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The progress in the micro electro mechanical system (MEMS) sensors technology in size, cost, weight, and power consumption
allows for new research opportunities in the navigation field. Today, most of smartphones, tablets, and other handheld devices
are fully packed with the required sensors for any navigation system such as GPS, gyroscope, accelerometer, magnetometer,
and pressure sensors. For seamless navigation, the sensors’ signal quality and the sensors availability are major challenges.
Heading estimation is a fundamental challenge in the GPS-denied environments; therefore, targeting accurate attitude estimation
is considered significant contribution to the overall navigation error. For that end, this research targets an improved pedestrian
navigation by developing sensors fusion technique to exploit the gyroscope, magnetometer, and accelerometer data for device
attitude estimation in the different environments based on quaternion mechanization. Results indicate that the improvement in
the traveled distance and the heading estimations is capable of reducing the overall position error to be less than 15m in the harsh
environments.

1. Introduction

Personal navigation requires technologies that are immune to
signal obstructions and fading. One of themajor challenges is
obtaining a good heading solution in different environments
and for different user positions without external absolute
reference signals. Part of this challenge arises from the
complexity and freedom of movement of a typical handheld
user where the heading observability considerably degrades
in low-speed walking, making this problem even more
challenging. However, for short periods, the relative attitude
and heading information is quite reliable. Self-contained
systems requiring minimal infrastructure, for example, iner-
tial measurement units (IMUs), stand as a viable option,
since pedestrian navigation is not only focused on outdoor
navigation but also on indoor navigation.

Nowadays, most of the smartphones are programmable
and equipped with self-contained, low cost, small size, and
power-efficient sensors, such as magnetometers, gyroscopes,
and accelerometers. Hence, integrating IMUs navigation

solution with a magnetometer-based heading can play an
important role in pedestrian navigation in all environments.
In the current state of the art in MEMS technology, the
accuracy of gyroscopes is not good enough for deriving an
absolute heading or relative heading over longer durations
of time. However, for short periods, the relative attitude
information is quite reliable. Magnetometers, on the other
hand, provide absolute heading information once calibrated.
However, they can easily be disturbed by ferrous objects
nearby, making them unreliable for brief intervals. This
calls for the investigation of possible sources of heading
error in complementary sensors such as a gyroscope and a
magnetometer and improving the accuracy of the result based
on an improved Kalman filter design.

Much research towards the heading estimation for per-
sonal positioning applications has been conducted in the
recent years. Some approaches use magnetometers exclu-
sively for heading estimation [1] while others integrate
it tightly with an IMU [2, 3]. One commercially avail-
able personal locator system based on this principle is
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theDead ReckoningModuleDRM-4000made byHoneywell
[4]. A quaternion-based method to integrate IMU with
magnetometer is presented by [5]. Three body angular rates
and four quaternion elements were used to express attitude
and were selected as the states of the Kalman filter. The
method needs to model the angular motion of the body. In
[6], a linear system error model based on the Euler angles
errors expressing the local frame errors is developed, and
the corresponding system observation model is derived. The
proposedmethod does not need to model the system angular
motion and also avoids the nonlinear problemwhich is inher-
ent in the customarily used methods. A similar technique is
proposed by [7] where the angular rates were modeled to be a
constant. A nonlinear derivative equation for the Euler angle
integration kinematics is investigated in [8]. Work in [9, 10]
presented an Euler angle error based method to integrate
IMU with magnetometer data where three Euler angle errors
and three gyroscope biases were used as states for the Kalman
filter. The estimated states were used to correct the Euler
angles and to compensate gyroscope drifts, respectively. The
work at [11] presented a mathematical model for compass
deviation by creating an a priori look-up table for heading
corrections. A Kalman filtering approach was investigated
by [12] to estimate the angular rotation from the input of
a magnetometer compass and three gyroscopes. References
[13, 14] presented a least squares techniquewith improvement
which is used for the estimation of the compass deviation
model. In addition, much research has been conducted to use
the 3Dmagnetometer-based heading for personal navigation
applications in the recent years [15].

