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The accurate detection of satellite components based on optical images can provide data support for aerospace missions such as
pointing and tracking between satellites. However, the traditional target detection method is inefficient when performing
calculations and has a low detection precision, especially when the attitude of the satellite and illumination conditions
change considerably. To enable the precise detection of satellite components, we analyse the imaging characteristics of a
satellite in space and propose a method to detect the satellite components. This approach is based on a regional-based
convolutional neural network (R-CNN), and it can enable the accurate detection of various satellite components by using
optical images. First, on the basis of the Mask R-CNN, we combine the DenseNet, ResNet, and FPN to construct a new
feature extraction structure and obtain the R-CNN based satellite-component-detection model (RSD). The feature maps are
extracted and concatenated at a deeper multiscale level, and the feature propagation between each layer is enhanced by
providing a dense connection. Next, an information-rich satellite dataset is constructed, which is composed of images of
various kinds of satellites from various perspectives and orbital positions. The detection model is trained and optimized on
the constructed dataset to obtain the satellite component detection model. Finally, the proposed RSD model and original
Mask R-CNN are tested on the same established test set. The experimental results show that the proposed detection model
has higher precision, recall rate, and F1 score. Therefore, the proposed approach can effectively detect satellite components,
based on optical images.

1. Introduction

With the rapid development of space technology, accom-
plishing many space tasks, such as autonomous rendezvous
and docking in space and space target capture, requires a sat-
ellite to accurately identify the main body or components of
the target satellite to obtain the target position and attitude
information [1–5]. Detecting the components of the target
satellite belongs to the field of target detection, whose goal
is to accurately detect the location and type of satellite com-
ponents, such as solar wings, antenna, and docking devices.
Accomplishing this goal is a key problem in the field of com-
puter vision, and it can be solved by considering the similar-
ity of the object features such as background, texture, and
shape. However, the task remains challenging due to the dif-
ferences between the target individuals [6–8].

The methods to detect satellite components, which were
developed before the development of deep learning, can be

divided into image matching and traditional target detection
methods. Mingdong et al. [9] used the image matching algo-
rithms to detect space objects. Zhi et al. [10] first prepro-
cessed and segmented the images and later extracted the
features by using Surf. Finally, the fractal clustering model
of the satellite components was used to perform the compo-
nent classification. Cai et al. [4, 11, 12] adopted the tradi-
tional target detection method to detect the triangle bracket
of a solar wing and proposed different improvements in the
feature extraction stage. In the traditional target detection
approach, each step is optimised independently, and the
global optimisation of the whole method cannot be per-
formed. Furthermore, the computational efficiency of this
approach is low [6].

After the successful application of the deep convolu-
tion neural network (DCNN) in image classification, the
target detection task entered a period of rapid develop-
ment [13–15]. When a DCNN is used for target detection
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and target recognition, it exhibits a high robustness to the
interference of the environment and satisfactory generali-
sation ability, and it can realise target detection with a
high accuracy [6–8, 14, 15]. At present, the detection
model is mainly divided into a single-stage model and a
two-stage model, such as YOLO, SSD, and Mask R-CNN
[16–21]. Zeng and Xia [22] proposed a space target recog-
nition method based on the DCNN and [23] proposed a
kind of target feature point extraction method based on
deep learning to realise the detection and location deter-
mination of a docking node.

The abovementioned detection methods based on the
CNN have two shortcomings: (1) The methods can only
detect the classification and location of target satellite, but
cannot accurately detect the position and edge contour of
multiple components of the target satellite at the pixel level.
(2) In terms of dataset construction, the abovementioned
studies did not systematically sample the satellite; therefore,
the information of the dataset was not sufficient. To address
these two problems, this work makes the following contribu-
tions. (1) We improved the feature extraction structure of the
Mask R-CNN and proposed an R-CNN based method (RSD)
to detect satellite components. This detection model can real-
ise the detection of multiple components of the satellite in
pixel level, and the object can be segmented into pixel
instances to achieve a higher detection precision. (2) For
the dataset construction, we first establish a satellite image
dataset, which contains images of 92 kinds of satellites from
multiple perspectives and multiple orbital positions. The
samples in the dataset can fully represent the appearance
characteristics of each satellite and reduce the difference
between the dataset and real scene images, which can provide
effective sample support for the training of the model.

