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The linear analysis of Rayleigh-Taylor instability of the interface between two viscous and dielectric fluids in the presence of a
tangential electric field has been carried out when there is heat and mass transfer across the interface. In our earlier work, the
viscous potential flow analysis of Rayleigh-Taylor instability in presence of tangential electric field was studied. Here, we use another
irrotational theory in which the discontinuities in the irrotational tangential velocity and shear stress are eliminated in the global
energy balance. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs
have been drawn to show the effect of various physical parameters such as electric field, heat transfer coefficient, and vapour fraction
on the stability of the system. It has been observed that heat transfer and electric field both have stabilizing effect on the stability of
the system.

1. Introduction

The potential flow of an incompressible fluid is a solution
of the Navier-Stokes equation in which velocity u can be
expressed as a gradient of potential function which satisfies
Laplace’s equation.The viscous potential flow (VPF) theory is
also based on the assumption that velocity is given by the gra-
dient of the potential function, but viscosity is nonvanishing.
In this theory, the irrotational shearing stresses are assumed
to be zero and viscosity comes through normal stress balance.
The instability of the plane interface separating two fluids
having different densities when the lighter fluid is accelerated
toward the heavier fluid is called Rayleigh-Taylor instability.
In 1999, Joseph et al. [1] studied the viscous potential flow
analysis of Rayleigh-Taylor instability and observed that the
wavelength of the most unstable wave increases strongly
with viscosity. In 2002, Joseph et al. [2] extended their study
of Rayleigh-Taylor instability to viscoelastic fluids at high
Weber number (the ratio of the inertial force to the surface
tension force) and concluded that the most unstable wave is
a sensitive function of the retardation time, which fits into
experimental data when the ratio of retardation time to that
of relaxation time is of order 10−3.

In recent years, a great deal of interest has been focused
on the study of heat and mass transfer on the stability of
fluids flows because heat and mass transfer phenomenon is
encountered in a wide variety of engineering applications
such as boiling heat transfer and geophysical problems.
Linear stability analysis of the physical system consisting of
a vapor layer underlying a liquid layer of an inviscid fluid was
carried out by Hsieh [3, 4]. He used the potential flow theory
to solve the governing equations and observed that the heat
and mass transfer phenomenon enhances the stability of the
system if the vapor layer is hotter than the liquid layer. Ho
[5] studied the problem of Rayleigh-Taylor instability taking
heat and mass transfer into the analysis, but his study was
restricted to the fluids of same kinematic viscosity. Adham-
Khodaparast et al. [6] restudied the linear stability analysis
of a liquid-vapor interface, but they considered liquid as
viscous and motionless and vapor as inviscid moving with
a horizontal velocity. Awasthi and Agrawal [7] extended
the work of Hsieh [3] considering both fluids as viscous.
The Kelvin-Helmholtz instability occurs when there is a
relative motion between the fluid layers of different physical
parameters. The study of heat and mass transfer on the

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 485807, 8 pages
http://dx.doi.org/10.1155/2014/485807



2 The Scientific World Journal

Kelvin-Helmholtz instability of miscible fluids using viscous
potential flow theory was made by Asthana and Agrawal
[8]. Awasthi and Agrawal [9] studied the capillary instability
when the fluids are miscible and viscous.

The presence of an electric field may change the fluid
behaviour and its flow. The study of effects resulting from
electric fields on fluid flows is called electrohydrodynamics
(EHD). The impact of electric field on the stability of two
fluid systems is one of the important problems in electohy-
drodynamics. The discontinuity of the electric properties of
the fluids across the interface affects the force balance at the
fluid-fluid interface, which may either stabilize or destabilize
the interface in question. The study of the electrohydrody-
namic Rayleigh-Taylor instability of two inviscid fluids in
the presence of tangential electric field was considered by
Eldabe [10]. He found that the tangential electric field has
stabilizing effect. Mohamed et al. [11] studied the nonlinear
electrohydrodynamic Rayleigh-Taylor instability of inviscid
fluids with heat and mass transfer in presence of a tangential
electric field and observed that heat and mass transfer has
stabilizing effects in the nonlinear analysis. The effect of
tangential electric field on the Rayleigh-Taylor instability
when there is heat and mass transfer across the interface was
studied by Awasthi and Agrawal [12].

In the VPF theory, we assume that the tangential part
of viscous stresses is zero in case of free surface problems,
but it is not possible in practical situations. To incorporate
this discontinuity, Wang et al. [13] included an extra pressure
term known as viscous pressure in the normal stress balance.
Using the global energy balance, they found that this viscous
pressure term will include the effect of tangential stresses.
This theory is called viscous corrections for the viscous
potential flow (VCVPF) theory. VCVPF analysis provides a
new direction to deal with stability problems and it is getting
attention of many researchers in recent times. Awasthi [14]
applied VCVPF theory on the Rayleigh-Taylor instability of
two viscous fluids when there is heat andmass transfer across
the interface and observed that the irrotational shearing
stresses stabilize the interface.