The magnetometer cannot be used as standalone source
for heading information in the harsh environments, espe-
cially indoor [16]. In addition, it is required to have knowl-
edge about the preexisted magnetic anomalies resulted from
some of the man-made infrastructure [17]. Using magnetic
field measurements in heading estimation for indoor navi-
gation also has some limitations as the magnetic field signal
needs to be strong enough. Also, themobile navigation device
should be away from any source of disturbances to avoid
any perturbation effect [18]. Besides that, the magnetic field
during the indoor environment is not completely constant
due to the presence of the electronic and electrical devices
everywhere. To avoid the problem ofmagnetometer anomaly,
arising out of ferrous materials in the vicinity of the mag-
netometers, a perturbation detection technique is required.
In such scenario, the filter works only in the propagation
mode without any update for the attitude. Also the gyroscope
bias drifts with time and temperature can be compensated
by magnetometers. In this paper, a method is presented
to obtain seamless attitude information by integrating the
heading outputs based on magnetometer, accelerometer, and
gyroscope measurements using the Kalman filter (KF).

2. Pedestrian Dead Reckoning (PDR)

Pedestrian dead reckoning is a relative means of positioning
where the initial position and heading of the user are sup-
posed to be known.The basic concept and components of the

Table 1: Sensors manufacture and ranges.

Sensor Manufacture Range
Gyroscope mpu-3050 ±250 to ±2000∘/sec
Accelerometer BMA220 ±2, ±4, ±8, ±16 g
Magnetometer YAS530 ±800𝜇T

proposed PDR algorithm are shown in Figure 1. Generally,
steps of the user are detected based on the accelerometer
data. To get the travelled distance, the total number of steps
is multiplied by the step length. With known heading and
reference point, the user can be tracked by successive steps
count.

Step detection is a basic step for any PDR algorithm.
Usually, the accelerometer signal is used to detect the steps
of the person. Once the step is detected, the total number
of steps for a pedestrian can be counted. As a result, the
total travelled distance can be estimated by multiplying the
step length with the total number of steps. Using travelled
distance and heading, user can be located during a typical
trip. Step detection algorithm can be performed based on
different kinds of sensors, that is, not only accelerometers
but even gyroscopes and magnetometers. However, our step
event detection scheme is based on using the accelerometer
signal. The norm of the three accelerometers is used as in (1),
where it is possible to clearly identify the steps by observing,
for example, the signal over time:

accelnorm = √(𝐹𝑥
2

+ 𝐹𝑦
2

+ 𝐹𝑧
2

). (1)

Steps are detected as peaks in the resulting norm, where the
step is the highest local maximum in the norm acceleration
between the current peak and the previous step peak.

3. Sensors Performance

The used device in the test, Samsung Galaxy Nexus smart-
phone, is shown in Figure 2 with axes definition.

Besides other sensors, the device is equipped with triad
magnetometer (M), triad gyroscope (G), and triad accel-
erometer (A). The manufactures and the ranges of the main
used sensors are listed in Table 1.

3.1. Gyroscope Drift. Gyroscopes are mainly used to deter-
mine device attitude. The output of such sensor is rotational
rate, and performing a single integration on the gyroscopes
outputs is necessary to obtain a relative change in angle.
Due to the integration process which is very sensible to
the systematic errors of the gyroscopes, the bias introduces
a quadratic error in the velocity and a cubic error in the
position [19]. Gyroscopes measurements can generally be
described using

𝐼
𝜔
= 𝜔 + 𝑏

𝜔
+ 𝑆
𝜔
+ 𝑁
𝜔
+ 𝜀 (𝜔) , (2)

where 𝐼
𝜔
is the measured angular rate, 𝜔 is the true angular

rate, 𝑏
𝜔
is the gyroscope bias, 𝑆 is the linear scale factormatrix,

𝑁 is the nonorthogonality matrix, and 𝜀(𝜔) is the sensor
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Figure 1: The main concept of the PDR algorithm.
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Figure 2: Device axis definition.