The remaining paper is organised as follows. Section 2
provides a general overview of the RSD and introduces the
construction methods of the satellite dataset. The experiment
details and test results of the RSD are presented in Section 3,
and Section 3 analyses and discusses the test results. Finally,
the conclusions are presented in Section 4.

2. Detection of Satellite Components

During the movement of a satellite, the screening and bright-
ness of the components change constantly, which is not con-
ducive to realise accurate detection. In addition, the number
of samples in the established dataset is small. Considering
these factors, to achieve a higher precision for the detection
of satellite components, this paper proposes an R-CNN-
based model to detect satellite components. Our RSD model
is an improved version of the Mask R-CNN [21]. This paper
combines the network architecture of DenseNet and ResNet
with the idea of the FPN [25] and applies it to the backbone
of our improved Mask R-CNN. The prediction heads consist
of three branches, which are used for classification predic-
tion, regression box prediction, and generation mask.

Figure 1 shows the overall process of the RSD algorithm.
The steps in the RSD to detect the satellite components

are as follows:

Step 1. Input the image to be detected.

Step 2. The initial feature extraction of the image is per-
formed using the ResNet-FPN. Further feature extraction is
later performed by using the dense block. The feature maps
of each scale are upsampled and concatenated, and the
concatenated feature maps are input into the dense block
for further feature extraction. Finally, the system outputs
the corresponding feature maps.

Step 3. Input the feature map into the RPN network structure
and generate several filtered accurate ROIs through the pro-
posal layer.

Step 4. These ROIs were processed using the ROI align to
match the pixels in the original image with those in the fea-
ture map and extract the corresponding target features in
the shared feature map.
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Figure 1: Network structure of RSD.
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Step 5. These ROIs are input into the FC and FCN for target
classification and instance segmentation, respectively.
Finally, the classification results, regression box, and segmen-
tation mask are generated. The classification results and posi-
tion information of the satellite components can be obtained.

2.1. Feature Extraction Structure. In the DCNN, as the depth
increases, the feature propagation between each layer
degrades, resulting in the loss of information in the transmis-
sion process. In addition, after the feature map is upsampled
and multiscale concatenation is performed, the semantic
information may be obscured, and a large number of param-
eters may be introduced. To overcome these problems, in this
study, the idea of DenseNet was applied to the ResNet-FPN,
and the features extracted from the ResNet-FPN were further
processed by using a densely connected convolutional
structure.

Figure 2 shows the feature extraction structure of the
RSD, which is mainly composed of two parts, namely, the
ResNet-FPN and densely connected convolution block (DB).

2.1.1. ResNet-FPN. Deepening the neural network can
improve the generalisation performance of the model [27];
however, increasing the number of layers may lead to prob-
lems such as gradient disappearance or gradient explosion,
which makes it difficult to train the deep neural network.
The ResNet structure can effectively solve the above prob-
lems [14, 26]. In the task of satellite component detection,
multiscale detection is extremely critical, especially for small
objects, such as small parts of the satellite. However, at such
large distances, the antenna and other components account
for only 1/2000 of the total area of the image, and thus they
are often difficult to detect. Therefore, we adopt the FPN
structure and ResNet-50 as the backbone. This structure
can fuse the features of all the levels; thus, this structure has
both a strong semantic information and strong spatial infor-
mation, which can improve the precision and speed of detec-
tion of small objects at multiple scales.