In view of the above investigations and keeping in mind
the importance of electrohydrodynamics in a number of
applications such as heat exchanger manufacturing [15],
power generation, and other industrial processes, a study
of the linear electrohydrodynamic Rayleigh-Taylor instability
of the plane interface when there is heat and mass transfer
across the interface is attempted.We use potential flow theory
and the fluids are considered to be incompressible, vis-
cous, and dielectric with different kinematic viscosities and
permittivities, respectively, which have not been considered
earlier. The effect of free surface charges at the interface is
neglected. A dispersion relation that accounts for the growth
of disturbance waves is derived and stability is discussed
theoretically as well as numerically. A critical value of the
electric field as well as the critical wave number is obtained.
The effect of ratio of permittivity of two fluids on stability
of the system is also studied and shown graphically. Various
neutral curves are drawn to show the effect of various physical
parameters such as electric field and heat transfer coefficient
on the stability of the system.
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Figure 1: The equilibrium configuration of the system.

2. Problem Formulation

A system consisting of two incompressible, viscous, and
dielectric fluid layers of finite thickness separated by a plane
interface 𝑦 = 0 is considered, as demonstrated in Figure 1.
The lower fluid (1) occupies the lower region −ℎ

1

< 𝑦 < 0,
having thickness ℎ

1

, density 𝜌(1), viscosity 𝜇(1), and dielectric
constants 𝜀(1), and is bounded by the rigid plane surface
𝑦 = −ℎ

1

while the upper fluid (2) occupies the outer
region 0 < 𝑦 < ℎ

2

, having thickness ℎ
2

, density 𝜌(2), viscosity
𝜇
(2), and dielectric constants 𝜀(2), and is bounded by the

rigid plane surface 𝑦 = ℎ
2

. The temperatures at 𝑦 = −ℎ
1

,
𝑦 = 0, and 𝑦 = ℎ

2

are taken as 𝑇
1

, 𝑇
0

, and 𝑇
2

, respectively.
We assume that in the basic state, interface temperature 𝑇

0

is equal to the saturation temperature because the fluids
are in thermodynamic equilibrium. The external force at
the interface is taken as the gravitational force 𝑔 in the
direction of (−𝑦). In the present analysis, the fluids are taken
as irrotational and incompressible.

To study the stability of the system, small disturbances are
imposed on the equilibrium state. Then, the equation of the
interface can be written as

𝐹 (𝑥, 𝑦, 𝑡) = 𝑦 − 𝜂 (𝑥, 𝑡) = 0, (1)

where 𝜂 represents the varicose interface displacement. The
outward unit normal vector can be defined as

n = ∇𝐹

|∇𝐹|
= {1 + (

𝜕𝜂

𝜕𝑥
)

2

}

−1/2

(e
𝑦

−
𝜕𝜂

𝜕𝑥
e
𝑥

) , (2)

where e
𝑥

and e
𝑦

are unit vectors along 𝑥- and 𝑦-directions,
respectively.

Our analysis is based on the potential flow theory;
therefore, velocity can be expressed as the gradient of the
potential function; that is,

u
𝑗

= ∇𝜙
(𝑗)

, (𝑗 = 1, 2) . (3)

For incompressible fluids, the density is constant; the conti-
nuity equation takes the form

∇ ⋅ u
𝑗

= 0. (4)

Combining (3) and (4), we have

∇
2

𝜙
(𝑗)

= 0, 𝑗 = 1, 2. (5)
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In the present analysis, it is assumed that the two fluids are
subjected to an external electric field 𝐸

0

, acting along 𝑥-axis
and therefore

E
𝑗

= 𝐸
0

e
𝑥

. (6)

We are assuming that the quasistatic approximation is valid;
hence, the electric field can be written in terms of electric
scalar potential function 𝜓(𝑥, 𝑦, 𝑡) as

E
𝑗

= 𝐸
0

e
𝑥

− ∇𝜓
(𝑗)

, (𝑗 = 1, 2) . (7)

Using Gauss’s law, the electric potentials will satisfy Laplace’s
equation; that is,

∇
2

𝜓
(𝑗)

= 0, (𝑗 = 1, 2) . (8)

The normal component of velocity at the rigid surfaces 𝑦 =
−ℎ
1

and 𝑦 = ℎ
2

should be zero; that is,

𝜕𝜙
(𝑗)

𝜕𝑦
= 0 at 𝑦 = (−1)𝑗ℎ

𝑗

, (𝑗 = 1, 2) . (9)

The normal component of electric potential also vanishes at
the rigid surfaces; that is,

𝜕𝜓
(𝑗)

𝜕𝑦
= 0 at 𝑦 = (−1)𝑗ℎ

𝑗

, (𝑗 = 1, 2) . (10)

The tangential component of the electric fieldmust be contin-
uous across the interface; that is,

[𝐸
𝑡

] = 0, (11)

where𝐸
𝑡

(= |n×E|) is the tangential component of the electric
field and [𝑥] represents the difference in a quantity across the
interface; it is defined as [𝑥] = 𝑥(2) − 𝑥(1).

