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The paper describes an algorithm for numerical estimation of effective mechanical properties in two-dimensional case, considering
finite strains.The algorithm is based on consecutive application of different boundary conditions to representative surface elements
(RSEs) in terms of displacements, solution of elastic boundary value problem for each case, and averaging the stress field obtained.
Effective properties are estimated as a quadratic dependence of the second Piola-Kirchhoff stress tensor upon the Green strain
tensor.The results of numerical estimation of effectivemechanical properties of plexiglas, reinforcedwith steel wire, are presented at
finite strains.Numerical calculationswere performedwith the help ofCAEFidesys using the finite elementmethod.Thedependence
of the effective properties of reinforced plexiglas upon the concentration of wires and the shape of wire cross section is investigated.
In particular, it was found that the aspect ratio of reinforcing wire cross section has the most significant impact on effective moduli
characterizing the material properties in the direction of larger side of the cross section. The obtained results allow one to estimate
the influence of nonlinear effects upon the mechanical properties of the composite.

1. Introduction

Thewidespread use of plexiglas in engineering applications is
due to its properties such as transparency, strength, flexibility,
lightness, cheapness, and nontoxicity. In some applications
the combination of plexiglas properties of high rigidity and
resistance to mechanical and thermal effects is required. In
order to increase stiffness and thermal conductivity of the
plexiglas and to prevent its spillage due to mechanical or
other influences a reinforcement wirework (usually made of
steel) is used. Reinforced plexiglas is a composite material.
Properties of the material obtained depend primarily upon
the material and shape of reinforcing wire. At that, the
question that has to be answered is as follows: how to
evaluate mechanical properties of reinforced plexiglas while
mechanical properties of plexiglas and wires are known
provided the shape of wire cross section is known?

The averaging of heterogeneous materials properties
has been of interest since the middle of the last century.
Theoretical principles of such averaging are described in [1];
in particular, a concept of representative volume element is
explained in detail. The studies of that time concerned the
effective properties of composite materials in the linear form
suitable for description of composites behavior under small
strains.

For composites with relatively small volumetric content
of filler in the matrix, the existing bilateral assessment of
Hashin and Shtrikman [2, 3] is valid; it gives the minimum
and maximum values for the compression bulk modulus
and a shear modulus of composite material (provided filler
concentration and moduli of filler and matrix are known).
Mori and Tanaka method [4] is an application of Hashin
and Shtrikman conditions to fiber-reinforced material with
a continuous matrix in which the volume fraction of the filler
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particles is low, and the particles shape is mostly spherical.
The book of Christensen [5] contains some analytical for-
mulas for evaluating of effective elastic properties of fiber-
reinforced, fibrous, and laminated composites and plastic
and viscoelastic effects, and effective thermal properties of
composites are studied.

At present, the more topical problem is evaluation of
effective mechanical properties of heterogeneous materials
in nonlinear form, with the help of which it is possible to
describe the behavior of composites under finite strains. In
the work [6], elastic and plastic properties of the material
containing the dispersedmicrodefects of different orientation
in space are studied. In articles [7, 8], effective elastic
properties of solids containing cavities of various shapes
and orientations in space are estimated. In [9], for the
construction of effective constitutive relations of viscoelastic
material with periodic structure the finite element method
is used; it serves to solve the two-dimensional problem of
elasticity theory for a representative volume element, and
then the results are averaged. Articles [10, 11] describe how
to apply the variational principle to estimate the effective
characteristics of multicomponent composites in the form of
the strain energy density. Work [12] presents a method of
effective characteristics estimation of composite materials in
nonlinear form, based on the Tsukrov et al. [7, 8] principle.
Work [13] describes a method for constructing nonlinear
thermoviscoelastic effective constitutive relations for com-
posites of a periodic structure with a rubber-like matrix.
Work [14] describes the application of probability theory
methods for estimating of effective mechanical properties
of composites having irregular structure. Work [15] presents
a method suitable for evaluating both elastic properties
and thermal and electrical conductivity of fiber-reinforced
materials (the article compares the influence of different
parameters of reinforcing particles upon the effective elastic
properties and effective thermal and electrical conductivity).
In [16], an averaging of elastic properties of inhomoge-
neous material is performed under nonperiodic boundary
conditions considering geometric nonlinearity; and practi-
cal implementation is carried out using the finite element
method (for two-dimensional case). In [17], this approach is
applied to the multiscale case. Article [18] compares different
methods for properties averaging of both linear viscoelastic
and nonlinear viscoplastic composite materials.

This work proposes an algorithm for construction of
effective constitutive relations of composite materials in
nonlinear elastic form under finite strains. An evaluation of
the effective characteristics is discussed for two-dimensional
case, which is a simplification as compared to the three-
dimensional case for which the algorithm is described in [19,
20] in detail. Basic principles of this approach are as follows
[21–23] (as for two-dimensional case). A rectangular RSE is
taken. An effective material is a solid homogeneous material
which meets the following condition: if this homogeneous
material fills RSE and the source composite fills the exact
same RSE, then the average stress over the area in the original
composite and the effective homogeneous material are equal
under the identical displacements of boundaries of the RSE.

Constitutive relations for the effective material (i.e., the effec-
tive properties) are plotted as a quadratic dependence of the
second Piola-Kirchhoff stress tensor upon the Green strain
tensor. To calculate coefficients for this dependence, several
sequences of boundary value problems of the nonlinear
elasticity should be solved for RSE with given displacements
of boundaries.

