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A numerical method is proposed to study the laminar boundary layer about a flat plate in a uniform stream of fluid. The presented
method is based on the quartic B-spline approximations with minimizing the error 𝐿

2
-norm. Theoretical considerations are

discussed. The computed results are compared with some numerical results to show the efficiency of the proposed approach.

1. Introduction

One of the well-known equations arising in fluid mechanics
and boundary layer approach is Blasius differential equation.
The classical Blasius [1] equation is a third-order nonlinear
two-point boundary value problem, which describes two-
dimensional incompressible laminar flow over a semi-infinite
flat plate at high Reynolds number,

2𝑓
󸀠󸀠󸀠

(𝑥) + 𝑓 (𝑥) 𝑓
󸀠󸀠
(𝑥) = 0, 𝑥 ≥ 0, (1)

with boundary conditions

𝑓 (0) = 0,

𝑓
󸀠
(0) = 0,

lim
𝑥→∞

𝑓
󸀠
(𝑥) = 1,

(2)

where the prime denotes the derivatives with respect to 𝑥. In
addition to the unknown function 𝑓, the solution of (1) and
(2) is characterized by the value of 𝛼 = 𝑓

󸀠󸀠
(0). Blasius [1] in

1908 found the exact solution of boundary layer equation over
a flat plate. A highly accurate numerical solution of Blasius
equation has been provided by Howarth [2], who obtained
the initial slope 𝛼 = 𝑓

󸀠󸀠

ex(0) = 0.332057. Liu and Chang
[3] have developed a new numerical technique; they have
transformed the governing equation into a nonlinear second-
order boundary value problem by a new transformation

technique, and then they have solved it by the Lie group
shooting method. He [4, 5] gave a solution in a family of
power series with parameter 𝑝 by means of the perturbation
method for solving this equation. Bender et al. [6] proposed
a simple approach using 𝛿-expansion to obtain accurate
totally analytical solution of viscous fluid flow over a flat
plate. Aminikhah [7] used LTNHPM to obtain an analytical
approximation to the solution of nonlinear Blasius viscous
flow equation. Recently, the fixed point method (FPM) [8],
which is based on the fixed point concept in functional anal-
ysis, is adopted to acquire the explicit approximate analytical
solution to the nonlinear differential equation. Finally, efforts
[9, 10] have been made to obtain the solution at the surface
boundary and changed the problem from a boundary value
differential equation into an initial value one. The solution in
the entire domain, however, still requires computation.

In this paper, the quartic B-spline approximations are
employed to construct the numerical solution for solving the
Blasius equation.Theunknowns are obtainedwith using opti-
mization.Theproposedmethod is applied to the problem and
the computed results are compared with those of Howarth’s
method to demonstrate its efficiency.

2. Description of the Method

Let there be a uniformpartition of an interval [0, 𝐿] as follows:
0 = 𝑥

0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑁−1
< 𝑥
𝑁

= 𝐿, where ℎ = 𝑥
𝑗+1

− 𝑥
𝑗
,

𝑗 = 0, 1, . . . , 𝑁 − 1. The quartic B-splines are defined upon
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an increasing set of 𝑁 + 1 knots over the problem domain
plus 8 additional knots outside the problem domain; the 8
additional knots are positioned as

𝑥
−4

< 𝑥
−3

< 𝑥
−2

< 𝑥
−1

< 𝑥
0
,

𝑥
𝑁

< 𝑥
𝑁+1

< 𝑥
𝑁+2

< 𝑥
𝑁+3

< 𝑥
𝑁+4

.

(3)

The quartic B-splines𝐵
𝑗
(𝑥), 𝑗 = −2, −1, . . . , 𝑁+1, at the knots

𝑥
𝑗
are defined as [12]