There is discontinuity in the normal current across the
interface; charge accumulation within a material element is
balanced by conduction from bulk fluid on either side of the
surface. The boundary condition, corresponding to normal
component of the electric field, at the interface is given by

[𝜀𝐸
𝑛

] = 0, (12)

where 𝐸
𝑛

(= n ⋅ E) is the normal component of the electric
field.

The interfacial condition, which expresses the conserva-
tion of mass across the interface, is given by the equation

[𝜌(
𝜕𝐹

𝜕𝑡
+ ∇𝜙 ⋅ ∇𝐹)] = 0 at 𝑦 = 𝜂. (13)

In the present analysis, we have assumed that the amount
of latent heat released depends mainly on the instantaneous
position of the interface. Therefore, the interfacial condition
for energy transfer is expressed as

𝐿𝜌
(1)

(
𝜕𝐹

𝜕𝑡
+ ∇𝜙
(1)

⋅ ∇𝐹) = 𝑆 (𝜂) at 𝑦 = 𝜂, (14)

where 𝐿 is the latent heat released during phase transforma-
tion and 𝑆(𝜂) denotes the net heat flux from the interface.

If 𝐾
1

and 𝐾
2

denote the heat conductivities of the two
fluids, the heat fluxes in positive 𝑦-direction in the fluid
phases 1 and 2 will be −𝐾

1

(𝑇
1

− 𝑇
0

)/ℎ
1

and 𝐾
2

(𝑇
0

− 𝑇
2

)/ℎ
2

,
respectively. Therefore, the expression for net heat flux 𝑆(𝜂)
can be written as

𝑆 (𝑦) =
𝐾
2

(𝑇
0

− 𝑇
2

)

ℎ
2

− 𝑦
−
𝐾
1

(𝑇
1

− 𝑇
0

)

ℎ
1

+ 𝑦
. (15)

On expanding 𝑆(𝜂) in the neighbourhood of 𝜂 = 0, we have

𝑆 (𝜂) = 𝑆 (0) + 𝜂𝑆
󸀠

(0) +
1

2
𝜂
2

𝑆
󸀠󸀠

(0) + ⋅ ⋅ ⋅ . (16)

Since 𝑆(0) = 0 in the equilibrium condition, we obtain from
(15)

𝐾
2

(𝑇
0

− 𝑇
2

)

ℎ
2

=
𝐾
1

(𝑇
1

− 𝑇
0

)

ℎ
1

= 𝐺, where 𝐺 is a constant.

(17)

Since the fluids are miscible and there is heat and mass
transfer across the interface, the interfacial condition for
conservation of momentum will take the form

𝜌
(1)

(∇𝜙
(1)

⋅ ∇𝐹) (
𝜕𝐹

𝜕𝑡
+ ∇𝜙
(1)

⋅ ∇𝐹)

= 𝜌
(2)

(∇𝜙
(2)

⋅ ∇𝐹) (
𝜕𝐹

𝜕𝑡
+ ∇𝜙
(2)

⋅ ∇𝐹)

+(𝑝
2

− 𝑝
1

− 2𝜇
(2)n ⋅ ∇ ⊗ ∇𝜙(2)

⋅n + 2𝜇(1)n ⋅ ∇ ⊗ ∇𝜙(1)

⋅n − 1
2
[𝜀 (𝐸
2

𝑛

− 𝐸
2

𝑡

)] + 𝜎∇ ⋅ n) |∇𝐹|2,

(18)

where 𝑝 is the pressure, 𝜎 is the surface tension coefficient,
and n is the normal vector at the interface, respectively.
Surface tension has been assumed to be a constant, neglecting
its dependence on temperature.

3. Viscous Corrections for Viscous Potential
Flow (VCVPF) Analysis

The viscous correction for the viscous potential flow analysis
is another irrotational theory in which the shear stresses
do not vanish. However, the shear stress in the energy
balance can be calculated in the mean by the selection of an
irrotational pressure which depends on viscosity.

Here, we have ignored the small deformation 𝜂 in the
linear analysis. Suppose thatn

1

= e
𝑦

denotes the unit outward
normal at the interface for the lower fluid; n

2

= −n
1

is
the unit outward normal for the upper fluid and t = e

𝑥

is
the unit tangent vector. We will use the superscripts “𝑖” for
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“irrotational” and “V” for “viscous” and subscripts “1” and “2”
for lower and upper fluids, respectively.The normal and shear
parts of the viscous stress will be represented by 𝜏𝑛 and 𝜏𝑠,
respectively.