The paper presents the results of two-dimensional calcu-
lations of reinforced plexiglas effective characteristics. Calcu-
lations are performed with the help of CAE Fidesys using the
finite element method. Plexiglas and its reinforcing steel wire
were modeled by the Murnaghan material. A dependence
of the effective elastic moduli on the concentration of the
reinforcing wire and the shape of its cross section was
investigated.

2. Materials and Methods

2.1. Algorithm of Numerical Evaluation of EffectiveMechanical
Properties of Composite in Two-Dimensional Case at Finite
Strains. Let us present the basic designations and relations
of the nonlinear theory of elasticity [24] which will be
used in describing the algorithm of numerical evaluation of
effective mechanical properties of composite material in two-
dimensional case at finite strains:

0

𝑅, 𝑅: radius vector of a particle in initial and current
states;

𝑢 = 𝑅 −
0

𝑅: displacement vector;
𝜉
𝑖: material coordinates of a particle;
𝑥
𝑖: spatial coordinates of a particle;
𝑒
𝑖: basis vectors of reference system;
0

q
𝑖
= 𝜕

0
R/𝜕𝜉𝑖, q

𝑖
= 𝜕𝑅/𝜕𝜉

𝑖: basis vectors in initial and
current states;
0

∇ =
0

q
𝑖
𝜕/𝜕𝜉
𝑖, ∇ = q

𝑖
𝜕/𝜕𝜉
𝑖: gradient operators in initial

and current states;
𝐼: identity tensor;

Ψ =
0
∇𝑅 = 𝐼 +

0
∇𝑢 = (∇𝑟)

−1
= (𝐼 − ∇𝑢)

−1: deformation
gradient;
0

𝐸 = (1/2)(Ψ ⋅ Ψ∗ − 𝐼) = (1/2)(
0
∇𝑢 + 𝑢

0
∇+

0
∇𝑢 ⋅ 𝑢

0
∇): the

Green strain tensor;
𝐸 = (1/2)(𝐼 −Ψ

−1
⋅ Ψ
∗−1
) = (1/2)(∇𝑢+𝑢∇−∇𝑢 ⋅ 𝑢∇):

the Almansi strain tensor;
Δ = detΨ − 1: relative change of volume;
∗: sign of transposition;
𝜎: true stress tensor;
R = (1 + Δ)Ψ

∗−1
⋅ 𝜎: the first Piola-Kirchhoff stress

tensor;
0

∑ = (1 + Δ)Ψ∗−1 ⋅ 𝜎 ⋅ Ψ−1: the second Piola-Kirchhoff
stress tensor;
𝑆
0
, 𝑆: area of RSE in initial and current states;
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Γ
0
, Γ: boundary of the RSE in initial and current states;
0

𝑁, 𝑁: normal to the boundary in initial and current
states.

Let us call the effective (averaged)material such a homoge-
neous material that will meet the following condition: if this
homogeneous material fills RSE and the source composite
fills the exact same RSE, then average (over the area) stresses
in the original composite and in the effective homogeneous
material are equal under identical displacement of faces. Let
us call mechanical properties of this material as effective
properties.

Using the above definitions and designation, let us
describe the algorithm for estimating effective characteristic
of composite material for two-dimensional case in the non-
linear form under finite strains.

For RSE 𝑆
0
in the initial state (before deformation), we

will solve a certain number of sequences of boundary value
problems of nonlinear theory of elasticity [24]:

∇ ⋅ 𝜎 = 0

or
0

∇ ⋅R = 0

(1)

with boundary conditions

𝑢|Γ0
= 𝑟 ⋅ (Ψ

𝑒
− 𝐼) . (2)

Each sequence of problems corresponds to a certain type
of boundary conditions (2) and a certain type of effective
strain tensor𝐸𝑒 over the RSE (i.e., to a certain type of effective
deformation gradient Ψ𝑒). Different problems within the
same sequence differ by strain values.

Solving each problem of each sequence we will find the
field of the true stress tensor 𝜎. With the knowledge of it we
will calculate the effective stress tensor 𝜎𝑒 by averaging of 𝜎
over the area:

𝜎
𝑒
=
1

𝑆
∫
𝑆

𝜎𝑑𝑆 =
1

𝑆
∫
Γ

𝑁 ⋅ 𝜎𝑅𝑑Γ. (3)

The second equality in (3) was obtained with the help
of divergence theorem and the fact that the RSE is in
equilibrium:

∇ ⋅ (𝜎𝑅) = (∇ ⋅ 𝜎) 𝑅 + 𝜎 (∇ ⋅ 𝑅)
∗
= (∇ ⋅ 𝜎) 𝑅 + 𝜎 ⋅ 𝐼

= 𝜎.

(4)

Knowing the deformation gradient that was specified in
(2), it is possible to calculate the effective Green strain tensor
using the following formula:

0

𝐸
𝑒
=
1

2
(Ψ
𝑒
⋅ Ψ
𝑒∗
− 𝐼) . (5)

In a linear case, the effective constitutive relations are
estimated as a linear dependence of true stress tensor 𝜎𝑒 upon
strain tensor:

𝜎
𝑒

𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙
𝐸
𝑒

𝑘𝑙
. (6)

In the nonlinear case, the obtained effective true stress
tensor 𝜎𝑒 is used first for calculation of the effective second
Piola-Kirchhoff stress tensor

0

Σ
𝑒:

0

Σ
𝑒
= (detΨ𝑒) (Ψ𝑒)∗−1 ⋅ 𝜎𝑒 ⋅ (Ψ𝑒)−1 . (7)