noise. With integration, the gyroscope bias will introduce
an angle error in pitch or roll proportional to time; that is,
𝛿𝜃 = ∫ 𝑏

𝜔
𝑑𝑡 = 𝑏

𝜔
𝑡; this small angle will cause misalignment

of the IMU.Therefore, when projecting the acceleration from
for example the gravity vector 𝑔, from the body frame to the
local-level frame, the acceleration vector will be incorrectly
projected due to this misalignment error. This will introduce
an error in one of the horizontal acceleration; that is, 𝛿𝑎 =

𝑔 sin(𝛿𝜃) ≈ 𝑔𝛿𝜃 ≈ 𝑔𝑏
𝜔
𝑡. Consequently, this leads to an error

in velocity 𝛿V = ∫ 𝑏
𝜔
𝑔𝑡 𝑑𝑡 = (1/2) 𝑏

𝜔
𝑔𝑡
2 and in position

𝛿𝑝 = ∫ 𝛿V 𝑑𝑡 = ∫(1/2)𝑏
𝜔
𝑔𝑡
2

𝑑𝑡 = (1/6)𝑏
𝜔
𝑔𝑡
3. To overcome

the problem of error drift, a bias compensation of gyro-
scopes is required. When the device is in stationary mode,
the deterministic bias of the gyroscope can be estimated
by calculating the average gyroscope output during that
time.

3.2. Magnetometer Perturbation. During operation, espe-
cially inside buildings, a magnetometer is subject to many
external disturbances such as large metal objects [20]. Other
objects like steel structures and electromagnetic power lines
can affect the solution of the magnetometer. These kinds
of disturbance lead to unpredictable performance of the
magnetometer which is a major drawback of using magnetic
sensors. In the meanwhile, the magnetic field parameters
such as strength, horizontal and vertical magnetic field, and
change in the inclination angle can be checked to detect the
perturbation in magnetometer measurement by comparing
to the reference values which can be found at [21]. Figure 3
shows an example for harsh environment as the magnetome-
ter is totally disturbed due to the steel constructions. The
figure shows the total magnetic field in a perturbed area
during a walking test compared to the reference value which
is 570 mGauss for Calgary [21].

4. Multisensors Heading Fusion Filter

The attitude of the device is commonly estimated using the
inertial sensor. There are three main approaches for attitude
representation: DCM, Euler angle, and quaternion. Among
the three techniques quaternion algebra is the preferred.
However, the estimated attitude from the gyroscope is very
noisy leading to unbounded growth in the heading errors.
An integration scheme for the gyroscope, accelerometer,
and magnetometer data is proposed to estimate the device
attitude and the gyroscope bias. The proposed scheme is a
quaternion-based KF as shown in Figure 4.

In order to use the KF-based estimator for quaternion
parameters and gyroscope biases estimation for a device
which is carried by a pedestrian, the required model for the
states and measurements and their respective system and
measurement error models are presented in this section.
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Figure 3: Magnetic field perturbation.

4.1. QuaternionMechanization. The relationship between the
direct cosine matrix (DCM) and Euler angles is given in
(3) with the sequence of azimuth, pitch, and roll (𝜓𝜃𝜙) or
(𝑅𝑥
𝜙

𝑅
𝑦

𝜃

𝑅
𝑧

𝜓

) [22]:

𝐶
𝑏

𝑙

=
[
[

[

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃

𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑐𝜃

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑐𝜃

]
]

]

. (3)

A quaternion is a four-dimensional vector which is defined
based on a vector 𝑞 and a rotation angle.The vector 𝑞 is given
as

𝑞 = (𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) . (4)

The DCM matrix in terms of quaternion vector components
can be obtained from using