The mechanical energy equations for upper and lower
fluids can be written as

𝑑

𝑑𝑡
∫
𝑉

2

𝜌
(2)

2

󵄨󵄨󵄨󵄨u2
󵄨󵄨󵄨󵄨
2

𝑑𝑉

= −∫
𝐴

𝜌
(2)

𝑔𝜂𝑢
𝑛

𝑑𝐴 + ∫
𝐴

[u
2

⋅ T ⋅ n
2

] 𝑑𝐴

− ∫
𝑉

2

2𝜇
(2)D
2

: D
2

𝑑𝑉

= −∫
𝐴

𝜌
(2)

𝑔𝜂𝑢
𝑛

𝑑𝐴

− ∫
𝐴

[u
2

⋅ n
1

(−𝑝
𝑖

2

+ 𝜏
𝑛

2

) + u
2

⋅ t𝜏𝑠
2

] 𝑑𝑉

− ∫
𝑉

2

2𝜇
(2)D
2

: D
2

𝑑𝑉,

(19)

𝑑

𝑑𝑡
∫
𝑉

1

𝜌
(1)

2

󵄨󵄨󵄨󵄨u1
󵄨󵄨󵄨󵄨
2

𝑑𝑉

= −∫
𝐴

𝜌
(1)

𝑔𝜂𝑢
𝑛

𝑑𝐴 + ∫
𝐴

[u
1

⋅ T ⋅ n
1

] 𝑑𝐴

− ∫
𝑉

2

2𝜇
(1)D
1

: D
1

𝑑𝑉

= −∫
𝐴

𝜌
(1)

𝑔𝜂𝑢
𝑛

𝑑𝐴

+ ∫
𝐴

[u
1

⋅ n
1

(−𝑝
𝑖

1

+ 𝜏
𝑛

1

) + u
1

⋅ t𝜏𝑠
1

] 𝑑𝑉

− ∫
𝑉

1

2𝜇
(1)D
1

: D
1

𝑑𝑉,

(20)

where D
𝑗

(𝑗 = 1, 2) denote the symmetric part of the rate of
strain tensor for lower and upper fluids, respectively.

As the normal velocities are continuous at the interface,
we have

u
2

⋅ n
1

= u
1

⋅ n
1

= 𝑢
𝑛

. (21)

The sum of (19) and (20) can be written as

𝑑

𝑑𝑡
∫
𝑉

2

𝜌
(2)

2

󵄨󵄨󵄨󵄨u2
󵄨󵄨󵄨󵄨
2

𝑑𝑉 +
𝑑

𝑑𝑡
∫
𝑉

1

𝜌
(1)

2

󵄨󵄨󵄨󵄨u1
󵄨󵄨󵄨󵄨
2

𝑑𝑉

= −∫
𝐴

𝜌
(2)

𝑔𝜂𝑢
𝑛

𝑑𝐴 − ∫
𝐴

𝜌
(1)

𝑔𝜂𝑢
𝑛

𝑑𝐴

− ∫
𝑉

2

2𝜇
(2)D
2

: D
2

𝑑𝑉 − ∫
𝑉

1

2𝜇
(1)D
1

: D
1

𝑑𝑉

+ ∫
𝐴

[𝑢
𝑛

(−𝑝
𝑖

1

+ 𝜏
𝑛

1

+ 𝑝
𝑖

2

− 𝜏
𝑛

2

)

+u
2

⋅ t𝜏𝑠
2

− u
1

⋅ t𝜏𝑠
1

] 𝑑𝐴.

(22)

On introducing the two viscous pressure correction terms 𝑝V
1

and 𝑝V
2

for the lower and upper sides of the flow region, we
can resolve the discontinuity of the shear stress and tangential
velocity at the interface, so

𝜏
𝑠

1

= 𝜏
𝑠

2

= 𝜏
𝑠

, u
2

⋅ t = u
1

⋅ t = 𝑢
𝑠

. (23)
We assume that the boundary layer approximation has a
negligible effect on the flow in the bulk liquid, but it changes
the pressure and continuity conditions at the interface.
Hence, (22) becomes

𝑑

𝑑𝑡
∫
𝑉

2

𝜌
(2)

2

󵄨󵄨󵄨󵄨u2
󵄨󵄨󵄨󵄨
2

𝑑𝑉 +
𝑑

𝑑𝑡
∫
𝑉

1

𝜌
(1)

2

󵄨󵄨󵄨󵄨u1
󵄨󵄨󵄨󵄨
2

𝑑𝑉

= −∫
𝐴

𝜌
(2)

𝑔𝜂𝑢
𝑛

𝑑𝐴 − ∫
𝐴

𝜌
(1)

𝑔𝜂𝑢
𝑛

𝑑𝐴

− ∫
𝑉

2

2𝜇
(2)D
2

: D
2

𝑑𝑉 − ∫
𝑉

1

2𝜇
(1)D
1

: D
1

𝑑𝑉

+ ∫
𝐴

[𝑢
𝑛

(−𝑝
𝑖

1

− 𝑝
V
1

+ 𝜏
𝑛

1

+ 𝑝
𝑖

2

+ 𝑝
V
2

− 𝜏
𝑛

2

)] 𝑑𝐴.