𝐵
𝑗
(𝑥) =

1

24ℎ4

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

(𝑥 − 𝑥
𝑗−2

)
4

, 𝑥
𝑗−2

≤ 𝑥 < 𝑥
𝑗−1

,

ℎ
4
+ 4ℎ
3
(𝑥 − 𝑥

𝑗−1
) + 6ℎ

2
(𝑥 − 𝑥

𝑗−1
)
2

+ 4ℎ (𝑥 − 𝑥
𝑗−1

)
3

− 4 (𝑥 − 𝑥
𝑗−1

)
4

, 𝑥
𝑗−1

≤ 𝑥 < 𝑥
𝑗
,

11ℎ
4
+ 12ℎ

3
(𝑥 − 𝑥

𝑗
) − 6ℎ

2
(𝑥 − 𝑥

𝑗
)
2

− 12ℎ (𝑥 − 𝑥
𝑗
)
3

+ 6 (𝑥 − 𝑥
𝑗
)
4

, 𝑥
𝑗
≤ 𝑥 < 𝑥

𝑗+1
,

ℎ
4
+ 4ℎ
3
(𝑥
𝑗+2

− 𝑥) + 6ℎ
2
(𝑥
𝑗+2

− 𝑥)
2

+ 4ℎ (𝑥
𝑗+2

− 𝑥)
3

− 4 (𝑥
𝑗+2

− 𝑥)
4

, 𝑥
𝑗+1

≤ 𝑥 < 𝑥
𝑗+2

,

(𝑥
𝑗+3

− 𝑥)
4

, 𝑥
𝑗+2

≤ 𝑥 < 𝑥
𝑗+3

,

0, otherwise.

(4)

And the set {𝐵
−2
, 𝐵
−1
, . . . , 𝐵

𝑁+1
} of quartic B-splines forms a

basis over the region 0 ≤ 𝑥 ≤ 𝐿.
Let 𝑆(𝑥) be the quartic B-spline function at the nodal

points.Then approximate solution of (1) can be written as [13]

𝑆 (𝑥) =

𝑁+1

∑

𝑗=−2

𝐶
𝑗
𝐵
𝑗
(𝑥) , (5)

where 𝐵
𝑗
(𝑥) are the quartic B-spline functions and 𝐶

𝑗
are the

unknown coefficients. Each B-spline covers the five elements
so that an element is covered by five B-splines. The values of
𝐵
𝑗
(𝑥) and its derivatives are tabulated in Table 1.
Then from (5) we have

𝑆
󸀠
(𝑥) =

𝑁+1

∑

𝑗=−2

𝐶
𝑗
𝐵
󸀠

𝑗
(𝑥) ,

𝑆
󸀠󸀠
(𝑥) =

𝑁+1

∑

𝑗=−2

𝐶
𝑗
𝐵
󸀠󸀠

𝑗
(𝑥) ,

𝑆
󸀠󸀠󸀠

(𝑥) =

𝑁+1

∑

𝑗=−2

𝐶
𝑗
𝐵
󸀠󸀠󸀠

𝑗
(𝑥) .

(6)

Using Table 1 in (5)-(6), we obtained

𝑆 (𝑥
𝑗
) = (

1

24
)𝐶
𝑗−2

+ (
11

24
)𝐶
𝑗−1

+ (
11

24
)𝐶
𝑗

+ (
1

24
)𝐶
𝑗+1

,

𝑆
󸀠
(𝑥
𝑗
) = (

−1

6ℎ
)𝐶
𝑗−2

+ (
−1

2ℎ
)𝐶
𝑗−1

+ (
1

2ℎ
)𝐶
𝑗

+ (
1

6ℎ
)𝐶
𝑗+1

,

𝑆
󸀠󸀠
(𝑥
𝑗
) = (

1

2ℎ2
)𝐶
𝑗−2

+ (
−1

2ℎ2
)𝐶
𝑗−1

+ (
−1

2ℎ2
)𝐶
𝑗

+ (
1

2ℎ2
)𝐶
𝑗+1

,

𝑆
󸀠󸀠󸀠

(𝑥
𝑗
) = (

−1

ℎ3
)𝐶
𝑗−2

+ (
3

ℎ3
)𝐶
𝑗−1

+ (
−3

ℎ3
)𝐶
𝑗

+ (
1

ℎ3
)𝐶
𝑗+1

,

(7)

where 𝑗 = 0, 1, . . . , 𝑁. Substituting (7) into (1) and (2) and by
assuming initial slope 𝑓󸀠󸀠(0) = 0.332057, similar to Howarth,
we have

𝑆 (𝑥
0
) = 0,

𝑆
󸀠
(𝑥
0
) = 0,

𝑆
󸀠󸀠
(𝑥
0
) = 0.332057,

𝑆
󸀠󸀠󸀠

(𝑥
𝑗
) +

1

2
𝑆 (𝑥
𝑗
) 𝑆
󸀠󸀠
(𝑥
𝑗
) = 0, 𝑗 = 0, 1, . . . , 𝑁.