𝐶
𝑛

(𝑞) =

[
[
[

[

2𝑞
2

1

− 1 + 𝑞
2

2

2𝑞
2
𝑞
3
+ 2𝑞
1
𝑞
4

2𝑞
2
𝑞
4
− 2𝑞
1
𝑞
3

2𝑞
2
𝑞
3
− 2𝑞
1
𝑞
4

2𝑞
2

1

− 1 + 𝑞
2

3

2𝑞
3
𝑞
4
+ 2𝑞
1
𝑞
2

2𝑞
2
𝑞
4
+ 2𝑞
1
𝑞
3

2𝑞
3
𝑞
4
− 2𝑞
1
𝑞
2

2𝑞
2

1

− 1 + 𝑞
2

4

]
]
]

]

,

(5)

where 𝐶
𝑛 represents the DCMmatrix in terms of the quater-

nion vector.

The matrix transforms from the body frame to the local
level (navigation) frame. The roll, pitch, and azimuth values
can be obtained by using the 𝑎 tan 2 math function on the
values of the 𝐶

𝑛 propagated inside the sensors navigation
equations

𝜙 = tan−1 (𝐶
𝑛

(2, 3)

𝐶
𝑛

(3, 3)

) ,

𝜃 = −sin−1 (𝐶𝑛 (1, 3)) ,

𝜓 = tan−1 (𝐶
𝑛

(1, 2)

𝐶
𝑛

(1, 1)

) .

(6)

4.2. Filter States. Basically, the target of the proposed filter
is to estimate the device attitude based on the quaternion
technique. Consequently, any improvement in the quaternion
estimate leads to improving the estimated attitude values.The
implementation of the KF is optimal for linear systems driven
by additive white Gaussian noise (AWGN). The state model
can be written in the following form:

�̇� = 𝐹𝑥 + 𝐺𝑤, (7)

where 𝑥 is the state vector, 𝐹 is the state transition matrix,
and 𝐺𝑤 represents the covariance matrix of the applied state
model. The measurement system can be represented by a
linear equation of the following form:

𝑍 = 𝐻𝑥 + V, (8)

where𝑍 is the vector ofmeasurement updates,𝐻 is the design
(observation) matrix that relates the measurements to the
state vector, and V is the measurement noise.

The nonlinear form of the systemmodel in the absence of
the known input can be written as

�̇� (𝑡) = 𝐹 (𝑥 (𝑡) , 𝑡) + 𝐺 (𝑡)𝑊 (𝑡) , (9)

where 𝐹(𝑥(𝑡), 𝑡) is now a nonlinear function describing the
time evolution of the states. Consider a nominal trajectory,
𝑥
nom

(𝑡), related to the actual trajectory, 𝑥(𝑡), as

𝛿𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥
nom

(𝑡) , (10)

where 𝛿𝑥(𝑡) is a perturbation from nominal trajectory. per-
forming a Taylor series expansion equation (10) about the
nominal trajectory yields

�̇� (𝑡) ≈ 𝐹 (𝑥
nom

(𝑡) , 𝑡)

+
𝜕𝐹 (𝑥(𝑡), 𝑡)

𝜕𝑥(𝑡)

𝑥(𝑡)=𝑥nom(𝑡)

𝛿𝑥 (𝑡)

+ 𝐺 (𝑡)𝑊 (𝑡)

= �̇�
nom

(𝑡) + 𝐹𝛿𝑥 (𝑡) + 𝐺 (𝑡)𝑊 (𝑡) ,

�̇� (𝑡) − �̇�
nom

(𝑡) = 𝐹𝛿𝑥 (𝑡) + 𝐺 (𝑡)𝑊 (𝑡) ,

𝛿�̇� (𝑡) = 𝐹𝛿𝑥 (𝑡) + 𝐺 (𝑡)𝑊 (𝑡) ,

(11)
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where 𝐹 is now the dynamic matrix for a system with state
vector which consists of the perturbed states, 𝛿𝑥. Thus, the
main states to be estimated are the errors in the quaternion
parameters given by:

𝛿𝑞 = [𝛿𝑞
1

𝛿𝑞
2

𝛿𝑞
3

𝛿𝑞
4
]
𝑇

, (12)

where 𝛿𝑞
𝑖
is the error in the 𝑖th quaternion parameter.