(24)

Now, we can obtain an equation which relates the pressure
corrections to the uncompensated irrotational shear stresses
by comparing (22) and (24):

∫
𝐴

[𝑢
𝑛

(−𝑝
V
1

+ 𝑝
V
2

)] 𝑑𝐴 = ∫
𝐴

[u
2

⋅ t𝜏𝑠
2

− u
1

⋅ t𝜏𝑠
1

] 𝑑𝐴. (25)

It has been shown by Wang et al. [13] that in linearized
problems, the governing equation for the pressure corrections
is given by

∇
2

𝑝
V
= 0. (26)

Using the normal mode method, the solution of (20) can be
written as
𝑝
V
1

= − (𝐶
𝑘

cosh 𝑘𝑦 + 𝐸
𝑘

sinh 𝑘𝑦) exp [(𝑖𝑘𝑥 − 𝑖𝜔𝑡)] ,

𝑝
V
2

= − (𝐷
𝑘

cosh 𝑘𝑦 + 𝐹
𝑘

sinh 𝑘𝑦) exp [(𝑖𝑘𝑥 − 𝑖𝜔𝑡)] .
(27)

At the interface 𝑦 = 0, the difference in the viscous pressure
is expressed as

−𝑝
V
1

+ 𝑝
V
2

= [𝐶
𝑘

− 𝐷
𝑘

] exp (𝑖𝑘𝑥 − 𝑖𝜔𝑡) . (28)
The equation of conservation ofmomentum (18) on including
the viscous pressure can be written as

𝜌
(1)

(∇𝜙
(1)

⋅ ∇𝐹) (
𝜕𝐹

𝜕𝑡
+ ∇𝜙
(1)

⋅ ∇𝐹)

= 𝜌
(2)

(∇𝜙
(2)

⋅ ∇𝐹) (
𝜕𝐹

𝜕𝑡
+ ∇𝜙
(2)

⋅ ∇𝐹)

+ (𝑝
𝑖

2

+ 𝑝
V
2

− 𝑝
𝑖

1

− 𝑝
V
1

− 2𝜇
(2)n ⋅ ∇ ⊗ ∇𝜙(2) ⋅ n

+ 2𝜇
(1)n ⋅ ∇ ⊗ ∇𝜙(1) ⋅ n − 1

2
[𝜀 (𝐸
2

𝑛

− 𝐸
2

𝑡

)]

+ 𝜎∇ ⋅ n) |∇𝐹|2.

(29)

Here, 𝑝𝑖
𝑗

for (𝑗 = 1, 2) is the irrotational pressure obtained by
Bernoulli’s equation.
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4. Linearized Equations

The small disturbances are imposed on (11), (12), (13), (14),
and (29) and retaining the linear terms, we can get the
following equations:

[
𝜕𝜓

𝜕𝑥
] = 0, (30)

[𝜀 (𝐸
0

𝜕𝜂

𝜕𝑥
+
𝜕𝜓

𝜕𝑦
)] = 0, (31)

[𝜌(
𝜕𝜙

𝜕𝑦
−
𝜕𝜂

𝜕𝑡
)] = 0, (32)

𝜌
(1)

(
𝜕𝜙
(1)

𝜕𝑦
−
𝜕𝜂

𝜕𝑡
) = 𝛼𝜂, (33)

[𝜌(
𝜕𝜙

𝜕𝑡
+ 𝑔𝜂) − 𝑝

V
+ 2𝜇

𝜕
2

𝜙

𝜕𝑦2
+ 𝜀𝐸
0

𝜕𝜓

𝜕𝑥
] = −𝜎

𝜕
2

𝜂

𝜕𝑥2
, (34)

where 𝛼 = 𝐺/𝐿((1/ℎ
1

) + (1/ℎ
2

)).
The normal mode technique has been used to find the

solution of the governing equations. We have considered the
interface elevation in the form

𝜂 = 𝐶 exp (𝑖 (𝑘𝑧 − 𝜔𝑡)) + c.c., (35)

where 𝐶 represents the amplitude of the surface wave, 𝑘
denotes the real wave number, 𝜔 is the growth rate, and c.c.
refers to the complex conjugate of the preceding term.

Now, using normal mode analysis and using the bound-
ary conditions (30)–(33), the solution of (5) and (8) can be
written as

𝜙
(1)

=
1

𝑘
(
𝛼

𝜌(1)
− 𝑖𝜔)𝐶

cosh (𝑘 (𝑦 + ℎ
1

))

sinh (𝑘ℎ
1

)

× exp (𝑖𝑘𝑥 − 𝑖𝜔𝑡) + c.c.,

𝜙
(2)

= −
1

𝑘
(
𝛼

𝜌(2)
− 𝑖𝜔)𝐶

cosh (𝑘 (𝑦 − ℎ
2

))

sinh (𝑘ℎ
2

)

× exp (𝑖𝑘𝑥 − 𝑖𝜔𝑡) + c.c.,

𝜓
(1)

=
𝑖𝐸
0

(𝜀
(2)

− 𝜀
(1)

)

(𝜀(1) tanh 𝑘ℎ
1

+ 𝜀(2) tanh 𝑘ℎ
2

)

× 𝐶
cosh 𝑘 (𝑦 + ℎ

1

)

cosh 𝑘ℎ
1

exp (𝑖𝑘𝑥 − 𝑖𝜔𝑡) + c.c.,

𝜓
(2)

=
𝑖𝐸
0

(𝜀
(2)

− 𝜀
(1)

)

(𝜀(1) tanh 𝑘ℎ
1

+ 𝜀(2) tanh 𝑘ℎ
2

)

× 𝐶
cosh 𝑘 (𝑦 − ℎ

2

)

cosh 𝑘ℎ
2

exp (𝑖𝑘𝑥 − 𝑖𝜔𝑡) + c.c.