In this case, the effective properties are estimated as
quadratic dependence of the second Piola-Kirchhoff stress

tensor
0

Σ
𝑒 upon the Green strain tensor 𝐸𝑒:

0

Σ
𝑒

𝑖𝑗
=
(0)

𝐶 𝑖𝑗𝑘𝑙

0

𝐸
𝑒

𝑘𝑙
+

(1)

𝐶
𝑖𝑗𝑘𝑙𝑚𝑛

0

𝐸
𝑒

𝑘𝑙

0

𝐸
𝑒

𝑚𝑛
. (8)

Thus, estimation of the effective properties of the compos-
ite in linear case reduces to the calculation of coefficients𝐶

𝑖𝑗𝑘𝑙

(6), and estimation of effective properties in nonlinear case

reduces to calculation of coefficients
(0)

𝐶 𝑖𝑗𝑘𝑙 and
(1)

𝐶
𝑖𝑗𝑘𝑙𝑚𝑛

(8).
At that, the following conditions of symmetry are in force

for tensor components 𝐶
𝑖𝑗𝑘𝑙

in (6):

(1) 𝐶
𝑖𝑗𝑘𝑙
= 𝐶
𝑗𝑖𝑘𝑙

(due to symmetry of stress tensor);
(2) 𝐶
𝑖𝑗𝑘𝑙
= 𝐶
𝑖𝑗𝑙𝑘

(due to symmetry of strain tensor);
(3) 𝐶
𝑖𝑗𝑘𝑙

= 𝐶
𝑘𝑙𝑖𝑗

(due to existence of strain energy
density).

The same conditions are in force for
(0)

𝐶 𝑖𝑗𝑘𝑙 in (8). For
(1)

𝐶
𝑖𝑗𝑘𝑙𝑚𝑛

in (8) the following conditions are in force:

(1)
(1)

𝐶
𝑖𝑗𝑘𝑙𝑚𝑛

=
(1)

𝐶
𝑖𝑗𝑙𝑘𝑚𝑛

(due to symmetry of strain tensor);

(2)
(1)

𝐶
𝑖𝑗𝑘𝑙𝑚𝑛

=
(1)

𝐶
𝑖𝑗𝑘𝑙𝑛𝑚

(due to symmetry of strain tensor);

(3)
(1)

𝐶
𝑖𝑗𝑘𝑙𝑚𝑛

=
(1)

𝐶
𝑖𝑗𝑚𝑛𝑘𝑙

(due to symmetry of multiplication);

(4)
(1)

𝐶
𝑖𝑗𝑘𝑙𝑚𝑛

=
(1)

𝐶
𝑗𝑖𝑘𝑙𝑚𝑛

(due to symmetry of the Piola-
Kirchhoff tensor).

Considering the above conditions of symmetry, there are

21 independent constants 𝐶
𝑖𝑗𝑘𝑙

or
(0)

𝐶 𝑖𝑗𝑘𝑙 and 126 independent

constants
(1)

𝐶
𝑖𝑗𝑘𝑙𝑚𝑛

.

2.2. Finite Element Implementation of the Algorithm. Imple-
mentation of the algorithm relies on the use of finite element
method [25, 26] for the calculations. For numerical estima-
tion of effective properties, a geometric model of RSE of a
composite material is required, which should be “cut out” in
the shape of a rectangle whose edges should be parallel to the
coordinate planes.The finite element mesh, which is an input
for the algorithm, is constructed on this geometric model.
Further actions are performed in the Cartesian coordinate
system, coordinate planes of which are parallel to the edge
of RSE. In this coordinate system, the effective mechanical
characteristics will be evaluated.
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The algorithm consists of the following logical blocks.

(1) Preparing the Mesh for Calculation. The finite element
mesh includes an array of node numbers with their coordi-
nates and an array of numbers of finite elements with the
numbers of their constituent nodes. In order to determine
the overall dimensions of the RSE, a calculation loop over all
nodes of the finite element mesh is conducted, which defines
themaximum andminimum abscissas and ordinates of mesh
nodes: 𝑋max, 𝑋min, 𝑌max, and 𝑌min. Then the coordinates of
the RSE center are calculated:

𝑋center =
1

2
(𝑋max + 𝑋min) ,

𝑌center =
1

2
(𝑌max + 𝑌min) .

(9)

After that, the model is shifted to put its center to the
origin (i.e., the coordinates of all mesh nodes are decreased
by 𝑋center and 𝑌center). Also, overall dimensions of the model
2𝐴 × 2𝐵 are determined by formulas:

𝐴 =
1

2
(𝑋max − 𝑋min) ,

𝐵 =
1

2
(𝑌max − 𝑌min) .

(10)

In addition, the accuracy 𝜀 for determination of boundary
nodes and edges is calculated for the same block. For this
purpose a calculation loop over all finite elements of themesh
is conducted, which defines the minimum area of an element
𝑆min. The accuracy 𝜀 is calculated by formula

𝜀 =

3
√𝑆min
100.0

. (11)

The value of 𝜀 naturally depends on how finemesh is used
for calculation.

(2) Formation of Lists of Boundary Nodes. For further calcu-
lations it is necessary to form a list of nodes on boundaries
of the RSE. Particular lists depend on type of boundary
conditions applied.

