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The main object of this paper is to investigate the Helmholtz and diffusion equations on the Cantor sets involving local fractional
derivative operators. The Cantor-type cylindrical-coordinate method is applied to handle the corresponding local fractional dif-
ferential equations. Two illustrative examples for the Helmholtz and diffusion equations on the Cantor sets are shown by making
use of the Cantorian and Cantor-type cylindrical coordinates.

1. Introduction

In the Euclidean space, we observe several interesting physi-
cal phenomena by using the differential equations in the dif-
ferent styles of planar, cylindrical, and spherical geometries.
There are many models for the anisotropic perfectly matched
layers [1], the plasma source ion implantation [2], fractional
paradigm and intermediate zones in electromagnetism [3, 4],
fusion [5], reflectionless sponge layers [6], time-fractional
heat conduction [7], singular boundary value problems [8],
and so on (see also the references cited in each of these
works).

The Helmholtz equation was applied to deal with prob-
lems in such fields as electromagnetic radiation, seismology,
transmission, and acoustics. Kreß and Roach [9] discussed
the transmission problems for the Helmholtz equation.
Kleinman and Roach [10] studied the boundary integral
equations for the three-dimensional Helmholtz equation.
Karageorghis [11] presented the eigenvalues of the Helmholtz
equation. Heikkola et al. [12] considered the parallel fictitious
domain method for the three-dimensional Helmholtz equa-
tion. Fu and Mura [13] suggested the volume integrals of the
inhomogeneous Helmholtz equation. Samuel and Thomas
[14] proposed the fractional Helmholtz equation.

Diffusion theory has become increasingly interesting and
potentially useful in solids [15, 16]. Some applications of phys-
ics, such as superconducting alloys [17], lattice theory [18],
and light diffusion in turbid material [19], were considered.
Fractional calculus theory (see [20–28]) was applied tomodel
the diffusion problems in engineering, and fractional diffu-
sion equation was discussed (see, e.g., [29–36]).

Recently, the local fractional calculus theory was applied
to process the nondifferentiable phenomena in fractal do-
main (see [37–48] and the references cited therein). There
are some local fractional models, such as the local fractional
Fokker-Planck equation [37], the local fractional stress-strain
relations [38], the local fractional heat conduction equation
[45], wave equations on the Cantor sets [47], and the local
fractional Laplace equation [48].

Themain aim of this paper is present in the mathematical
structure of the Helmholtz and diffusion equations within
local fractional derivative and to propose their forms in the
Cantor-type cylindrical coordinates by using the Cantor-type
cylindrical-coordinate method [46].

Our present investigation is structured as follows. In Sec-
tion 2, the Helmholtz equation on the Cantor sets with local
fractional derivative is investigated.Thediffusion equation on
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theCantor sets based upon the local fractional vector calculus
is structured in Section 3.TheHelmholtz and diffusion equa-
tions in theCantor-type cylindrical coordinates are studied in
Section 4. Finally, the conclusions are presented in Section 5.

2. The Helmholtz Equation on the Cantor Sets

In order to derive the Helmholtz equation on the Cantor sets,
if the local fractional derivative is defined through [43–46]

𝑓(𝛼) (𝑥0) =
𝑑𝛼𝑓 (𝑥)

𝑑𝑥𝛼

𝑥=𝑥0
= lim
𝑥→𝑥0

Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 (1)

with

Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥0)) ≅ Γ (1 + 𝛼) Δ (𝑓 (𝑥) − 𝑓 (𝑥0)) , (2)

then the wave equation on the Cantor sets was suggested in
[44] by

∇2𝛼𝑢 (𝑟, 𝑡) =
1

𝑎2𝛼
𝜕2𝛼𝑢 (𝑟, 𝑡)

𝜕𝑡2𝛼
, (3)

where the local fractional Laplace operator is given by [43, 44,
48]

∇2𝛼 =
𝜕2𝛼

𝜕𝑥2𝛼
+
𝜕2𝛼

𝜕𝑦2𝛼
+
𝜕2𝛼

𝜕𝑧2𝛼
, (4)

where 1/𝑎2𝛼 is a constant and 𝑢(𝑟, 𝑡) is satisfied with local
fractional continuous conditions (see [47]).