The quaternion parameters are primarily determined
using the angular rates obtained from gyroscopes’ measure-
ments. The deterministic errors associated with the gyro-
scope can be compensated using data from static interval at
the beginning of the test while the stochastic errors in biases
are given by

𝑏
𝜔
= [𝑏
𝜔𝑥

𝑏
𝜔𝑦

𝑏
𝜔𝑧

]
𝑇

, (13)

where 𝑏
𝜔𝑥
, 𝑏
𝜔𝑦
, and 𝑏

𝜔𝑧
are the gyroscope biases.

The complete state vector is defined as a 7-dimensional
vector with the first four components being errors in the
elements of the quaternion and the last three being the
elements of the gyroscope biases.

𝑥 = [𝛿𝑞
1

𝛿𝑞
2

𝛿𝑞
3

𝛿𝑞
4

𝑏
𝜔𝑥

𝑏
𝜔𝑦

𝑏
𝜔𝑧

]
𝑇

. (14)

4.3. The State Transition Model. The angular rate is linked to
the quaternion parameters as in the following:

̇𝑞 =
1

2

⋅ 𝑞 ⊗ 𝜔 =
1

2

[
[
[
[

[

−𝑞
2

−𝑞
3

−𝑞
4

𝑞
1

−𝑞
4

𝑞
3

𝑞
4

𝑞
1

−𝑞
2

−𝑞
3

𝑞
2

𝑞
1

]
]
]
]

]

[
[

[

𝜔
𝑥

𝜔
𝑦

𝜔
𝑧

]
]

]

, (15)

where 𝑞 is the attitude quaternion 𝜔
𝑥
, 𝜔
𝑦
, and 𝜔

𝑧
represent

angular rate measurements in the sensor frame obtained
using the rate gyroscopes. Quaternion is used to represent
attitude in the filter design because it does not have the sin-
gularity problem associated with Euler angles. The previous
equation can be rewritten as

[
[
[
[
[

[

̇𝑞
1

̇𝑞
2

̇𝑞
3

̇𝑞
4

]
]
]
]
]

]

=
1

2

[
[
[
[
[

[

−𝑞
2
𝜔
𝑥
− 𝑞
3
𝜔
𝑦
− 𝑞
4
𝜔
𝑧

𝑞
1
𝜔
𝑥
− 𝑞
4
𝜔
𝑦
+ 𝑞
3
𝜔
𝑧

𝑞
4
𝜔
𝑥
+ 𝑞
1
𝜔
𝑦
− 𝑞
2
𝜔
𝑧

−𝑞
3
𝜔
𝑥
+ 𝑞
2
𝜔
𝑦
+ 𝑞
1
𝜔
𝑧

]
]
]
]
]

]

. (16)
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The Taylor series expansion to first order is shown in the
following:

𝛿 ̇𝑟 =
𝜕 ̇𝑟

𝜕𝑟

𝛿𝑟, (17)

where 𝑟 is the state vector 𝛿𝑟 is the error in the state.Thus, the
quaternion parameters error can be obtained as

[
[
[
[

[

𝛿 ̇𝑞
1

𝛿 ̇𝑞
2

𝛿 ̇𝑞
3

𝛿 ̇𝑞
4

]
]
]
]

]

=
1

2

[
[
[

[

0 −𝜔
𝑥

−𝜔
𝑦

−𝜔
𝑧

𝜔
𝑥

0 𝜔
𝑧

−𝜔
𝑦

𝜔
𝑦

−𝜔
𝑧

0 𝜔
𝑥

𝜔
𝑧

𝜔
𝑦

−𝜔
𝑥

0

]
]
]