As shown in Figure 2, the ResNet-FPN consists of three
parts: the bottom-up connection, top-down connection,
and horizontal connection. The bottom-up connection per-
tains to the process of feature extraction with ResNet as the
backbone, the top-down connection pertains to the process
of upsampling from the top layer, and the transverse connec-
tion pertains to the fusion of the upsampling feature map and
the feature map of the same size generated from the bottom-
up process.

The image is input into the ResNet-FPN, assuming that
the size of the input image is 512 × 512, and the number of
channels is 64. After extracting the structural features of the
ResNet-FPN, the feature maps M2, M3, M4, M5, and M6
are output. The sizes of these maps are 64 × 64, 32 × 32, 16
× 16, 8 × 8, and 4 × 4, respectively, and the number of chan-
nels is 256. Next, M2, M3,…, and M6 are input into the sub-
sequent densely connected convolution block to further
extract the features.

2.1.2. Densely Connected CNN. A deep neural network can
autonomously learn the characteristics of data through a

large number of sample data. However, when the amount
of sample data is limited, the trained model usually has an
inferior generalisation ability, and the traditional CNN also
has problems such as gradient disappearance, large number
of parameters, and parameter redundancy [14, 24]. To solve
these problems, we combine the idea of the dense connection
with the feature extraction structure of the ResNet-FPN, deep
feature extraction is performed for the satellite components,
which enhances the feature propagation between the layers
and alleviates the obscurity of the semantic caused by the
sampling up of the feature maps and multiscale feature
map fusion.

Figure 3 shows the densely connected convolution block
(dense block) in the feature extraction structure used in this
paper, which consists of five layers. The first layer includes
only the convolution layer, and the other layers all contain
a batch normalisation layer (BN), modified linear activation
layer (ReLU), and convolutional layer (CONV).

In the dense block, the input of each layer is related not
only to the output of the previous layer but also to the output
of all the previous layers, which serves as the input. This
structure can make full use of all the feature information
included in the previous layer, considerably reduce the con-
nection distance between the front and back layers, and effec-
tively solve the problem of gradient disappearance with the
deepening of the network [14].

The generation formula for the feature graph of layer i is
as follows:

Xi =H i X0, X1, X2,⋯, Xi−1½ �ð Þ: ð1Þ

Here, ½X0, X1, X2,⋯, Xi‐1� represents the concatenation
of the feature graph generated in layer 0, 1,⋯, i − 1 as the
dimension of the channel. Hi is a composite function corre-
sponding to the batch normalisation (BN), modified linear
element (ReLU), and convolution (Conv). Assuming that
the number of feature graphs transmitted by each nonlinear
transformation H is K , and the number of feature graphs at
layer 0 is K0, the number of input feature graphs at layer i
is K0 + ði‐1Þ ∗ K ; K is also known as the growth rate.

The specific structure of the Dense Block is described in
Table 1. The convolution layer DB_Conv1 does not contain
the BN and ReLU layers. This layer is set as such to reduce
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Figure 2: Feature extraction structure of the RSD.
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the number of channels to avoid the subsequent feature
extraction process, which incurs a large computation cost
and several parameters. Assuming that the size of the input
feature graph M is 128 × 128 and the number of channels is
256, the first convolution layer is used to reduce the number
of channels to 128, and the features are later extracted and
fused through the following four layers. Finally, the output
feature graph P is output with the number of channels being
256, and this graph is input to the subsequent RPN and pre-
diction head to realise the target detection.

2.2. Dataset Construction. Because of the limited number of
satellite images available for the real scene and uneven distri-
bution of the visual angle, the model cannot satisfy the needs
of model training and learning and exhibits an inferior per-
formance. Therefore, in this paper, the images of satellite
under various perspectives and orbital positions were col-
lected using the software System Tool Kits (STK), which is
an analytical software developed by American Analytical
Graphics in the aerospace domain, and these images served
as the basis of the dataset.