If the problem is solved for nonperiodic boundary condi-
tions, all nodes located on the boundaries are put to common
list. For this purpose the calculation loop is conducted over
all mesh nodes, at each step of which the following condition
is checked: |𝑥 − 𝐴| < 𝜀 OR |𝑥 + 𝐴| < 𝜀 OR |𝑦 − 𝐵| < 𝜀 OR
|𝑦 + 𝐵| < 𝜀. Here, 𝑥 and 𝑦 are coordinates of the node. If the
condition is true, this means that the node is on the boundary
of the RSE, and its number is added to the list of boundary
nodes.

If the problem is solved for periodic boundary conditions,
four lists of numbers of nodes are created (according to
number of edges). Similarly, the calculation loop is conducted
over all mesh nodes, at each step of which the following
condition is checked:

(1) |𝑥 − 𝐴| < 𝜀;
(2) |𝑥 + 𝐴| < 𝜀;

(3) |𝑦 − 𝐵| < 𝜀;
(4) |𝑦 + 𝐵| < 𝜀.

If the conditionwith number 𝑛 is true for a node, the node
number is added to the list with the number 𝑛.

Then, a pair of corresponding nodes (i.e., those, the
projection of which is closest to each other) are formed from
opposite edges of the RSE.The pairs are recorded to two lists.

For this purpose, a pass through all nodes of the edge 𝑥 =
𝐴 is conducted. For each such node 𝑖 a node −𝑖 is found: the
closest one to the point on the edge 𝑥 = −𝐴 that is opposite
to the node 𝑖. In other words, for the node 𝑖 with coordinates
(𝐴, 𝑦
𝑖
) (which lies on the edge 𝑥 = 𝐴) the closest one (from

nodes lying on the edge𝑥 = −𝐴) to the pointwith coordinates
(−𝐴, 𝑦

𝑖
) is searched for. When such a node is found, the pair

(𝑖, −𝑖) is added to the first list of pairs of nodes.Then the loop
is conducted over all nodes of the edge 𝑥 = −𝐴: if the node −𝑖
of this edge is already the second element of one of the pairs,
we can proceed to the next one; but if not, then you need to
find its corresponding node 𝑖 on the edge 𝑥 = 𝑎 and add it to
the first list of pairs.

Similarly, a pass through all nodes of the edge 𝑦 = 𝐵

is conducted. For each such node 𝑗 a node −𝑗 is found: the
closest one to the point on the edge 𝑦 = −𝐵 that is opposite
to the node 𝑗. In other words, for the node 𝑗with coordinates
(𝑥
𝑗
, 𝐵) (which lies on the edge 𝑦 = 𝐵) the closest one (from

nodes lying on the edge𝑦 = −𝐵) to the point with coordinates
(𝑥
𝑗
, −𝐵) is searched for. When such a node is found, the pair

(𝑗, −𝑗) is added to the second list of pairs of nodes. Then the
loop is conducted over all nodes of the edge 𝑦 = −𝐵: if the
node −𝑗 of this edge is already the second element of one of
the pairs, we can proceed to the next one; but if not, then you
need to find its corresponding node 𝑗 on the edge 𝑦 = 𝐵 and
add it to the second list of pairs.

(3) Formation of Lists of Boundary Edges. For further
averaging over an edge it is necessary to form a list
of edges of finite elements on the boundaries of the
RSE. Since the finite element mesh data do not usu-
ally contain an array of edges of elements, four lists of
pairs {global element number; local number of the edges}
are formed. For this purpose a calculation loop over all finite
elements of themesh is conducted, and a loop over all edges of
the element inside it is conducted, too. If all nodes of (local)
element edges lie on one of the edges of the RSE (global), a
pair {global element number; local number of the edges} is
added to an appropriate list. This takes into account that the
elements are of different geometric shape and different order
of approximation; that is, different elements have different
number of edges and different number of nodes on them.

(4) Application of Boundary Conditions. For RSE we will
solve a certain six sequences of boundary value problems
of nonlinear theory of elasticity [24]. Different problem
sequences differ by types of applied boundary conditions
(i.e., type of effective strain tensor over the RSE). Different
problems within the same sequence differ in the amount of
strain while being of the same type. The following types of
strains are applied:
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(1)
0

𝐸11 = 𝑞: strain or compression along the axis𝑋;

(2)
0

𝐸22 = 𝑞: strain or compression along the axis 𝑌;

(3)
0

𝐸12 =
0

𝐸21 = 𝑞: shear in𝑋𝑌 plane;

(4)
0

𝐸11 =
0

𝐸22 = 𝑞: composition of tensions or
compressions along two axes:𝑋 and 𝑌;

(5)
0

𝐸11 = 𝑞;
0

𝐸12 =
0

𝐸21 = 𝑞: composition of tensions or
compressions along the axis𝑋 and shear in𝑋𝑌 plane;

(6)
0

𝐸22 = 𝑞;
0

𝐸12 =
0

𝐸21 = 𝑞: composition of tensions or
compressions along the axis 𝑌 and shear in𝑋𝑌 plane,

where 𝑞 is the amount of strain.
There are 6 sequences, each of which contains 3-4

problems or more, if required. Different problems within the
same sequence differ in the amount of strain 𝑞.

On the basis of effective strain tensor, the effective
deformation gradient Ψ is calculated by formula (5). Since
the strain tensor is symmetric and deformation gradient in
common case is asymmetric, for certainty it is assumed that
the gradient is upper triangular. Then (5) can be figured out
by components in the following form:

(

𝜀
11
𝜀
12

𝜀
12
𝜀
22

)

=
1

2
[(

𝜓
11
𝜓
12

0 𝜓
22

)(

𝜓
11

0

𝜓
12
𝜓
22

) − (

1 0

0 1
)] .