]

[
[
[
[

[

𝛿𝑞
1

𝛿𝑞
2

𝛿𝑞
3

𝛿𝑞
4

]
]
]
]

]

. (18)

A general equation for the 1st order Gauss-Markov model is
given as

�̇� = −𝛽𝑏 + √2𝛽𝜎
2

𝑤 (𝑡) , (19)

where 𝛽 is the reciprocal of the correlation time and 𝜎
2 is

the variance of the gyroscope signal.The different parameters
of the Gauss-Markov model can be determined as shown in
Figure 5.

According to (19), the gyroscopes bias can be modeled as

�̇�
𝜔

=
[
[

[

�̇�
𝜔𝑥

�̇�
𝜔𝑦

�̇�
𝜔𝑧

]
]

]

= [

[

−𝛽
𝑥

0 0

0 −𝛽
𝑦

0

0 0 −𝛽
𝑧

]

]

[
[

[

𝑏
𝜔𝑥

𝑏
𝜔𝑦

𝑏
𝜔𝑧

]
]

]

+

[
[
[
[
[

[

√2𝛽
𝑥
𝜎
2

𝑥

√2𝛽
𝑦
𝜎
2

𝑦

√2𝛽
𝑧
𝜎
2

𝑧

]
]
]
]
]

]

𝑤.

(20)

The complete state model can be written as the following:

[
[
[
[
[
[
[
[
[
[
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⋅ 𝑤, (21)

where

𝐹
𝜔
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(22)

Using the dynamic matrix in (21), the state transition matrix
can be defined as

Φ
𝑘+1,𝑘

= 𝑒
(𝐹⋅Δ𝑡)

= 𝐼 + 𝐹 ⋅ Δ𝑡 +
(𝐹 ⋅ Δ𝑡)

2

2!

. (23)

4.4.MeasurementModels. Themagnetometermeasurements
along with the accelerometer data are used as main source of
update. The measured magnetic field is tested for perturba-
tion. Once the magnetic field is free of disturbances, the geo-
magnetic heading is estimated from the calibrated data. Also,
the accelerometer measurements are experienced to be noisy
as low cost MEMS sensors are used and usually measured at
higher rate. Therefore, the average of the measured data over
the step time is used to estimate the roll and pitch values.
The roll, pitch, and heading estimates are used to calculate
the quaternion parameters.

The only source of update is the quaternion parameters.
Thus, the design matrix can be set as

𝛿𝑧 =
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. (24)
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4.5. Modeling of Process and Measurement Noises. In order
to complete the design of the KF, it is necessary to define
the noise covariance matrices, the process noise covariance
matrix 𝑄 and the measurement noise covariance matrix 𝑅.
Thesematrices reflect the confidence in the systemmodel and
the measurements, respectively.The covariance of𝑤

𝑘
is often

called the process noise matrix, 𝑄
𝑘
, and can be computed as

𝑄
𝑘
= 𝐸 [𝑤

𝑘
⋅ 𝑤
𝑇

𝑘

] . (25)

The 𝑄
𝑘
matrix is a 7-dimension square matrix which can be

computed using as follows [23, 24]:

𝑄
𝑘
= ∫

𝑡𝑘+1

𝑡𝑘

Φ
𝑡𝑘+1,𝜏

⋅ 𝐺 (𝜏) ⋅ 𝑄 (𝜏) ⋅ 𝐺
𝑇

(𝜏)Φ
𝑇

𝑡𝑘+1,𝜏
𝑑𝜏. (26)

The measurement noise covariance matrix 𝑅 is also
known as the covariance matrix for V. The 𝑅

𝑘
matrix repre-

sents the level of confidence placed in the accuracy of the
measurements and is given by

𝑅
𝑘
= 𝐸 [V

𝑘
⋅ V𝑇
𝑘

] . (27)

The 𝑅
𝑘
matrix is a 4-dimension diagonal square matrix.