(36)

The contribution of irrotational shearing stresses will be
obtained by solving (25) along with (28). So, we have

[𝐶
𝑘

− 𝐷
𝑘

] = 2𝑘𝐶 [𝜇
(1)

(
𝛼

𝜌(1)
− 𝑖𝜔) coth (𝑘ℎ

1

)

+ 𝜇
(2)

(
𝛼

𝜌(2)
− 𝑖𝜔) coth (𝑘ℎ

2

)] .

(37)

5. Dispersion Relation

We have used the expressions of 𝜂, 𝜙(1), 𝜙(2), 𝜓(1), 𝜓(2), and
−𝑝

V
1

+ 𝑝
V
2

in (34) to find the dispersion relation which is a
quadratic equation expressed as follows:

𝐷 (𝜔, 𝑘) = 𝑎
0

𝜔
2

+ 𝑖𝑎
1

𝜔 − 𝑎
2

= 0, (38)

where

𝑎
0

= 𝜌
(1) coth (𝑘ℎ

1

) + 𝜌
(2) coth (𝑘ℎ

2

) ,

𝑎
1

= 𝛼 (coth (𝑘ℎ
1

) + coth (𝑘ℎ
2

))

+ 4𝑘
2

(𝜇
(1) coth (𝑘ℎ

1

) + 𝜇
(2) coth (𝑘ℎ

2

)) ,

𝑎
2

= (𝜌
(1)

− 𝜌
(2)

) 𝑔𝑘 + 𝜎𝑘
3

+ 4𝑘
2

𝛼

× (
𝜇
(1)

𝜌(1)
coth (𝑘ℎ

1

) +
𝜇
(2)

𝜌(2)
coth (𝑘ℎ

2

))

+
𝑘
2

𝐸
2

0

(𝜀
(2)

− 𝜀
(1)

)
2

(𝜀(1) tanh (𝑘ℎ
2

) + 𝜀(2) tanh (𝑘ℎ
2

))
.

(39)

For 𝐸
0

= 0, (38) is reduced to dispersion relation as obtained
by Awasthi [14]. In (38), putting 𝐸

0

= 0 and neglecting the
effect of irrotational shearing stresses, we get the dispersion
relation as obtained by Awasthi and Agrawal [7].

If we use the transformation 𝜔 = 𝑖𝜔
0

, the dispersion
relation can be obtained in growth rate 𝜔

0

as

𝑎
0

𝜔
2

0

+ 𝑎
1

𝜔
0

+ 𝑎
2

= 0. (40)

Now using the Routh-Hurwitz criteria [16] for (40), we get
the stability conditions as follows:

𝑎
0

> 0, 𝑎
1

> 0, 𝑎
2

> 0. (41)

If we use the properties of modified Bessel functions, 𝑎
0

will
always be positive. The viscosities are always positive and so
𝑎
1

> 0. Therefore, the condition of stability reduces to 𝑎
2

> 0;
that is,

(𝜌
(1)

− 𝜌
(2)

) 𝑔𝑘 + 𝜎𝑘
3

+ 4𝑘
2

𝛼

× (
𝜇
(1)

𝜌(1)
coth (𝑘ℎ

1

) +
𝜇
(2)

𝜌(2)
coth (𝑘ℎ

2

))

+
𝑘
2

𝐸
2

0

(𝜀
(2)

− 𝜀
(1)

)
2

(𝜀(1) tanh (𝑘ℎ
2

) + 𝜀(2) tanh (𝑘ℎ
2

))
> 0.

(42)
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Hence, we conclude that the system is stable for 𝑘 ≥ 𝑘
𝑐

and unstable for 𝑘 < 𝑘
𝑐

, where 𝑘
𝑐

is the critical value of the
wave number.

Equation (42) can also be written as

𝑘
2

𝐸
2

0

(𝜀
(2)

− 𝜀
(1)

)
2

(𝜀(1) tanh (𝑘ℎ
2

) + 𝜀(2) tanh (𝑘ℎ
2

))

< (𝜌
(2)

− 𝜌
(1)

) 𝑔𝑘 − 𝜎𝑘
3

− 4𝑘
2

𝛼

× (
𝜇
(1)

𝜌(1)
coth (𝑘ℎ

1

) +
𝜇
(2)

𝜌(2)
coth (𝑘ℎ

2

)) .