The overall process of constructing the dataset of the sat-
ellite components is shown in Figure 4. First, the images of
the satellite are collected to establish a dataset containing rich
information of the satellite. Second, the components of the
satellite in the image are labelled. As an example, the antenna
and solar wing were taken (denoted as components I and II,
respectively) as the target components to be detected. The
constructed dataset contained 1288 samples. The dataset
was randomly divided into a training set and test set in
proportion.

By using the reasonable multiangle and multiorbit posi-
tion sampling strategy, a large number of satellite images
can be collected, thereby providing more systematic mate-
rials for the establishment of the subsequent datasets. As
shown in Figure 5, to make the perspective distribution of
the image in the dataset more uniform and reasonable, this
paper sampled the appearance of the satellite from the fol-
lowing 14 perspectives.

Using the above method, the appearance of the satellite
can be sampled uniformly from 14 perspectives. Under the
sampling of this uniform perspective, the satellite will have
component occlusion and overlap, which fully simulates the
possible situation of the real scene.

To ensure that the satellite data set contains more effec-
tive information and to better overcome the differences of
the simulated images and real scene images, in the image col-
lection, we take the position of the satellite as one of the fac-
tors to be considered and adjust the relative position of the
satellite and the sun. As shown in Figure 6, the satellite is
sampled at two orbital positions to induce changes in the
light intensity and imaging effect to better simulate the real
scene.

Figure 7 is the comparison between the simulated image
(a) and the real image (b) of the ISS (International Space Sta-
tion). In terms of the outline, shape, and texture of compo-
nents, taking the solar wing as an example, the solar wing
of the two images is almost consistent. In terms of color,
the color of each component in the two images is very simi-
lar, except for the difference in brightness. Taking orbit posi-
tions into consideration can make the information of the
dataset more reasonable and effective and considerably
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Figure 3: Dense block of the improved Mask R-CNN.

Table 1: Dense block architectures.

Layer Input Kernel Stride Output size

DB_Conv1 128 × 128, 256 3 × 3 1 128 × 128, 128

DB_Conv2 128 × 128, 128 3 × 3 1 128 × 128, 32

Concat_1
128 × 128, 128
128 × 128, 32 128 × 128, 160

DB_Conv3 128 × 128, 160 3 × 3 128 × 128, 32

Concat_2
128 × 128, 128
128 × 128, 32ð Þ × 2 128 × 128, 192

DB_Conv4 128 × 128, 192 3 × 3 1 128 × 128, 32

Concat_3
128 × 128, 128
128 × 128, 32ð Þ × 3 128 × 128, 224

DB_Conv5 128 × 128, 224 3 × 3 1 128 × 128, 32

Concat_4
128 × 128, 128
128 × 128, 32ð Þ × 4 128 × 128, 256
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reduce the differences between the simulation images and
real images, which provides a concrete foundation for the
model training, Figure 8 shows several samples in the final
built dataset.

2.3. Loss Function. The loss function L of our model is calcu-
lated using formula (2), which, similar to that for theMask R-
CNN, consists of two parts [20]: the loss function LRPN for
training the RPN, and the loss function LMul‐Branch for train-
ing the multitask branches:

L = LRPN + LMul‐Branch: ð2Þ

LRPN is calculated using formula (2), which includes the
loss function of the anchor category Lcls. The loss function
of the regression box Lreg is the softmax cross-entropy loss,
and Lreg is the smooth L1 loss.

LRPN =
1

Ncls
〠
i
Lcls pi, p

∗
ið Þ + λ

1
Nreg

〠
i

p∗i Lreg ti, t∗ið Þ: ð3Þ

Here, pi represents the classification probability of anchor

i, p∗i represents the ground-truth label probability of anchor i,
ti represents the difference between the predicted regression
box and ground-truth label box, and t∗i represents the differ-
ence between the ground-truth label box and positive anchor.