Using separation of variables in nondifferentiable func-
tions, which begins by assuming that the fractal wave func-
tion 𝑢(𝑟, 𝑡)may be separable, namely,

𝑢 (𝑟, 𝑡) = 𝑀 (𝑟) 𝑇 (𝑡) , (5)

we have

∇2𝛼𝑀(𝑟)

𝑀 (𝑟)
=

1

𝑎2𝛼𝑇 (𝑡)

𝜕2𝛼𝑇 (𝑡)

𝜕𝑡2𝛼
, (6)

such that

∇2𝛼𝑀(𝑟) + 𝜔
2𝛼𝑀(𝑟) = 0, (7)

1

𝑎2𝛼𝑇 (𝑡)

𝜕2𝛼𝑇 (𝑡)

𝜕𝑡2𝛼
= −𝜔2𝛼. (8)

In the three-dimensional Cantorian coordinate system, by
following (7), we have

𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑥2𝛼
+
𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑦2𝛼
+
𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑧2𝛼

+ 𝜔2𝛼𝑀(𝑥, 𝑦, 𝑧) = 0,

(9)

where the operator is a local fractional derivative operator.
For the two-dimensional Cantorian coordinate system,

the local fractional homogeneous Helmholtz equation is
given by

𝜕2𝛼𝑀(𝑥, 𝑦)

𝜕𝑥2𝛼
+
𝜕2𝛼𝑀(𝑥, 𝑦)

𝜕𝑦2𝛼
+ 𝜔2𝛼𝑀(𝑥, 𝑦) = 0. (10)

For a fractal dimension 𝛼 = 1, (9) becomes

𝜕2𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+
𝜕2𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+
𝜕2𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑧2

+ 𝜔2𝑀(𝑥, 𝑦, 𝑧) = 0,

(11)

which is the classical Helmholtz equation [10].
In view of (9), the inhomogeneous Helmholtz equation

reads as follows:
𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑥2𝛼
+
𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑦2𝛼
+
𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑧2𝛼

+ 𝜔2𝛼𝑀(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧) ,

(12)

where 𝑓(𝑥, 𝑦, 𝑧) is a local fractional continuous function.
In the two-dimensional Cantorian coordinate system, fol-

lowing (12), the local fractional inhomogeneous Helmholtz
equation can be suggested by

𝜕2𝛼𝑀(𝑥, 𝑦)

𝜕𝑥2𝛼
+
𝜕2𝛼𝑀(𝑥, 𝑦)

𝜕𝑦2𝛼
+ 𝜔2𝛼𝑀(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) ,

(13)

where 𝑓(𝑥, 𝑦) is a local fractional continuous function.
We notice that the fractional Helmholtz equation was

applied to deal with the differentiable wave equations in [14].
However, the Helmholtz equation with local fractional deriv-
ative arises in physical problems in such areas as, for
example, fractal electromagnetic radiation, seismology, and
acoustics, because theirwave functions are the local fractional
continuous functions (nondifferentiable functions). So, the
Helmholtz equation on the Cantor sets can be used to
describe the fractal electromagnetic radiation, the fractal seis-
mology, the fractal acoustics, and so on.

3. Diffusion Equation on the Cantor Sets

In this section, we derive the diffusion equation on theCantor
sets with local fractional vector calculus [44].

Let us recall Fick’s law within the local fractional deriva-
tive, which was presented as

J (𝑟, 𝑡) = −𝐷 (𝜑) ∇𝛼𝜑 (𝑟, 𝑡) , (14)

where 𝜑(𝑟, 𝑡) and J(𝑟, 𝑡) are local fractional continuous func-
tions.

It is noticed that the flux of the diffusing material in any
part of the fractal system is proportional to the local fractional
density gradient. If the diffusion coefficient𝐷(𝜑) = 𝐷 is con-
stant, the local fractional Fick law was suggested as [44]

J (𝑟, 𝑡) = −𝐷∇𝛼𝜑 (𝑟, 𝑡) , (15)

which was expressed as [44]

∯ J (𝑟, 𝑡) ⋅ 𝑑S(𝛽) = −∯𝐷(𝜑)∇𝛼𝜑 (𝑟, 𝑡) ⋅ 𝑑S(𝛽), (16)

where the local fractional vector integral is defined as [44]

∬ u (𝑟𝑃) ⋅ 𝑑S
(𝛽) = lim
𝑁→∞

𝑁

∑
𝑃=1

u (𝑟𝑃) ⋅ n𝑃Δ𝑆
(𝛽)

𝑃
, (17)
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with 𝑁 elements of area with a unit normal local fractional
vector n𝑃, Δ𝑆

(𝛽)

𝑃
→ 0 as 𝑁 → ∞ for 𝛽 = 2𝛼, and 𝜑(𝑟, 𝑡) is

the density of the diffusing material in local fractional field.
The conservation of mass within local fractional vector

operator was presented as [44]

𝑑𝛼

𝑑𝑡𝛼
∭𝜑(𝑟, 𝑡) 𝑑𝑉

(𝛾) = −∯ J (𝑟, 𝑡) ⋅ 𝑑S(𝛽), (18)

where local fractional volume integral is given by [44]

