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Vascular segmentation plays an important role inmedical image analysis. A novel technique for the automatic extraction of vascular
trees from 2Dmedical images is presented, which combines Hessian-based multiscale filtering and a modified level set method. In
the proposed algorithm, the morphological top-hat transformation is firstly adopted to attenuate background.Then Hessian-based
multiscale filtering is used to enhance vascular structures by combining Hessian matrix with Gaussian convolution to tune the
filtering response to the specific scales. Because Gaussian convolution tends to blur vessel boundaries, which makes scale selection
inaccurate, an improved level set method is finally proposed to extract vascular structures by introducing an external constrained
term related to the standard deviation of Gaussian function into the traditional level set. Our approach was tested on synthetic
images with vascular-like structures and 2D slices extracted from real 3D abdomenmagnetic resonance angiography (MRA) images
along the coronal plane. The segmentation rates for synthetic images are above 95%. The results for MRA images demonstrate
that the proposed method can extract most of the vascular structures successfully and accurately in visualization. Therefore, the
proposed method is effective for the vascular tree extraction in medical images.

1. Introduction

Accurate segmentation and quantification of vascular struc-
tures in medical images is a critical task for clinical prac-
tices such as computer-aided diagnosis, treatment, surgical
planning, and navigation. However, it is highly challenging
to extract vascular structures in 2D and 3D medical images.
The reasons lie in two aspects. On one hand, some vascular
structures involve numerous vascular branches and complex
patterns [1]. On the other hand, noise, variations in intensi-
ties, and low image contrast pose difficulties in vascular tree
extraction [2].

Various extraction techniques have been proposed for
vascular tree segmentation, that is, pattern recognition tech-
niques, model-based approaches, mathematical morphology,
multiscale filtering approaches, vessel tracking, and matched
filtering (see Kirbas and Quek [3] and Lesage et al. [4] for
comprehensive reviews). Almost all the vascular extraction
techniques take advantage of the characteristics of tubular-
like or line-like structure of vessels. Among existing vascular

extraction methods, Hessian-based multiscale filtering has
received much attention [1, 5–12]. These methods share a
common idea that the images are convolved with 2D or
3D Gaussian filters at multiple scales, and the eigenvalues
of the Hessian matrix at each pixel or voxel are analyzed
in terms of a response function to determine the shape of
the local structures in the images [13]. The response of the
Hessian-based multiscale filtering will be strongest when the
scale of the filter matches the size of the local structures,
which means scale selection is keeping with the strongest
response among multiple scales. Thus, local structures can
be extracted using the local strongest response. However, the
Hessian-based multiscale filtering is only based on geometry
structures of the vessels, which will lead to the discontinuous,
even fake vascular structures [1]. Furthermore, Gaussian filter
convolution with the image tends to blur vessel boundaries
and thus makes the scale selection inaccurate. To address
these problems, we use morphological top-hat transfor-
mation and Hessian-based multiscale filtering to enhance
vascular structures in medical images and an improved level
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set method involving an external constrained term related
to the standard deviation 𝜎 of Gaussian function to extract
vascular structures from the enhanced images since the blur
level of vessel boundaries is associated with 𝜎 [14].

The paper is structured in five sections; Section 2
describes morphological top-hat transformation and
Hessian-based multiscale filtering for vessel enhancement.
Vessel segmentation with the improved level set method is
presented in Section 3. Section 4 provides some experimental
results for synthetic and clinical medical images, as well as
evaluation of robustness and segmentation accuracy of the
proposed method. The conclusions and future directions are
given in Section 5.

2. Vessel Enhancement

The presence of numerous nonvascular structures in clinical
medical images such as liver and kidney, will negatively affect
the extraction of vascular structures. Considering that mor-
phological top-hat transformation is a powerful technique for
image enhancement, especially in extracting bright features
from a dark background [15–19], it is adopted in our method
to suppress nonvascular structures by using a structuring
element larger than the maximum vessel scale in the medical
images.

Following the morphological top-hat transformation, the
Hessian-based multiscale filtering [5] is used for enhancing
the medical image. The filter is based on eigenvalue analysis
of the scale space of the Hessian matrix. The eigenvalues and
eigenvectors of Hessian matrix are closely related to vascular
intensity and direction. For a 3D input image 𝐼, Hessian
matrix is a 3 × 3 matrix composed of second-order partial
derivatives of the input image 𝐼:

∇
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In practice, the second-order partial derivatives of input
image 𝐼 at a point (𝑥, 𝑦, 𝑧) are defined as a convolution with
derivatives of Gaussian filter at scale 𝜎:

𝐼 (𝑥, 𝑦, 𝑧, 𝜎) = 𝐺 (𝑥, 𝑦, 𝑧, 𝜎) ∗ 𝐼 (𝑥, 𝑦, 𝑧) ,
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where 𝐺(𝑥, 𝑦, 𝑧, 𝜎) denotes a Gaussian convolution kernel at
scale 𝜎. Let the eigenvalues of ∇2𝐼 be 𝜆
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and orientations of different structures in the image.

