisfying the requirements
of the inequality. Hence, when central difference method is
used to solve (17), the time-stepping is limited to

Δ𝑡 ≤ 2√
𝑀

𝐾
. (23)

According to (23), the requirements of time-stepping when
central difference method is used to solve the second order
time domain differential equations corresponding to the
three models of dispersive medium in (6) are

Δ𝑡Debye ≤ 0,

Δ𝑡Drude ≤ ∞,

Δ𝑡Lorentz ≤
2

𝜔
0,𝑙

.

(24)

That is to say, for Debye medium, corrected results cannot
be obtained whatever the value of the time-stepping takes
when central difference method is used to solve (17). For
Drude medium, corrected results can be obtained whatever
the value of the time-stepping takes. But for Lorentzmedium,
the solution stability is relevant to its resonance frequency at
poles.

However, the solution of (12) is unconditionally stable
when using Newmark difference algorithm. Hence, the selec-
tion of time-stepping is more flexible. Meanwhile, a higher
accuracy is obtained because the Newmark 𝛽𝛾method has a
combination of Taylor expansions and means value theorem
is employed.

To analyze the difference between using Newmark 𝛽𝛾
method and central difference method, the results obtained
from these two methods and Runge-Kutta solutions [20] are
given. Figure 1 is the absolute error comparing the classical
Runge-Kutta solutions of using these two methods, in which
the solid line and the circle are the result from Newmark 𝛽𝛾
and central difference method, respectively. As it is shown in
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Figure 1: Comparison of stability and calculation error between
central difference and Newmark method.

the figure, the time it takes to get steady state for Newmark
method is shorter than central difference method. Let

𝐾 = 7.96 × 107, 𝑀 = 2.95 × 10−14,

𝐶 = 2.65 × 10−3, 𝑓 = sin (4 × 109𝑡)
(25)

in (17).
The theoretical analysis and numerical results show that

the algorithm presented in this paper has higher steady state
and calculation accuracy than central difference method.

4. Numerical Results

To demonstrate the correctness of our algorithm, the back-
scatter of three different dispersive media sphere is given and
compared with Mie series solution. Let 𝛽 = 0.25, 𝛾 = 0.5,
Δ𝑡 = 𝛿/2𝑐, where 𝛿 is spatial discrete grid-scale of Yee cell.
Consider

𝐸
𝑖
(𝑡) = exp[−

4𝜋(𝑡 − 𝑡
0
)
2

𝜏2
] , (26)

where 𝜏 = 60Δ𝑡 and 𝑡
0
is the pulse peak time.

Example 1 (the backscatter of Debye sphere). Let the radius
of the sphere be 0.25m and filled with single pole Debye
medium.The complex relative permittivity is

𝜀
𝑟
(𝜔) = 𝜀

∞
+ 𝜒 (𝜔) = 𝜀

∞
+
𝜀
𝑠,1
− 𝜀
∞

1 + 𝑗𝜔𝜏
0,1

, (27)

where 𝜀
𝑠,1

= 1.16, 𝜀
∞

= 1.01, 𝜏
0,1

= 6.497 × 10−10 s. The
backscatter RCS is shown in Figure 2.The solid line and circle
are the results from this method and Mie series solution,
respectively. It is shown that these two results are in good
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Figure 2: The backscatter RCS of Debye sphere.
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Figure 3: The backscatter RCS of plasma sphere.

agreement with each other. Consider 𝛿 = 3.3 × 10−3min
FDTD calculation.

Example 2 (the backscatter of plasma sphere). The radius
of the sphere is 3.75mm and filled with single pole Drude
medium.The complex relative permittivity is

𝜀
𝑟
(𝜔) = 𝜀

∞
+ 𝜒 (𝜔) = 1 +

−𝜔2
1

𝜔2 − 𝑗𝜔]
𝑐,1

, (28)

where 𝜔
1
= 1.8 × 1011 rad/s, ]

𝑐,1
= 2.0 × 1010Hz. The

backscatter RCS is shown in Figure 3. The solid line and
circle are the result from this method andMie series solution,
respectively. It is shown that these two results are in good
agreement with each other. Consider 𝛿 = 5.0 × 10−2mm in
FDTD calculation.
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Example 3 (the backscatter of Lorentz sphere). The radius of
the sphere is 15.0 × 10−9m and filled with single pole Lorentz
medium.The complex relative permittivity is

𝜀
𝑟
(𝜔) = 𝜀

∞
+ 𝜒 (𝜔) = 𝜀

∞
+

(𝜀
𝑠,1
− 𝜀
∞
) 𝜔2
0,1

𝜔2
0,1
+ 2𝑗𝜔]

𝑐,1
− 𝜔2

, (29)

where 𝜀
𝑠,1

= 2.25, 𝜀
∞

= 1.0, ]
𝑐,1

= 0.28 × 1016Hz, 𝜔
0,1

=

4.0 × 1016Hz.The backscatter is shown in Figure 4. The solid
line and circle are the result from this method and Mie series
solution, respectively. It is shown that these two results are in
good agreement with each other. Consider 𝛿 = 3.0 × 10−10m
in FDTD calculation.

5. Conclusions

In this paper, a general Newmark-FDTD algorithm is given
to deal with the electromagnetic problems in dispersive
medium.This newmethod combines theNewmark 𝛽𝛾 differ-
ence method which is widely used in FETD calculation
in dispersive medium. Theoretical analyses and numerical
results demonstrate that this algorithm has advantages of
higher accuracy and stability over the algorithms based on
central difference method.
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