(12)

Formulas for gradient’s components in an explicit form
are as follows:

𝜓
22
= √2𝑒

22
+ 1,

𝜓
12
=
2𝑒
22

𝜓
22

,

𝜓
11
= √2𝑒

11
+ 1 − 𝜓

2

12
.

(13)

For nonperiodic boundary conditions there is one com-
mon list of numbers of all nodes on the boundary of the RSE.
Boundary condition (2) is applied to each node in this list in
the form of rigidly given displacements in all two directions.

For periodic boundary conditions there are two lists
of pairs of nodes on the boundary of the RSE. For each
pair of nodes from the first list (𝑖, −𝑖) the relationship with
displacement is specified in the following form:

𝑢
𝑖
− 𝑢
−𝑖
= −2𝐴 (𝜓

11
− 1) ,

V
𝑖
− V
−𝑖
= −2𝐴𝜓

12
.

(14)

For each pair of nodes from the second list (𝑗, −𝑗) the
relationship with displacement is specified in the following
form:

𝑢
𝑗
− 𝑢
−𝑗
= −2𝐵𝜓

21
,

V
𝑗
− V
−𝑗
= −2𝐵 (𝜓

22
− 1) .

(15)

(5) Solution of Boundary Value Problem of Elasticity Theory
and Averaging of Results. After application of boundary
conditions to the RSE, the actual numerical solution of each
boundary value problem of the elasticity theory of each
sequence is performed using the finite element method.
When the solution is found, it is necessary to average obtained
field of stress tensor over the area.

First, the area of the model in the final state (i.e., after
deformation) is calculated using the formula:

𝑆 = 4𝐴𝐵 ⋅ detΨ. (16)

In other words, the area of model in final state represents
the area in initial state multiplied by the determinant of
effective deformation gradient.

Stress tensor is averaged over the area using formula
(3). Since the integration is performed on the finite element
model, a transition from integral over the entire boundary to
the sum of the integrals is done over all boundary edges:

𝜎
𝑒
=
1

𝑆
∫
𝑆

𝜎𝑑𝑆 =
1

𝑆
∫
Γ

𝑁 ⋅ 𝜎𝑅𝑑Γ

=
1

𝑆
∑

𝑖

∫
𝛾𝑖

𝑁 ⋅ 𝜎𝑅𝑑𝛾
𝑖
.

(17)

Hereby one can calculate the effective true stresses tensor
in the RSE. Knowing it, it is possible to calculate the effective
second Piola-Kirchhoff stress tensor using formula (7).

Blocks 4 and 5 of the algorithm should be run in double
loop: by type of strain (1 to 6) and by amount of strain
(from 1 to 3. . .4 or more). The result is as follows: for each
boundary value problem for each sequence an effectiveGreen
strain tensor was set, and as a result the effective second
Piola-Kirchhoff stress tensor was obtained. The resulting
Piola-Kirchhoff tensors are stored for each problem for
later calculation of effective properties in the form of their
relations.

(6) Plotting of Piola-Kirchhoff Tensor versus Green Tensor
Using the Least Squares Method. Since the problems within
one sequence differ by the amount of strain only, for each
problem of each sequence the dependence of the effective
second stress Piola-Kirchhoff tensor versus characteristic
amount of strain 𝑞 is plotted:

0

Σ
𝑒

𝑖𝑗
= 𝛼
0

𝑖𝑗
𝑞 + 𝛼
1

𝑖𝑗
𝑞
2
. (18)

The dependence is constructed using the least squares
method, which allows calculating coefficients 𝛼0

𝑖𝑗
and 𝛼1

𝑖𝑗
.

(7) Calculation of Effective Elastic Moduli of First and Second
Orders. In block 6 for each problem of each sequence, we have
constructed the dependence (18) of the effective secondPiola-
Kirchhoff stress tensor versus the characteristic amount of
strain, 𝑞. Effective properties are evaluated as (8).

The relationship between the calculated coefficients 𝛼0
𝑖𝑗

and𝛼1
𝑖𝑗
in (18) for each problem sequence anddesired effective

elastic moduli 𝐶0
𝑖𝑗𝑘𝑙

(of the first order) and 𝐶1
𝑖𝑗𝑘𝑙𝑚𝑛

(of the
second order) is as follows:
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(1)
0

𝐸
𝑒 = ( 𝑞 0
0 0
) ⇒

0

Σ
𝑒

𝑖𝑗
= 𝐶0
𝑖𝑗11
𝑞 + 𝐶1
𝑖𝑗1111

𝑞
2 =
(1)

𝛼
0

𝑖𝑗
𝑞 +
(1)

𝛼
1

𝑖𝑗
𝑞
2;

(2)
0

𝐸
𝑒 = ( 0 00 𝑞 ) ⇒

0

Σ
𝑒

𝑖𝑗
= 𝐶0
𝑖𝑗22
𝑞 + 𝐶1
𝑖𝑗2222

𝑞
2 =
(2)

𝛼
0

𝑖𝑗
𝑞 +
(2)

𝛼
1

𝑖𝑗
𝑞
2;

(3)
0

𝐸
𝑒 = ( 0 𝑞
𝑞 0
) ⇒

0

Σ
𝑒

𝑖𝑗
= (𝐶0
𝑖𝑗12
+ 𝐶
0

𝑖𝑗21
)𝑞 + 4𝐶1

𝑖𝑗12
𝑞
2 =
(3)

𝛼
0

𝑖𝑗
𝑞

+
(3)

𝛼
1

𝑖𝑗
𝑞
2;