(8)

Then, we get a system of (𝑛 + 4) nonlinear equations in the
(𝑛 + 4) unknowns 𝐶

−2
, 𝐶
−1
, . . . , 𝐶

𝑁+1
.

In order to solve system (8), we direct attention to that
𝑆(𝑥) and its derivatives satisfied in (1) and (2) and initial slope
𝑓
󸀠󸀠
(0) = 0.332057 approximately, and then we have

𝑆 (𝑥
0
) ≈ 0,

𝑆
󸀠
(𝑥
0
) ≈ 0,

𝑆
󸀠󸀠
(𝑥
0
) ≈ 0.332057,

𝑆
󸀠󸀠󸀠

(𝑥
𝑗
) +

1

2
𝑆 (𝑥
𝑗
) 𝑆
󸀠󸀠
(𝑥
𝑗
) ≈ 0, 𝑗 = 0, 1, . . . , 𝑁.

(9)
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Table 1: Coefficient of quartic B-splines and its derivatives at knots
𝑥
𝑗
.

𝑥 𝑥
𝑗−2

𝑥
𝑗−1

𝑥
𝑗

𝑥
𝑗+1

𝑥
𝑗+2

𝑥
𝑗+3

𝐵
𝑗
(𝑥) 0

1

24

11

24

11

24

1

24
0

𝐵
󸀠

𝑗
(𝑥) 0

1

6ℎ

1

2ℎ
−

1

2ℎ
−

1

6ℎ
0

𝐵
󸀠󸀠

𝑗
(𝑥) 0

1

2ℎ2
−

1

2ℎ2
−

1

2ℎ2

1

2ℎ2
0

𝐵
󸀠󸀠󸀠

𝑗
(𝑥) 0

1

ℎ3
−

3

ℎ3

3

ℎ3
−

1

ℎ3
0

Therefore, the error vector 𝐸 of the approximation can be
written as

𝐸
1
= 𝑆 (𝑥

0
) ,

𝐸
2
= 𝑆
󸀠
(𝑥
0
) ,

𝐸
3
= 𝑆
󸀠󸀠
(𝑥
0
) − 0.332057,

𝐸
𝑗+4

= 𝑆
󸀠󸀠󸀠

(𝑥
𝑗
) +

1

2
𝑆 (𝑥
𝑗
) 𝑆
󸀠󸀠
(𝑥
𝑗
) , 𝑗 = 0, 1, . . . , 𝑁.

(10)

Now, wewish tominimize the error norm, the 𝐿
2
-norm, such

that

𝐿
2
= √

𝑁+4

∑

𝑗=1

𝐸
2

𝑗
=0. (11)

By solving (11), we can get the values of 𝐶
𝑗

for
𝑗 = −2, −1, . . . , 𝑁 + 1. Now, with substituting the values
𝐶
−2
, 𝐶
−1
, 𝐶
0
, . . . , 𝐶

𝑁+1
into (7), the approximate value of 𝑆(𝑥)

and its derivatives will be ensured.
For calculating the truncation error of this method, from

(7), the following relationships can be obtained [14]:

ℎ [𝑆
󸀠
(𝑥
𝑗−2

) + 11𝑆
󸀠
(𝑥
𝑗−1

) + 11𝑆
󸀠
(𝑥
𝑗
) + 𝑆
󸀠
(𝑥
𝑗+1

)]

= 4 [𝑆 (𝑥
𝑗+1

) + 3𝑆 (𝑥
𝑗
) − 3𝑆 (𝑥

𝑗−1
) − 𝑆 (𝑥

𝑗−2
)] ,

ℎ
2
𝑆
󸀠󸀠
(𝑥
𝑗
)

= 2 [𝑆 (𝑥
𝑗+1

) − 2𝑆 (𝑥
𝑗
) + 𝑆 (𝑥

𝑗−1
)]

−
ℎ

2
[𝑆
󸀠
(𝑥
𝑗+1

) − 𝑆
󸀠
(𝑥
𝑗−1

)] ,

ℎ
3
𝑆
󸀠󸀠󸀠

(𝑥
𝑗
)

= 12 [𝑆 (𝑥
𝑗+1

) − 𝑆 (𝑥
𝑗−1

)]