∭ u (𝑟𝑃) 𝑑𝑉
(𝛾) = lim
𝑁→∞

𝑁

∑
𝑃=1

u (𝑟𝑃) Δ𝑉
(𝛾)

𝑃
, (19)

with 𝑁 elements of volume Δ𝑉(𝛾)
𝑃
→ 0 as 𝑁 → ∞ for 𝛾 =

(3/2)𝛽 = 3𝛼.
Following (18), and by using the divergence theorem of

local fractional field [44], we have

𝑑𝛼𝜑 (𝑟, 𝑡)

𝑑𝑡𝛼
+ ∇𝛼 ⋅ J (𝑟, 𝑡) = 0, (20)

where J(𝑟, 𝑡) is the flux of the diffusing material in local frac-
tional field.

Submitting (14) into (20), we obtain

𝑑𝛼𝜑 (𝑟, 𝑡)

𝑑𝑡𝛼
+ ∇𝛼 [−𝐷 (𝜑) ∇𝛼𝜑 (𝑟, 𝑡)] = 0, (21)

which is the so-called diffusion equation on the Cantor sets.
This result differs from the fractional diffusion equation [29–
36].

For the diffusion coefficient 𝐷(𝜑) = 𝐷, (21) becomes

𝑑𝛼𝜑 (𝑟, 𝑡)

𝑑𝑡𝛼
= 𝐷∇2𝛼𝜑 (𝑟, 𝑡) . (22)

In the three-dimensional Cantorian coordinate system, fol-
lowing (22), we have

𝑑𝛼𝜑 (𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑡𝛼
= 𝐷[

𝜕2𝛼

𝜕𝑥2𝛼
𝜑 (𝑥, 𝑦, 𝑧, 𝑡) +

𝜕2𝛼

𝜕𝑦2𝛼
𝜑 (𝑥, 𝑦, 𝑧, 𝑡)

+
𝜕2𝛼

𝜕𝑧2𝛼
𝜑 (𝑥, 𝑦, 𝑧, 𝑡)] .

(23)

In the two-dimensional Cantorian coordinate system, we get

𝑑𝛼𝜑 (𝑥, 𝑦, 𝑡)

𝑑𝑡𝛼
= 𝐷[

𝜕2𝛼

𝜕𝑥2𝛼
𝜑 (𝑥, 𝑦, 𝑡) +

𝜕2𝛼

𝜕𝑦2𝛼
𝜑 (𝑥, 𝑦, 𝑡)] .

(24)

In the one-dimensional Cantorian coordinate system, we ob-
tain [48]

𝑑𝛼𝜑 (𝑥, 𝑡)

𝑑𝑡𝛼
= 𝐷
𝜕2𝛼

𝜕𝑥2𝛼
𝜑 (𝑥, 𝑡) . (25)

We notice that when fractal dimension 𝛼 is equal to 1, we get
the classical diffusion equation [15, 16]. However, the diffu-
sion equation on the Cantor sets with local fractional deriva-
tive is derived from local fractional field, whose quantities are
local fractional continuous functions.

4. The Cantor-Type Cylindrical-Coordinate
Method to the Helmholtz and Diffusion
Equations on the Cantor Sets

Let us consider the Cantor-type cylindrical coordinates,
which read as follows:

𝑥𝛼 = 𝑅𝛼cos𝛼𝜃
𝛼,

𝑦𝛼 = 𝑅𝛼sin𝛼𝜃
𝛼,

𝑧𝛼 = 𝑧𝛼,

(26)

with 𝑅 ∈ (0, +∞), 𝑧 ∈ (−∞, +∞), 𝜃 ∈ (0, 𝜋], and 𝑥2𝛼 + 𝑦2𝛼 =
𝑅2𝛼.

We now have a local fractional vector given by

r = 𝑅𝛼cos𝛼𝜃
𝛼e𝛼1 + 𝑅

𝛼sin𝛼𝜃
𝛼e𝛼2 + 𝑧

𝛼e𝛼3

= 𝑟𝑅e
𝛼

𝑅 + 𝑟𝜃e
𝛼

𝜃 + 𝑟ze
𝛼

z ,
(27)

such that [46]

∇𝛼𝜙 (𝑅, 𝜃, 𝑧) = e𝛼𝑅
𝜕𝛼

𝜕𝑅𝛼
𝜙 + e𝛼𝜃

1

𝑅𝛼
𝜕𝛼

𝜕𝜃𝛼
𝜙 + e𝛼𝑧

𝜕𝛼

𝜕𝑧𝛼
𝜙, (28)