(4)
0

𝐸
𝑒 = ( 𝑞 0
0 𝑞
) ⇒

0

Σ
𝑒

𝑖𝑗
= (𝐶0
𝑖𝑗11
+𝐶
0

𝑖𝑗22
)𝑞+(𝐶

1

𝑖𝑗1111
+𝐶
1

𝑖𝑗2222
+

𝐶
1

𝑖𝑗1122
+ 𝐶
1

𝑖𝑗2211
)𝑞
2 =
(4)

𝛼
0

𝑖𝑗
𝑞 +
(4)

𝛼
1

𝑖𝑗
𝑞
2;

(5)
0

𝐸
𝑒 = ( 𝑞 𝑞𝑞 0 ) ⇒

0

Σ
𝑒

𝑖𝑗
= (𝐶0
𝑖𝑗11

+ 2𝐶
0

𝑖𝑗12
)𝑞 + (𝐶1

𝑖𝑗1111
+

4𝐶
1

𝑖𝑗1112
+ 4𝐶
1

𝑖𝑗1212
)𝑞
2 =
(5)

𝛼
0

𝑖𝑗
𝑞 +
(5)

𝛼
1

𝑖𝑗
𝑞
2;

(6)
0

𝐸
𝑒 = ( 0 𝑞𝑞 𝑞 ) ⇒

0

Σ
𝑒

𝑖𝑗
= (𝐶0
𝑖𝑗22

+ 2𝐶
0

𝑖𝑗12
)𝑞 + (4𝐶1

𝑖𝑗1212
+

4𝐶
1

𝑖𝑗1222
+ 𝐶
1

𝑖𝑗2222
)𝑞
2 =
(6)

𝛼
0

𝑖𝑗
𝑞 +
(6)

𝛼
1

𝑖𝑗
𝑞
2.

Formulas for calculation of coefficients𝐶0
𝑖𝑗𝑘𝑙

in an explicit
form are as follows:

(1) 𝐶
𝑖𝑗11

=
(1)

𝛼
0

𝑖𝑗
;

(2) 𝐶
𝑖𝑗22

=
(2)

𝛼
0

𝑖𝑗
;

(3) 𝐶
𝑖𝑗12
= 𝐶
𝑖𝑗21

=
(3)

𝛼
0

𝑖𝑗
/2.

For calculation of coefficients 𝐶1
𝑖𝑗𝑘𝑙𝑚𝑛

it is necessary to
solve the system of 6 linear algebraic equations:

(1) 𝐶1
𝑖𝑗1111

=
(1)

𝛼
1

𝑖𝑗
;

(2) 𝐶1
𝑖𝑗2222

=
(2)

𝛼
1

𝑖𝑗
;

(3) 4𝐶1
𝑖𝑗1212

=
(3)

𝛼
1

𝑖𝑗
;

(4) 𝐶1
𝑖𝑗1111

+ 2𝐶
1

𝑖𝑗1122
+ 𝐶
1

𝑖𝑗2222
=
(4)

𝛼
1

𝑖𝑗
;

(5) 𝐶1
𝑖𝑗1111

+ 4𝐶
1

𝑖𝑗1212
+ 4𝐶
1

𝑖𝑗1112
=
(5)

𝛼
1

𝑖𝑗
;

(6) 𝐶1
𝑖𝑗2222

+ 4𝐶
1

𝑖𝑗1212
+ 4𝐶
1

𝑖𝑗1222
=
(6)

𝛼
1

𝑖𝑗
.

This system is solved analytically, and the solution is as
follows:

𝐶
1

𝑖𝑗1111
=
(1)

𝛼
1

𝑖𝑗
; 𝐶1
𝑖𝑗2222

=
(2)

𝛼
1

𝑖𝑗
; 𝐶1
𝑖𝑗1212

= (1/2)
(3)

𝛼
1

𝑖𝑗
;

𝐶
1

𝑖𝑗1122
= (1/2)(

(4)

𝛼
1

𝑖𝑗
−

(2)

𝛼
1

𝑖𝑗
−

(1)

𝛼
1

𝑖𝑗
);

𝐶
1

𝑖𝑗1112
= (1/2)(

(5)

𝛼
1

𝑖𝑗
−

(3)

𝛼
1

𝑖𝑗
−

(1)

𝛼
1

𝑖𝑗
);

𝐶
1

𝑖𝑗1222
= (1/2)(

(6)

𝛼
1

𝑖𝑗
−

(3)

𝛼
1

𝑖𝑗
−

(2)

𝛼
1

𝑖𝑗
).

Thus, the described algorithm allows performing numer-
ical (using the finite element analysis) estimation of effective
elastic moduli (of the first and the second order) for the
compositematerial in the two-dimensional case. On the basis
of the described algorithm we have developed a software
module Fidesys Composite as part of CAE system Fidesys
[27] intended for numerical estimation of effective mechani-
cal properties of composite materials.

The proposed algorithm assumes that the computations
for each geometrical pattern are performed separately. For
composites of periodical structure it is sufficient to perform
computations once. For composites of random structure with
statistically uniformdistribution of inclusions one can use the
approach that is based on the ensemble averaging over a fixed
number of configurations [21, 22]. The additional averaging
over all possible directions in the plane of deformation [21,
22] can be performed analytically and results in effective
constitutive equations for transversely isotropic materials.
These methods of averaging permit one to avoid the huge
amount of computations for irregular composites.