Table 1: Possible structure orientations in 3D images depending on
the eigenvalues of Hessian matrix.

Orientation pattern 3D image
𝜆
1

𝜆
2

𝜆
3

Noisy, no preferred direction L L L
Plate-like structure (bright) L L H−
Plate-like structure (dark) L L H+
Tubular structure (bright) L H− H−
Tubular structure (dark) L H+ H+
Blob-like structure (bright) H− H− H−
Blob-like structure (dark) H+ H+ H+
L: Low, H+: high positive, H−: high negative.

Based on the eigenvalues of ∇2𝐼, the dissimilarity mea-
sures 𝑅
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The first ratio 𝑅
𝐵
accounts for the deviation for a blob-

like structure, but it cannot distinguish between a line-like
and a plate-like pattern. The second ratio 𝑅

𝐴
is applied for

distinguishing between plate-like and line-like structures. In
order to reduce the response of the background pixels, Frangi
et al. used the Frobenius norm of theHessianmatrix to define
the measure of “second-order structureness” [5] as follows:
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Assuming a bright blood image, the vesselness function
can be defined as follows:
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where 𝛼, 𝛽, and 𝑐 are thresholds which control the sensitivity
of the filter to the measures 𝑅

𝐴
, 𝑅
𝐵
, and 𝑆.The filter is applied

at multiple scales, and the maximum response is selected to
be a final estimate of vesselness. Consider

]
𝐼
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{]
𝑜
(𝜎)} , (6)

where 𝜎min and 𝜎max are the minimum and maximum scales
at which relevant structures are expected to be found. The
choice of the two values must ensure that they will cover the
range of vessel widths [5]. The maximum response output
]
𝐼
is the enhanced image which corresponds to line-like

structures.
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For 2D images, we use the following vesselness measure
defined by Frangi et al. [5] which follows from the same
reasoning as used for 3D:
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where 𝑅
𝐵
= 𝜆
1
/𝜆
2
is the blobness measure in 2D images.

3. Vessel Segmentation

3.1. Active Contour Methods. Active contour methods have
been popular in a wide range of problems including visual
tracking and image segmentation since they were first pro-
posed in 1988 by Kass et al. [20]. The basic idea of active
contour methods is to evolve a curve from a given initial
state towards an object boundary. In this paper, we used
region-based active contour methods under the level set
framework to segment vascular trees. Region-based active
contour methods assume intensities of image regions to
be constants. Compared with edge-based methods, region-
based approaches have many advantages such as robustness
and insensitivity to image noise [21].

In region-based active contour methods, a curve is
iteratively evolved by optimizing an objective function to find
the boundary 𝐶 of an object. Let the bounded open subset
Ω ⊂ 𝑅

2 represent the image domain. Each image is defined
as 𝐼 : Ω → 𝑅, and (𝑥, 𝑦) ∈ Ω is a spatial variable
representing a single point within the image domainΩ. In the
level set framework, the boundary𝐶 is embedded in a higher-
dimensional function. For example, a simple curve on a 2D
plane can be embedded in a 3D surface 𝜙. By convention, 𝐶
is represented as the zero-level-set of 𝜙 such that the curve is
located where 𝜙 crosses a plane at the 0th level. Thus, on the
interior of 𝐶, 𝜙 < 0, and on the exterior of 𝐶, 𝜙 > 0. During
the segmentation process, the function 𝜙(𝑥, 𝑦) is evolved
rather than explicitly evolving the boundary itself when using
a parametric boundary representation.The level set evolution
equation is given by

𝜕𝜙 (𝑥, 𝑦)

𝜕𝑡

+ 𝐹




∇𝜙 (𝑥, 𝑦)





= 0, (8)

where 𝐹 is speed function. In our implementation, 𝜙(𝑥, 𝑦)
is initially represented as a signed distance function of the
boundary and is evolved via the optimization of an objective
function representing the goal of segmentation.

It is well known that level set methods are the most
widely used way to represent a contour because of their
simple implementation. In addition, it allows very complex
curve behavior and automatic topology adaptation [22]. But
the primary drawback of level set methods is that they
are slow to compute. In this work, we borrow the idea of
Lankton’s work [22] to implement our approach with the
sparse field method (SFM) proposed byWhitaker [23] which
allows one to implement level set active contours efficiently.
The objective function used in this work for vascular tree
extraction will be described in Section 3.2.