(43)

From the above expression, it can be concluded that the
system is stable for 𝐸 ≤ 𝐸

𝑐

and unstable for 𝐸 > 𝐸
𝑐

, where
𝐸
𝑐

is the critical value of the electric field.
The condition for neutral stability can be written as

(𝜌
(1)

− 𝜌
(2)

) 𝑔𝑘 + 𝜎𝑘
3

+ 4𝑘
2

𝛼

× (
𝜇
(1)

𝜌(1)
coth (𝑘ℎ

1

) +
𝜇
(2)

𝜌(2)
coth (𝑘ℎ

2

))

+
𝑘
2

𝐸
2

0

(𝜀
(2)

− 𝜀
(1)

)
2

(𝜀(1) tanh (𝑘ℎ
2

) + 𝜀(2) tanh (𝑘ℎ
2

))
= 0.

(44)

If the fluids are considered to be inviscid, that is, 𝜇(1) =
𝜇
(2)

= 0, heat and mass transfer has no effect on the stability
criterion. Also, if there is no heat and mass transfer across
the interface, that is, 𝛼 = 0, the inviscid potential flow (IPF),
VPF, and the VCVPF solutions predict the same critical wave
number.

6. Dimensionless Form of Dispersion Relation

Let ℎ = ℎ
2

+ ℎ
1

be the characteristic length and 𝑄 =

[(1 − 𝜌)𝑔ℎ/𝜌]
1/2 represents the characteristic velocity. Then,

the nondimensional forms of other parameters are defined as

𝑘̂ = 𝑘ℎ, 𝛼̂ =
𝛼ℎ
2

𝜇(2)
, ℎ̂

1

=
ℎ
1

ℎ
≡ 𝜑,

ℎ̂
2

=
ℎ
2

ℎ
= 1 − ℎ̂

1

, 𝜌 =
𝜌
(1)

𝜌(2)
, 𝜇 =

𝜇
(1)

𝜇(2)
,

𝜔̂ =
𝜔
0

ℎ

𝑄
, 𝜎̂ =

𝜎

𝜌(2)𝑔ℎ2
, 𝜗 =

𝜇
(2)

𝜌(2)ℎ𝑄
,

𝜀 =
𝜀
(1)

𝜀(2)
, 𝐸

2

=
𝐸
2

𝜀
(2)

𝜌(2)𝑔ℎ
, 𝜅 =

𝜇

𝜌
, Λ =

𝛼̂𝜗
2

𝜌
.

(45)

Here, 𝜑 denotes the vapour fraction, 𝜅 represents the kine-
matic viscosity ratio, and Λ denotes the alternative heat
transfer coefficient.

The dimensionless form of (40) can be written as

[𝜌 coth (𝑘̂ℎ̂
1

) + coth (𝑘̂ℎ̂
2

)] 𝜔̂
2

+ 𝜗 [𝛼̂ (coth (𝑘̂ℎ̂
1

) + coth (𝑘̂ℎ̂
2

))

+4𝑘̂
2

(𝜇 coth (𝑘̂ℎ̂
1

) + coth (𝑘̂ℎ̂
2

))] 𝜔̂

− [𝜌𝑘̂ {1 +
𝜎̂𝑘̂
2

(𝜌 − 1)
+

𝑘̂𝐸
2

(𝜌 − 1)

×
(𝜀 − 1)

2

(𝜀 tanh (𝑘ℎ
1

) + tanh (𝑘ℎ
2

))
}

−4𝑘̂
2

𝛼̂𝜗
2

{𝜅 coth (𝑘̂ℎ̂
1

) + coth (𝑘̂ℎ̂
2

)}] = 0,

(46)

and non-dimensional form of (44) is given by

1 +
𝜎̂𝑘̂
2

(𝜌 − 1)
+

𝑘̂𝐸
2

(𝜌 − 1)

(𝜀 − 1)
2

(𝜀 tanh (𝑘ℎ
1

) + tanh (𝑘ℎ
2

))

− 4𝑘̂Λ {𝜅 coth (𝑘̂ℎ̂
1

) + coth (𝑘̂ℎ̂
2

)} = 0.

(47)

7. Results and Discussions

In this section, we have carried out the numerical computa-
tion using the expressions presented in the previous sections
for a film boiling condition. We have taken vapour and
water as working fluids identified with phase 1 and phase 2,
respectively, such that 𝑇

1

> 𝑇
0

> 𝑇
2

. We are treating steam
as incompressible since the Mach number is expected to be
small. The water-vapour interface is in saturation condition
in film boiling situation and the temperature 𝑇

0

is equal to
the saturation temperature.We have considered the following
parametric values for the analysis:

𝜌
(1)

= 0.001 gm/cm3, 𝜌
(2)

= 1.0 gm/cm3,

𝜇
(1)

= 0.00001 poise, 𝜇
(2)

= 0.01 poise,

𝜎 = 72.3 dyne/cm.