3. Results

With the help of the developed module Fidesys Composite,
two series of finite element analyses of effective characteristics
of plexiglas reinforced with steel wire were conducted for
two-dimensional case in the nonlinear form under finite
strains. A rectangular RSE of plexiglas with a rectangle of steel
modeling wire was considered in all calculations. A level of
strains applied to the RSE was 1%, 2%, and 3%. Mechanical
properties of plexiglas and steel were described using the
Murnaghan constitutive relations [24]:

0

Σ = 𝜆(

0
E : 𝐼) + 2𝐺

0
E + 3𝐶

3
(

0
E : 𝐼)

2

𝐼 + 𝐶
4
(

0
E2 : 𝐼) 𝐼

+ 2𝐶
4
(

0
E : 𝐼)

0
E + 3𝐶

5

0
E2.

(19)

The constants 𝜆 = 1.09 ⋅ 105MPa, 𝐺 = 0.818 ⋅ 105MPa,
𝐶
3
= −0.29 ⋅ 105MPa, 𝐶

4
= −2,4 ⋅ 105MPa, and 𝐶

5
= −2.25

⋅ 105MPa [24] were used for steel, and the constants 𝜆 = 0,39
⋅ 105MPa, 𝐺 = 0.186 ⋅ 105MPa, 𝐶

3
= −0.013 ⋅ 105MPa, 𝐶

4
=

−0.07 ⋅ 105MPa, and 𝐶
5
= 0.063 ⋅ 105MPa [24] were used for

plexiglas.

3.1. Dependence of Effective Properties versus Concentration
of Wires. Dependence of effective properties of reinforced
plexiglas versus the concentration of the reinforcing wires
was studied. RSE was a rectangle 10 × 5mm. Cross section
of wire is square; size of square side ranged from 0.25mm to
3mm.
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Figure 1: Dependence of coefficient
(0)

𝐶1111 for reinforced plexiglas
versus concentration of reinforcing wires.
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Figure 2: Dependence of coefficient
(0)

𝐶1122 for reinforced plexiglas
versus concentration of reinforcing wires.

Let us see graphs for linear coefficients
(0)

𝐶1111,
(0)

𝐶1122,
(0)

𝐶1212

and
(0)

𝐶2222 (see Figures 1–4).

The graphs show that the coefficient
(0)

𝐶1111 defining
the material behavior during the deformation along the
axis 𝑋 almost linearly depends on concentration of wires

(Figure 1): the greater the concentration, the more
(0)

𝐶1111. The

dependence of coefficient
(0)

𝐶2222 responsible for the behavior
of the material during the tension along the axis 𝑌 versus
the concentration is similar (Figure 4). Similarly, coefficients
(0)

𝐶1212 (Figure 3) defining the behavior of the material under

shear strain and coefficient
(0)

𝐶1122 (Figure 2) are dependent
upon concentration of wires.

Let us see graphs for nonlinear coefficients
(1)

𝐶111111,
(1)

𝐶111122, and
(1)

𝐶222222 as well (see Figures 5–7).

As can be seen from the graphs, the coefficient
(1)

𝐶111111

(which determines the nonlinearity of the material during
tension along the axis 𝑋) increases in modulus with increas-
ing of concentration of wires (Figure 5). The coefficient
(1)

𝐶111111 (responsible for the nonlinearity during tension along
the axis 𝑌) increases in modulus even stronger, and the
dependence of this coefficient on concentration of wires is
clearly nonlinear (Figure 7): this is probably due to the fact
that the width of the RSE is half as much as length. Other
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Figure 3: Dependence of coefficient
(0)

𝐶1212 for reinforced plexiglas
versus concentration of reinforcing wires.
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Figure 4: Dependence of coefficient
(0)

𝐶2222 for reinforced plexiglas
versus concentration of reinforcing wires.
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Figure 5: Dependence of coefficient
(1)

𝐶111111 for reinforced plexiglas
versus concentration of reinforcing wires.
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Figure 6: Dependence of coefficient
(1)

𝐶111122 for reinforced plexiglas
versus concentration of reinforcing wires.
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Figure 7: Dependence of coefficient
(1)

𝐶222222 for reinforced plexiglas
versus concentration of reinforcing wires.
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Figure 8: Dependence of coefficient
(0)

𝐶1111 for reinforced plexiglas
versus form of reinforcing wires cross section.

nonlinear coefficients (e.g.,
(1)

𝐶111122, the graph for which is
shown in Figure 6) depend on concentration significantly
lesser.

3.2. Dependence of Effective Properties versus the Form of Cross
Section. Dependence of effective properties of reinforced
plexiglas versus the form of cross section of the reinforcing
wires was studied. RSE was a square 10 × 10mm. The
rectangular form of wire cross section was considered, the
ratio of rectangle sides varied from 1 : 1 to 1 : 10. At that, the
cross-section area of the wire was 9mm2.

Let us see graphs for linear coefficients
(0)

𝐶1111 and
(0)

𝐶2222

(see Figures 8 and 9).

The graphs show that the coefficient
(0)

𝐶1111 grows mono-
tonically and almost linearly as the cross section of the
reinforcing wire is “pulled” along the axis 𝑋 (Figure 8). At

that, the coefficient
(0)

𝐶2222 decreases (Figure 9) monotonically
but nonlinearly: at first, this coefficient falls sharply (with the
change of aspect ratio from 1 : 1 to 1 : 3) and then changes

slightly. Other linear coefficients
(0)

𝐶 𝑖𝑗𝑘𝑙 are slightly dependent
upon the shape of wires section as shown by calculations.