− 3ℎ [𝑆
󸀠
(𝑥
𝑗+1

) + 6𝑆
󸀠
(𝑥
𝑗
) + 𝑆
󸀠
(𝑥
𝑗−1

)] ,

(12)

and, then, we have

𝑆
󸀠
(𝑥
𝑗
) = 𝑓
󸀠
(𝑥
𝑗
) +

ℎ
4

720
𝑓
(5)

(𝑥
𝑗
) + 𝑂 (ℎ

6
) ,

𝑆
󸀠󸀠
(𝑥
𝑗
) = 𝑓
󸀠󸀠
(𝑥
𝑗
) −

ℎ
4

240
𝑓
(6)

(𝑥
𝑗
) + 𝑂 (ℎ

6
) ,

𝑆
󸀠󸀠󸀠

(𝑥
𝑗
) = 𝑓
󸀠󸀠󸀠

(𝑥
𝑗
) −

ℎ
2

12
𝑓
(5)

(𝑥
𝑗
) +

ℎ
4

240
𝑓
(7)

(𝑥
𝑗
)

+ 𝑂 (ℎ
6
) .

(13)

Therefore, truncation error is defined as follows:

𝑒 (𝑥
𝑗
) = [𝑆

󸀠󸀠󸀠
(𝑥
𝑗
) +

1

2
𝑆 (𝑥
𝑗
) 𝑆
󸀠󸀠
(𝑥
𝑗
)] − [𝑓

󸀠󸀠󸀠
(𝑥
𝑗
)

+
1

2
𝑓 (𝑥
𝑗
) 𝑓
󸀠󸀠
(𝑥
𝑗
)] = [𝑆

󸀠󸀠󸀠
(𝑥
𝑗
) − 𝑓
󸀠󸀠󸀠

(𝑥
𝑗
)]

+
1

2
[𝑆 (𝑥
𝑗
) 𝑆
󸀠󸀠
(𝑥
𝑗
) − 𝑓 (𝑥

𝑗
) 𝑓
󸀠󸀠
(𝑥
𝑗
)]

= [−
ℎ
2

12
𝑓
(5)

(𝑥
𝑗
) +

ℎ
4

240
𝑓
(7)

(𝑥
𝑗
) + 𝑂 (ℎ

6
)]

+ [−
ℎ
4

480
𝑓 (𝑥
𝑗
) 𝑓
(6)

(𝑥
𝑗
) +

ℎ
6

12096
𝑓 (𝑥
𝑗
) 𝑓
(8)

(𝑥
𝑗
)

+ 𝑂 (ℎ
8
)] , 𝑗 = 1, 2, . . . , 𝑁.

(14)

Thus, for 𝑗 = 1, 2, . . . , 𝑁, we have

𝑒 (𝑥
𝑗
) = [−

𝑓
(5)

(𝑥
𝑗
)

12
] ℎ
2

+ [

2𝑓
(7)

(𝑥
𝑗
) − 𝑓 (𝑥

𝑗
) 𝑓
(6)

(𝑥
𝑗
)

480
] ℎ
4

+ 𝑂 (ℎ
6
) , 𝑗 = 1, 2, . . . , 𝑁,

(15)

and, for 𝑥 = 0, we have

𝑒 (𝑥
0
) = [𝑆

󸀠󸀠󸀠
(𝑥
0
) +

1

2
𝑆 (𝑥
0
) 𝑆
󸀠󸀠
(𝑥
0
)]

− [𝑓
󸀠󸀠󸀠

(𝑥
0
) +

1

2
𝑓 (𝑥
0
) 𝑓
󸀠󸀠
(𝑥
0
)] .

(16)

Since 𝑓(0) = 𝑆(0) = 0, we have the following result:

𝑒 (0) = 𝑆
󸀠󸀠󸀠

(0) − 𝑓
󸀠󸀠󸀠

(0)

= [−
𝑓
(5)

(0)

12
] ℎ
2
+ [

𝑓
(7)

(0)

240
] ℎ
4
+ 𝑂 (ℎ

6
) .

(17)

3. Numerical Results

In this section, approximation values of 𝑓(𝑥), 𝑓
󸀠
(𝑥), and

𝑓
󸀠󸀠
(𝑥) based on proposed methods for some values of 𝑥
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Table 2: Comparison of 𝑓(𝑥) between some numerical results and our results using different values of ℎ.