LMul‐Branch is calculated using formula (3)

LMul‐Branch = Lcls + Lbox + Lmask: ð4Þ

Here, the loss function of classification Lcls is the cross-
entropy loss; the loss function of the regression box Lbox is
the smooth L1 loss. The loss function of mask Lmask is the
average binary cross-entropy loss.

2.4. Model Training. All parts of the RSD are jointly trained.
The main steps of the training are as follows: (1) First, the
established dataset of the satellite components is divided into
a training set and test set, with proportions of 80% and 20%
(numbers of 1033 and 255), respectively; (2) the super
parameters of the model are set; (3) the weights in the RSD
are initialised; (4) the training samples and labels are fed into
the model, and the loss function is calculated and back prop-
agation is performed; (5) the model is trained until the value
of the loss function Ltrain remains stable, and the learning rate
is adjusted to continue training for a period of time. Training
is repeated until Ltrain does not exhibit a significant decline.

The experimental parameters of the RSD model and
Mask R-CNN are set as follows: The SGD optimiser is
adopted in the optimisation method, the momentum is set
as 0.9, the weight decay is set as 0.0001, and the nonmaxi-
mum suppression (NMS) threshold is set as 0.7. This paper
sets the size of the anchor to 4 × 4, 12 × 12, 16 × 16, 32 × 32,
and 56 × 56, and the ratio of the anchor is set as 1 : 1, 2 : 1,
and 1 : 2 to better fit the ground truth of the target. Setting
the anchor to have multiple sizes can help better detect the
components of multiple sizes.
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Figure 4: Overall process of dataset construction for the target components of satellites.
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The initialisation of the model weight is performed in two
phases: The first phase involves the initialisation of the
ResNet-FPN and the prediction head, and the second phase
involves the initialisation of the dense block. The first phase
uses the pretrained model on the MS COCO dataset for the
weight initialisation, and the second part performs the uni-
form distribution initialisation with a lower and upper
boundary of -0.05 and 0.05, respectively. As shown in
Figure 9, the initial learning rate is 0.001, and Ltrain is approx-
imately 0.15 after 40K iterations. The learning rate is
adjusted to 0.001/10, and the number of iterations is 17K.

At this instant, Ltrain is approximately 0.14, Ltrain remains
nearly constant, and the training is stopped. The completed
training requires approximately 13 h, and the optimised R-
CNN based satellite component detection model is obtained.

3. Experimental Results and Discussion

All the experiments (training and testing of the model) in this
paper were conducted on the same server under the deep
learning development framework of TensorFlow and Keras,
with the PC configuration as follows: Inter Xeon e5-2620 v4
2.10GHz ∗32 CPU and RTX 2020Ti GPU.

3.1. Evaluation Index. In this paper, the precision, recall, and
F1 score were used to evaluate the model performance. Preci-
sion describes the ability of a classification model to return
only relevant objects. The recall describes the ability of a

(a) (b)

Figure 7: Comparison between simulated image and real image.

Figure 8: Several samples in the built dataset.
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Figure 9: Change curve of the loss function during training.

Table 2: Class and number of target components.

Class Number

Component Ι 518

Component II 197
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classification model to identify all the relevant targets. The F1
score is the harmonic average of the precision and recall rate,
and a higher value corresponds to a better detection perfor-
mance of the model.

The precision is calculated using formula (5):

P =
TP

TP + FP
, ð5Þ

where TP represents the number of samples that are positive
and tested positive in the test set, while FP represents the
number of samples that are negative but tested positive.

The recall is calculated using formula (6):

R =
TP

TP + FN
, ð6Þ

where FN represents the number of samples that are positive
but tested negative.

The F1 score is calculated using formula (7):

F1 =
2P ⋅ R
P + R

, ð7Þ

where P and R denote the precision and recall, respectively.

3.2. Test and Results. The RSD and the original Mask R-CNN
model were used to detect 255 test samples (20% of the data-
set). The number of components in the test set is shown in
Table 2.