The diagonal elements are the variances of the individual
measurements, which can be determined experimentally
using measurement data from the used sensors.

4.6. Filter State Initialization. The state vector should be
initialized at the beginning of the process. For the gyroscope
bias states, all biases are initialized as zeros. The quaternion
states can be initialized from theDCMmatrix using the Euler
angles. The mean of the accelerometer calibrated data during
a stationary period can be used to estimate the initial roll and
pitch using the following relationships [25]:

𝜙
𝑜

= tan−1(
−𝑓
𝑦

√𝑓

2

𝑥

+ 𝑓

2

𝑧

),

𝜃
𝑜
= tan−1(

√𝑓

2

𝑥

+ 𝑓

2

𝑦

−𝑓
𝑧

),

(28)

where 𝑓 is the mean of the accelerometer data. During the
same interval, the roll and pitch estimates are used for leveling
the magnetometer data to be in the navigation frame. The
calibrated magnetometer data is used to estimate the initial
azimuth as

𝜓
𝑜
= tan−1 (

𝐻
𝑦

𝐻
𝑥

) . (29)

The DCM is calculated using the initial Euler angles values
as in (3).Then, the following relation between the quaternion

and the DCM [22] is used to calculate the initial quaternion
vector:
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. (30)

The initial quaternion vector, 𝑞
𝑜
, is calculated using the initial

Euler angles values (𝜙
𝑜
, 𝜃
𝑜
, 𝜓
𝑜
). Equation (30) is also used to

get the updated quaternion parameters.

5. Results and Discussion

In this section, the performance of the proposed attitude
algorithm is assessed. The device is held in the texting
mode. All tests start with around 30 seconds of stationary
period to calibrate for the gyroscope while themagnetometer
is calibrated by moving the device in the 3D space. The
first scenario is conducted to assess the performance of the
proposed technique in the indoor environments while the
second scenario is performed in the downtown area.

5.1. Environment Change Test. In this scenario, the test is
started outside the building close to the Olympic Oval at
the University of Calgary. The PDR solution is initialized
using initial position from GPS and initial heading from
the magnetometer. The device is held in stationary at the
beginning of the test for about 40 s to calibrate for the
gyroscope deterministic bias and to estimate the initial
orientation, roll and pitch, of the device.The device is held in
the compass, texting mode, and the user keeps going through
the first floor with a long corridor inside the building. The
trajectory is ended outside the McEwan Student Center in
front of Taylor Family Digital Library (TDFL). The time for
this trajectory was about 5.5 minutes taken in 594 steps with
a total travelled distance of 461m. Various reasons made this
place a candidate for the test.

(i) It is a popular and attractive place for students’
activities.

(ii) It has a long corridor which is a challenging area for
magnetometer.

(iii) At the starting point, in front of the building, there is
a huge metal structure which can affect the magne-
tometer performance.

(iv) This place is full of students and simulates the normal
walking scenario of a smartphone user.

The derived heading form the magnetometer is totally
affected at the beginning due to the presence of a huge metal
object in the surrounding area as shown in Figure 6. The
total magnetic field is distorted yielding incorrect heading
estimation from magnetometer during the first 40 seconds.
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Figure 6: Heading estimation and the effect of the surrounding
environment.

In addition, the calibration process is performed based on
data taken outside the building, and so, once the user is
moved to be inside the building, the distribution of the
magnetic field is different from that outside as shown in
Figure 6. Thus, magnetometer-based heading is still not
accurate. However, after around 2 minutes the heading from
the magnetometer starts to be the main source of update
for the attitude filter. As a result, during the perturbation
interval the attitude filter does not perform the update stage
and keeps propagating the attitude of the device based on the
gyroscopes’ measurements.