∇2𝛼𝜙 (𝑅, 𝜃, 𝑧) =
𝜕2𝛼

𝜕𝑅2𝛼
𝜙 +

1

𝑅2𝛼
𝜕2𝛼

𝜕𝜃2𝛼
𝜙 +
1

𝑅𝛼
𝜕𝛼

𝜕𝑅𝛼
𝜙 +
𝜕2𝛼

𝜕𝑧2𝛼
𝜙,

(29)

∇𝛼 ⋅ r = 𝜕
𝛼𝑟𝑅
𝜕𝑅𝛼
+
1

𝑅𝛼
𝜕𝛼𝑟𝜃
𝜕𝜃𝛼
+
𝑟𝑅
𝑅𝛼
+
𝜕𝛼𝑟𝑧
𝜕𝑧𝛼
, (30)

∇𝛼 × r = ( 1
𝑅𝛼
𝜕𝛼𝑟𝜃
𝜕𝜃𝛼
−
𝜕𝛼𝑟𝜃
𝜕𝑧𝛼
) e𝛼𝑅 + (

𝜕𝛼𝑟𝑅
𝜕𝑧𝛼
−
𝜕𝛼𝑟𝑧
𝜕𝑅𝛼
) e𝛼𝜃

+ (
𝜕𝛼𝑟𝜃
𝜕𝑅𝛼
+
𝑟𝑅
𝑅𝛼
−
1

𝑅𝛼
𝜕𝛼𝑟𝑅
𝜕𝜃𝛼
) e𝛼𝑧 ,

(31)

where

e𝛼𝑅 = cos𝛼𝜃
𝛼e𝛼1 + sin𝛼𝜃

𝛼e𝛼2 ,

e𝛼𝜃 = −sin𝛼𝜃
𝛼e𝛼1 + cos𝛼𝜃

𝛼e𝛼2 ,

e𝛼𝑧 = e
𝛼

3 .

(32)

Submitting (29) into (9) and (12), it yields

𝜕2𝛼𝑀(𝑅, 𝜃, 𝑧)

𝜕𝑅2𝛼
+
1

𝑅2𝛼
𝜕2𝛼𝑀(𝑅, 𝜃, 𝑧)

𝜕𝜃2𝛼
+
1

𝑅𝛼
𝜕𝛼𝑀(𝑅, 𝜃, 𝑧)

𝜕𝑅𝛼

+
𝜕2𝛼𝑀(𝑅, 𝜃, 𝑧)

𝜕𝑧2𝛼
+ 𝜔2𝛼𝑀(𝑅, 𝜃, 𝑧) = 0,

𝜕2𝛼𝑀(𝑅, 𝜃, 𝑧)

𝜕𝑅2𝛼
+
1

𝑅2𝛼
𝜕2𝛼𝑀(𝑅, 𝜃, 𝑧)

𝜕𝜃2𝛼
+
1

𝑅𝛼
𝜕𝛼𝑀(𝑅, 𝜃, 𝑧)

𝜕𝑅𝛼

+
𝜕2𝛼𝑀(𝑅, 𝜃, 𝑧)

𝜕𝑧2𝛼
+ 𝜔2𝛼𝑀(𝑅, 𝜃, 𝑧) = 𝑓 (𝑅, 𝜃, 𝑧) ,

(33)

which is the Helmholtz equation in the Cantor-type cylindri-
cal coordinates.
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In the like manner, from (23), we get

𝑑𝛼𝜑 (𝑅, 𝜃, 𝑧, 𝑡)

𝑑𝑡𝛼
= 𝐷[

𝜕2𝛼𝜑 (𝑅, 𝜃, 𝑧, 𝑡)

𝜕𝑅2𝛼
+
1

𝑅2𝛼
𝜕2𝛼𝜑 (𝑅, 𝜃, 𝑧, 𝑡)

𝜕𝜃2𝛼

+
1

𝑅𝛼
𝜕𝛼𝜑 (𝑅, 𝜃, 𝑧, 𝑡)

𝜕𝑅𝛼
+
𝜕2𝛼𝜑 (𝑅, 𝜃, 𝑧, 𝑡)

𝜕𝑧2𝛼
] ,

(34)

which is the diffusion equation in the Cantor-type cylindrical
coordinates.

5. Concluding Remarks and Observations

In the present work, we have derived the Helmholtz and
diffusion equations on the Cantor sets in the Cantorian
coordinates, which are based upon the local fractional deriva-
tive operators. By applying the Cantor-type cylindrical-coor-
dinate method, we have also investigated the Helmholtz and
diffusion equations on the Cantor sets in the Cantor-type
cylindrical coordinates. Furthermore, we have presented two
illustrative examples for the corresponding fractional Helm-
holtz and diffusion equations on the Cantor sets by using the
Cantorian and Cantor-type cylindrical coordinates.
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