(48)

Since the transfer ofmass across the interface represents a
transformation of the fluid from one phase to another, there
is regularly a latent heat associated with phase change. It is
basically through this interfacial coupling between the mass
transfer and the release of latent heat that themotion of fluids
is influenced by the thermal effects. Therefore, when there
is mass transfer across the interface, the transformation of
heat in the fluid has to be taken into the account. Neutral
curves for wave number divide the plane into a stable region
above the curve and an unstable region below the curve while
neutral curves for the electric field divide the plane into a
stable region below the curve and an unstable region above
the curve.

The effect of alternative heat-transfer capillary dimen-
sionless group Λ on the neutral curves for critical wave
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Figure 2: Neutral curves for critical wave number when 𝐸 = 1, 𝜑 =
0.1 for the different values of heat transfer coefficient Λ.

number has been shown in Figure 2 when the electric field
intensity 𝐸 = 1. Here, we have found that if we Λ constant
and increase 𝜅, the critical wave number 𝑘

𝑐

reduces for
fixed value of vapor fraction 𝜑; hence, the VCVPF theory
predicts longer stable waves. As alternative heat-transfer
capillary dimensionless group Λ increases, the stable region
also increases. AsΛ increases, the stable region also increases.
The coefficient Λ is directly proportional to the heat flux and
therefore, heat flux has stabilizing effect on the system. This
is the same result as the one obtained by Awasthi [14] for
the Rayleigh-Taylor instability with heat and mass transfer
in the absence of electric field. Therefore, we state that the
behaviour of heat flux is not affected by the presence of an
electric field. We can explain the effect of heat and mass
transfer on the stability of the system taking local evaporation
and condensation at the interface. Crests are warmer at the
perturbed interface because they are closer to the hotter
boundary on the vapour side; thus, local evaporation takes
place, whereas troughs are cooler and thus condensation
takes place.The liquid is protruding to a hotter region and the
evaporation will diminish the growth of disturbance waves.

The effect of electric field intensity𝐸 on the neutral curves
for the critical wave number 𝑘

𝑐

is illustrated in Figure 3. We
observe that for a fixed value of 𝜅 and Λ, the critical wave
number 𝑘

𝑐

decreases on increasing electric field intensity
𝐸. Therefore, it is concluded that 𝐸 has stabilizing effect. If
electric field is present in the analysis, the term contributed
from the applied electric field is added in the left-hand side
of (47) so that critical value of wave number decreases and
system will become more stable. The concept of polarization
can explain the physical mechanism of this phenomenon.
The polarization forces due to differences in permittivities
and perturbed velocities have the effect of pushing the
disturbance waves and therefore, electric field stabilizes the
interface. It is also observed from Figure 3 that as vapour
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Figure 3: Neutral curves for critical wave number when Λ = 10−5
for the different values of electric field intensity 𝐸.
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Figure 4: Comparison between the neutral curves for critical wave
number obtained for VPF as well as VCVPF analysis when 𝐸 = 1.0.

thickness increases, the stable region decreases and so vapour
thickness plays a destabilizing role. On increasing the vapor
fraction, more evaporation takes place at the crests. This
additional evaporation will increase the amplitude of the
disturbance waves and the system becomes destabilized.

In Figure 4, the effects of irrotational viscous pressure on
the Rayleigh-Taylor instability with heat and mass transfer
have been studied. Here, a comparison is performed between
the neutral curves of wave number 𝑘

𝑐

obtained from the
present analysis (VCVPF solution) and those obtained from
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Figure 5: Comparison between the neutral curves for critical wave
number obtained for VPF as well as VCVPF analysis whenΛ = 10−5.

the VPF solution when the electric field 𝐸 = 1. We observe
that as the values of heat transfer coefficient increase, the
stable region increases in the VCVPF solution in comparison
with the VPF solution; this indicates that the effect of
irrotational viscous pressure stabilizes the system in the
presence of heat and mass transfer.

Figure 5 shows the comparison between the neutral
curves of wave number obtained by the VPF analysis and
those obtained by VCVPF (present) analysis for different
electric fields. As its intensity increases, the critical wave
number decreases for both VPF and VCVPF analyses; how-
ever, in case of VCVPF solution it decreases faster, Hence, at
the higher values of electric field, VCVPF solution is more
stable than VPF solution.

8. Conclusion

The effect of tangential electric field on the Rayleigh-Taylor
instability is studied when there is heat and mass transfer
across the interface. The viscous correction for viscous
potential flow theory is used for investigation.The dispersion
relation is obtained, which is a quadratic equation in growth
rate. The stability condition is obtained by applying Routh-
Hurwitz criterion. A critical value of electric field as well
as critical wave number is obtained. The system is unstable
when the electric field is greater than the critical value of
electric field; otherwise, it is stable. It is observed that the
heat and mass transfer has stabilizing effect on the stability
of the system and this effect is enhanced in the presence of an
electric field.The heat andmass transfer completely stabilizes
the interface against capillary effects even in the presence of
an electric field. It is also observed that the tangential electric
field increases the stability of the system.TheVCVPF solution
is more stable than the VPF solution at the high electric field
intensity as well as high heat transfer.
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