𝑥 DTM [11] LTNHPM [7] Howarth (RK4) Proposed method
ℎ = 0.2 ℎ = 0.1 ℎ = 0.01

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.00664 0.00664 0.00664 0.00664 0.00664 0.00664
0.4 0.02656 0.02656 0.02656 0.02656 0.02656 0.02656
0.6 0.05973 0.05973 0.05974 0.05973 0.05973 0.05973
0.8 0.10611 0.10611 0.10611 0.10609 0.10610 0.10611
1.0 0.16557 0.16557 0.16557 0.16554 0.16556 0.16557
1.2 0.23795 0.23795 0.23795 0.23790 0.23794 0.23795
1.4 0.32298 0.32298 0.32298 0.32290 0.32296 0.32298
1.6 0.42032 0.42032 0.42032 0.42021 0.42029 0.42032
1.8 0.52952 0.52952 0.52952 0.52936 0.52948 0.52952
2.0 0.65002 0.65002 0.65003 0.64982 0.64997 0.65002
2.2 0.78119 0.78119 0.78120 0.78093 0.78113 0.78119
2.4 0.92229 0.92228 0.92230 0.92197 0.92221 0.92229
2.6 1.07250 1.07250 1.07252 1.07212 1.07241 1.07250
2.8 1.23098 1.23098 1.23099 1.23054 1.23087 1.23098
3.0 1.39681 1.39681 1.39682 1.39631 1.39668 1.39681
3.2 1.56909 1.56909 1.56911 1.56854 1.56896 1.56909
3.4 1.74695 1.74695 1.74696 1.74635 1.74680 1.74695
3.6 1.92952 1.92952 1.92954 1.92889 1.92936 1.92952
3.8 2.11603 2.11602 2.11605 2.11536 2.11586 2.11603
4.0 2.30574 2.30575 2.30576 2.30506 2.30557 2.30574
4.2 2.49804 2.49805 2.49806 2.49733 2.49786 2.49804
4.4 2.69236 2.69242 2.69238 2.69164 2.69218 2.69236
4.6 2.88824 2.88859 2.88826 2.88751 2.88806 2.88824
4.8 3.08532 3.08718 3.08534 3.08458 3.08513 3.08532
5.0 3.28327 3.29272 3.28329 3.28252 3.28308 3.28327

Table 3: Comparison of 𝑓󸀠(𝑥) between some numerical results and our results using different values of ℎ.

𝑥 DTM [11] LTNHPM [7] Howarth (RK4) Proposed method
ℎ = 0.2 ℎ = 0.1 ℎ = 0.01

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 0.06641 0.06641 0.06641 0.06640 0.06641 0.06641
0.4 0.13276 0.13276 0.13277 0.13275 0.13276 0.13276
0.6 0.19894 0.19894 0.19894 0.19890 0.19893 0.19894
0.8 0.26471 0.26471 0.26471 0.26465 0.26469 0.26471
1.0 0.32978 0.32978 0.32979 0.32969 0.32976 0.32978
1.2 0.39378 0.39378 0.39378 0.39365 0.39374 0.39378
1.4 0.45626 0.45626 0.45627 0.45610 0.45622 0.45626
1.6 0.51676 0.51676 0.51676 0.51656 0.51671 0.51676
1.8 0.57476 0.57476 0.57477 0.57452 0.57470 0.57476
2.0 0.62976 0.62977 0.62977 0.62950 0.62970 0.62976
2.2 0.68131 0.68131 0.68132 0.68102 0.68124 0.68131
2.4 0.72898 0.72898 0.72899 0.72868 0.72891 0.72898
2.6 0.77245 0.77245 0.77246 0.77215 0.77238 0.77245
2.8 0.81151 0.81151 0.81152 0.81122 0.81144 0.81151
3.0 0.84604 0.84604 0.84605 0.84577 0.84598 0.84604
3.2 0.87608 0.87608 0.87609 0.87584 0.87602 0.87608
3.4 0.90176 0.90176 0.90177 0.90155 0.90171 0.90176
3.6 0.92333 0.92333 0.92333 0.92315 0.92329 0.92333
3.8 0.94112 0.94112 0.94112 0.94098 0.94108 0.94112
4.0 0.95552 0.95553 0.95552 0.95541 0.95549 0.95552
4.2 0.96696 0.96704 0.96696 0.96688 0.96694 0.96696
4.4 0.97587 0.97639 0.97587 0.97581 0.97586 0.97587
4.6 0.98268 0.98564 0.98269 0.98264 0.98267 0.98268
4.8 0.98779 1.00322 0.98779 0.98775 0.98778 0.98779
5.0 0.99154 1.06671 0.99155 0.99151 0.99153 0.99154
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Table 4: Comparison of 𝑓󸀠󸀠(𝑥) between some numerical results and our results using different values of ℎ.