Let us see graphs for nonlinear coefficients
(1)

𝐶111111,
(1)

𝐶121212, and
(1)

𝐶222222 (see Figures 10–12).
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Figure 9: Dependence of coefficient
(0)

𝐶2222 for reinforced plexiglas
versus form of reinforcing wires cross section.
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Figure 10:Dependence of coefficient
(1)

𝐶111111 for reinforced plexiglas
versus form of reinforcing wires cross section.
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Figure 11: Dependence of coefficient
(1)

𝐶121212 for reinforced plexiglas
versus form of reinforcing wires cross section.
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Figure 12: Dependence of coefficient
(1)

𝐶222222 for reinforced plexiglas
versus form of reinforcing wires cross section.
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Table 1: Linear effective elastic modulus of the fiber-reinforced
composite. A comparison between the Fidesys computations and the
results of Christensen [5].

Effective moduli, MPa 𝐶
1111

𝐶
1122

𝐶
1212

𝐶
2222

Fidesys 3.13691 1.30607 0.89212 3.13692
Christensen [5] 3.11029 1.33286 0.88872 3.11029

As can be seen from the graphs, the coefficient
(1)

𝐶111111

increases in modulus monotonically as you “pull” the cross
section of the wires along the axis 𝑋, (Figure 10), and the
dependence is close to linear one. At that, the module of

coefficient
(1)

𝐶222222 decreases (Figure 12) also monotonically

but nonlinearly: similar to the coefficient
(0)

𝐶2222, the coeffi-

cient
(1)

𝐶222222 decreases in modulus strongly with decreasing
of aspect ratio of the rectangle from 1 : 1 to 1 : 3; then it changes

weakly. The graph for the coefficient
(1)

𝐶121212, defining the
nonlinearity of material under shear strains, looks more
complicated (Figure 11): first, upon the increase of the aspect
ratio of the rectangular cross section, the modulus of this
coefficient drops by approx. six times, and then it rises again
by seven times. The minimum of modulus is observed when
the aspect ratio is approximately 1 : 6.

The points of inflection in the figures showing stiffness
constants as a function of the width/length ratio of the
inclusions arise apparently due to computational errors.

3.3. Comparison with Results Obtained by Other Methods.
Within the framework of linear elasticity and small strains,
the obtained results are compared with the results of Chris-
tensen [5]. The materials of matrix and fibers (wires) were
assumed to be isotropic, and the comparison was performed
for the plane strain. In our computations RSE was a square,
and the circular inclusion was in the center of RSE. The con-
centration of the reinforcing wire was 10%. The mechanical
properties of inclusions (wires) are Young’s modulus 𝐸 =
2000MPa and Poisson’s ratio ] = 0.2.Themechanical proper-
ties of a matrix are Young’s modulus 𝐸 = 2MPa and Poisson’s
ratio ] = 0.3. The effective elastic modulus is given in Table 1.

One can see from Table 1 that the difference between the
numerical solution and the analytical results given in [5] does
not exceed 3%.

Another comparison was performed for the case of finite
strains. The pure shear of a fiber-reinforced elastomeric
composite with rigid circular fibers (wires) was considered.
The matrix material was incompressible, and the mechanical
properties of the matrix material were described by the neo-
Hookean potential. The stresses were averaged over the RSE,
and the first Piola shear stress was computed. The results
were comparedwith the estimations of Avazmohammadi and
Ponte Castañeda [28]. These results are shown in Table 2.
In this table Λ is a shear strain and 𝑐 is the concentration
of wires. The results of the comparison may be estimated as
satisfactory.

Table 2: The first Piola-Kirchhoff shear stress in a fibrous elas-
tomeric composite as a function of shear strain. A comparison
between the Fidesys computations and the results of Avazmoham-
madi and Ponte Castañeda [28].

Λ

𝑐 = 0.1 𝑐 = 0.2

Fidesys
Avazmohammadi

and Ponte
Castañeda

Fidesys
Avazmohammadi

and Ponte
Castañeda

1.25 0.83 0.94 1.34 1.12
1.50 1.93 1.48 2.81 1.92

4. Discussion

Thus, the paper presents the algorithm for numerical eval-
uation of the effective mechanical properties of nonlinear
elastic solids in two-dimensional case (under plane strain).
The novelty of this algorithm is determined by considering of
nonlinear effects. Both physical and geometric nonlinearity
is taken into account. Effective constitutive relations are
presented in the form of quadratic dependence of averaged
strains versus stresses. Determination of effective modules
is reduced to solution of sequences of nonlinear boundary
value problems of elasticity for loads of different types and
sizes. For solving boundary value problems the finite element
method is used, it is implemented in CAE system Fidesys.
Results of calculation of reinforced plexiglas effective char-
acteristics, presented in the paper, confirm the efficiency of
the algorithm. The influence of concentration of reinforcing
wires and wire shape upon the effective properties is studied.
In particular, it was found that the aspect ratio of reinforcing
wire cross section has themost significant impact on effective
moduli characterizing thematerial properties in the direction
of larger side of the cross section.

The obtained results allow estimating the influence of
nonlinear effects upon the mechanical properties of the
composite for different amounts of strain. For example, in
Figures 8 and 10 one can see that for elongation of 10% in
the direction of the axis 𝑥

1
the amendment for adoption of

nonlinear effects for the stress in the direction of the same
axis is 1% for rectangular wires, and for wires cross section
with an aspect ratio of 10 : 1 this amendment will amount to
ca. 16% under the same strain.

In the future it is planned to perform similar calculations
for other composite materials.
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