The confusion matrix of the detection results obtained
using the proposed method is shown in Table 3.

The precision and recall rate can be obtained using the
confusion matrix. As shown in Table 4, the overall precision
and recall rate of the improved Mask R-CNN are higher than
those of the Mask R-CNN network. The overall precision,
recall, and F1 score of the proposed method are all 0.93,
respectively. Compared with the Mask R-CNN, the proposed
model exhibits a precision improved by 3% and F1 score
improved by 4%.

3.3. Discussion. The detection results of the Mask R-CNN for
the satellite components and background involved several
errors. In contrast, the feature extraction structure of the pro-
posed method could integrate the features of various levels,
ensuring that they have a strong semantic information and
strong spatial information simultaneously to provide an
effective feature map for the subsequent detection and better
distinguish the target components and background. The
close-up graph of the test results was considered to discuss
the improvement in the precision and recall.

Compared with the component I and the main body of
the satellite, the area of the component II is small. In addi-
tion, because the satellite is in a state of constant motion in
a variety of attitudes, the shape of the components changes.
Figure 10 shows the imaging of the same satellite in different
attitudes. Under ideal conditions, this component I is circu-
lar, and in most cases, it is elliptical. The deformation of the
target caused by the change in the attitude directly affects
the recall. Figure 11(a) shows the detection result pertaining
to attitude II, as shown in Figure 10, obtained using the pro-
posed method and Mask R-CNN.

Figure 11 shows the comparisons on 2 samples, where it
can be found that the proposed RSD can accurately detect
all target components. Mask R-CNN existed a miss-
detection of the target component and incorrectly detected
the background as one of the targets. The RSD is relatively
better than the Mask R-CNN in terms of the precision and
recall rate; it can not only identify more target components
but also reduce the false identification and classification of
the components and background. Under the condition that

Table 3: Confusion matrix.

Prediction class
Component Ι Component II Background

Ground truth

Component Ι 513 0 5

Component II 3 169 25

Background 25 19 /

Table 4: Evaluation of the algorithm performance.

Method
Precision for component

Ι
Recall for component

Ι
Precision for
component II

Recall for component
II

Overall
precision

Overall
recall

RSD 0.95 0.99 0.9 0.86 0.93 0.93

Mask R-
CNN

0.91 0.98 0.89 0.78 0.9 0.88

Attitude I Attitude II

Component i
Component i

Figure 10: Deformation of component II. In attitude I, component I
is round and the bounding rectangle is a square; however, in attitude
II, component I appears as an oval.
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the component does not undergo severe deformation, the
RSD can detect the target component well and classify it
correctly.

4. Conclusion

This paper proposes a satellite component detection method
based on the region-based convolutional network and estab-

lishes a satellite dataset. The results of the performed contrast
experiment proved that the proposed RSD model exhibited a
better performance than that of the Mask R-CNN. The spe-
cific contributions were as follows: (1) The satellite dataset
constructed in this paper contained abundant satellite infor-
mation. A total of 92 kinds of satellites were sampled uni-
formly from 14 angles and 2 orbital positions to ensure that
the dataset could fully simulate the imaging of a satellite in

(a)

(b)

Figure 11: Comparisons between the proposed one andMask R-CNN. (a, b) are the detection results of the two samples, where the left side of
each sample is the detection result of RSD, and the right side is the detection result of Mask R-CNN. The bottom row is a close-up of the test
results, with the yellow box representing the incorrectly detected part.
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a variety of attitude and illumination brightness conditions.
(2) In this paper, the Dense Net and ResNet-FPN were com-
bined to improve the feature extraction structure. The image
was first extracted through the ResNet-FPN and later deeply
extracted through the dense block to enhance the feature
transmission between each layer. The experiments indicated
that the proposed model exhibited a better performance than
that of the Mask R-CNN. However, the performance of our
RSD in detecting severely deformed components is still not
good, and further research is still needed in the future work.
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