The magnified part in Figure 7 shows the magnetometer
heading during a perturbation area.The figure shows that the
heading is diverted and scattered when the magnetic field is
distorted in contrast to the attitude filter heading during the
same interval.

To evaluate the overall accuracy of the PDR algorithm,
a reference trajectory plotted on the map of the test site is
used. A reference trajectory for the actual direction of the
test is plotted on the map of the first floor of the University
of Calgary. As shown in Figure 8, the maximum error is less
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Figure 7: Magnetometer heading direction during perturbation
area.

Figure 8: PDR trajectory compared to a reference trajectory.

than 5m during the test. Also, the trajectory is finished at the
correct point with position drift of less than 4m.The error in
the distance is about 1.1% of the total traveled distance.

5.2. Downtown Test. Downtown is an attractive place for
tourists in addition tomost people in the city. It has themajor
attractive sites such as shopping centers, administration
offices, museums, restaurants, cafes, and theaters. So, it is
important to have a good navigation system which is able to
help the pedestrians to their destinations. Some conventional
techniques such as GPS suffer from the multipath and signal
destruction due to the high buildings.The test is conducted in
downtownCalgary to assess the performance of the proposed
algorithm in the harsh environments.The performance of the
magnetometer is totally affected due to the distortion of the
magnetic field in the downtown area.Thehigh buildings, cars,
and traffic signals add more complications for the heading
estimation based on the magnetometer. The test is started
at the intersection of the 7th street SW and the 8th avenue
SW downtown Calgary as shown in Figure 9. The selected
trajectory is a square starting in the east direction followed by
north, west, and south directions.The length of the trajectory
is 490m taking about 6 minutes of walking.
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Figure 9: Test starting point.
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Figure 10: Heading estimation.

Although the magnetometer gets good maneuvering at
the start of the test the presence of a strong perturbation
source affected the heading estimate. As shown in Figure 10,
the estimated heading from magnetometer is totally unused
formajor part of the test due to the distortion in themagnetic
field. It shows that the heading update is available only for two
minutes during the interval of 140 s to 260 s.

Figure 11 shows the PDR solution using the attitude filter
compared to the same solution based on the heading from the
magnetometer stand-alone, gyroscope heading stand-alone,
andGPS solution. As shown in the figure, there is no accurate
stand-alone solution for the test trajectory.

(i) The gyroscope stand-alone solution gives the accurate
direction with position drift due to the uncompen-
sated bias.

(ii) The magnetometer stand-alone solution is diverted
at many parts of the test; however, in certain parts it
performs well and provides the correct heading.

Figure 11: PDR trajectory compared to a reference trajectory.

(iii) The GPS is considered the poorest solution as it does
not provide any correct information at all during the
test due to the satellites unavailability.

However, the PDR algorithm based on the attitude filter,
in corporation with the magnetometer anomaly detection
technique, provides an acceptable solution.

The overall accuracy of the PDR algorithm is evaluated by
comparing the PDR solution with a reference trajectory on
Google map. As shown in Figure 11, the maximum error in
position happens at the north direction side of the trajectory
where no update is available yet, and it was around 10m. Also,
the trajectory is finished at the correct place with position
drift of less than 4m. The overall error in distance is about
1% of the total traveled distance.

6. Conclusion

An enhanced attitude estimation technique based on two
different attitude sensors is presented.The algorithm is based
on the quaternion mechanization to estimate the device
attitude. The filter is working as a complementary technique;
the Earth’s magnetic field and the angle rate are integrated
to estimate the device heading. The filter is propagated in
the prediction mode using the gyroscope measurements
while the magnetometer and accelerometer measurements
are used for the update stage.The improvement in the attitude
estimation leads to an improved PDR result. The PDR-
based estimated trajectory results are compared to reference
trajectories to show the accuracy of the proposed technique.
The results show that the presented algorithm is able to
provide the necessary navigation information accurately even
in the harsh environments.
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