𝑥 DTM [11] LTNHPM [7] Howarth (RK4) Proposed method
ℎ = 0.2 ℎ = 0.1 ℎ = 0.01

0.0 0.33206 0.33206 0.33206 0.33206 0.33206 0.33206
0.2 0.33198 0.33198 0.33199 0.33195 0.33197 0.33198
0.4 0.33147 0.33147 0.33147 0.33140 0.33145 0.33147
0.6 0.33008 0.33008 0.33008 0.32997 0.33005 0.33008
0.8 0.32739 0.32739 0.32739 0.32725 0.32735 0.32739
1.0 0.32301 0.32301 0.32301 0.32284 0.32297 0.32301
1.2 0.31659 0.31659 0.31659 0.31641 0.31654 0.31659
1.4 0.30786 0.30786 0.30787 0.30767 0.30782 0.30786
1.6 0.29666 0.29666 0.29667 0.29648 0.29662 0.29666
1.8 0.28293 0.28293 0.28293 0.28276 0.28289 0.28293
2.0 0.26675 0.26675 0.26675 0.26662 0.26672 0.26675
2.2 0.24835 0.24835 0.24835 0.24826 0.24833 0.24835
2.4 0.22809 0.22809 0.22809 0.22805 0.22808 0.22809
2.6 0.20645 0.20645 0.20646 0.20647 0.20646 0.20645
2.8 0.18401 0.18401 0.18401 0.18408 0.18402 0.18401
3.0 0.16136 0.16136 0.16136 0.16148 0.16139 0.16136
3.2 0.13913 0.13913 0.13913 0.13928 0.13917 0.13913
3.4 0.11788 0.11788 0.11788 0.11805 0.11792 0.11788
3.6 0.09809 0.09809 0.09809 0.09827 0.09813 0.09809
3.8 0.08013 0.08014 0.08013 0.08030 0.08017 0.08013
4.0 0.06423 0.06436 0.06424 0.06438 0.06427 0.06423
4.2 0.05052 0.05131 0.05052 0.05064 0.05055 0.05052
4.4 0.03897 0.04360 0.03897 0.03906 0.03899 0.03897
4.6 0.02948 0.05446 0.02948 0.02954 0.02950 0.02948
4.8 0.02187 0.14672 0.02187 0.02190 0.02188 0.02187
5.0 0.01591 0.59821 0.01591 0.01591 0.01591 0.01591
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Figure 1: The comparison of 𝑓(𝑥) between our results and
Howarth’s results with ℎ = 0.01.

are presented. These values for ℎ = 0.2, 0.1, 0.01 have
been calculated and these results are compared with the
Howarth results. Tables 2, 3, and 4 are made to compare
between the present results and results given by Howarth for
approximation values of 𝑓(𝑥), 𝑓

󸀠
(𝑥), and 𝑓

󸀠󸀠
(𝑥), respectively.

In Figures 1, 2, and 3, one can also see the comparison between
our results and Howarth’s results.
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Figure 2: The comparison of 𝑓
󸀠
(𝑥) between our results and

Howarth’s results with ℎ = 0.01.

4. Conclusion

In this survey, the quartic B-spline approximations are used
to solve the Blasius equation. This method led to a system
of nonlinear equations. The unknowns are obtained by min-
imizing the error norm. The computed results are compared
with those of DTM, LTNHPM, and Howarth’s methods to
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Figure 3: The comparison of 𝑓
󸀠󸀠
(𝑥) between our results and

Howarth’s results with ℎ = 0.01.

demonstrate the validity and applicability of the technique.
This method is simple in applicability and the results show
that the solutions will become more accurate with reducing
step size. The computations associated with the examples in
this paper were performed using MATLAB R2015a.
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