3.2. Vascular Tree Segmentation. In this paper, we use Chan-
Vese model [24], a region-based active contour model, to
overcome the drawback ofHessian-basedmultiscale filtering.
The object of Chan-Vese model is to minimize the objective
function 𝐹cv(𝑐1, 𝑐2, 𝐶) defined by
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used to partition the level set function.The objective function
can be rewritten in terms of 𝜙(𝑥, 𝑦) as
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Since Gaussian convolution tends to blur vessel bound-
aries and makes scale selection inaccurate, and the blur level
of vessel boundaries is associated with standard deviation
𝜎 of Gaussian function, we define a new class of external
constrained term 𝐹

𝜎
related to 𝜎. 𝐹

𝜎
is the penalty on the

evolution distance from the initial contour 𝐶
0
which is

obtained by using Otsu’s thresholding [25] method on the
enhanced image ]

𝐼
. Here, 𝐹
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where 𝜎 is the maximum standard deviation of Gaussian
function used in Hessian-based multiscale filtering and 𝑑

𝜎
is

a preset value for the largest contour evolution distance (𝑑
𝜎

is set to 𝜎max/2, in our paper). |𝐶
𝑡
(𝑥, 𝑦) − 𝐶

0
| is the evolution

distance in a point (𝑥, 𝑦) from the initial contour 𝐶
0
.

By combining 𝐹cv with 𝐹𝜎, the new objective function is
represented as

𝐹new = 𝐹cv (𝑐1, 𝑐2, 𝐶) + 𝐹𝜎

= 𝐹cv (𝑐1, 𝑐2, 𝐶) + 𝐵 (𝑥, 𝑦) ⋅ 𝐹cv (𝑐1, 𝑐2, 𝐶) ,
(12)

and it will be rewritten in terms of 𝜙(𝑥, 𝑦) as follows:

𝐹new = 𝐹cv (𝑐1, 𝑐2, 𝜙) + 𝐵 (𝑥, 𝑦) ⋅ 𝐹cv (𝑐1, 𝑐2, 𝜙) . (13)
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The evolution follows that when evolution distance in point
(𝑥, 𝑦) |𝐶
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= 0, and

𝐹new = 𝐹cv(𝑐1, 𝑐2, 𝐶), where the contour 𝐶𝑡 at point (𝑥, 𝑦) can
be evolved as the Chan-Vese model [24]. Meanwhile, when
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stop evolution. In other words, 𝑑
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evolution distance (i.e., 𝑑
𝜎
= 𝜎max/2). Obviously, 𝐵(𝑥, 𝑦)

can control the contour evolution to avoid the segmentation
leakage of nonvascular structures and blurred boundaries
caused by Gaussian convolution.

If one regularizes the Heaviside function𝐻 and the Dirac
Delta function 𝛿
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by two suitable smooth functions 𝐻
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with the natural boundary condition [26]. In addition
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The values used in the simulations are 𝜀 = ℎ = 1 with ℎ
denoting the space step.

In each step, the 𝜙(𝑥, 𝑦) should be reinitialized to be the
signed distance function [24, 26]. This procedure prevents
the level set function from becoming too “flat” due to the
use of the regularized Dirac Delta function 𝛿

𝜀
(𝑥) [26]. The

reinitialization process is expressed as

𝜕𝜓
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= sign (𝜙 (𝑥, 𝑦, 𝑡)) (1 − 
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) ,

𝜓 (0) = 𝜙 (𝑥, 𝑦, 𝑡) .

(19)

The solution of this equation 𝜓 will have the same zero-level-
set as 𝜙(𝑥, 𝑦, 𝑡), and |∇𝜓| will converge to 1 since it should be
a distance function.

The process of the vascular extraction terminates when
the evolution does not change within bounds 0.4mm2 on
successive iterations or the maximum number of iterations
is reached.The improved active contourmethod converges to
the boundary of vascular structures exactly in a few iterations.

3.3. Implementation of the Algorithm

(1) Vessel enhancement with morphological top-hat
transformation and Hessian-based multiscale filter-
ing;

(2) Get the initial contour 𝐶
0
using Otsu’s thresholding

method on the enhanced image ]
𝐼
;

(3) Initialize 𝜙0 based on 𝐶
0
;

(4) Compute 𝑐
1
(𝜙) and 𝑐

2
(𝜙);

(5) Solve (17);
(6) Reinitialize 𝜙𝑛+1 as 𝜙𝑛+1 = 0 by using (19);
(7) Check whether the solution is stationary or the

stopping criteria is met. If not, go back to Step 4;
Otherwise stop evolution.

4. Experiments and Discussions

4.1. Experiments on Synthetic Images. To evaluate the per-
formance of the proposed method, we test it on synthetic
images containing different vessel-like structures with dif-
ferent diameters and different directions. For quantification,
we use the segmentation rate to measure the effectiveness of
our method. The segmentation rate is used to estimate the
completeness of a segmented vessel, and it is defined as the
ratio of the number of segmented pixels to the number of gold
standard pixels whose coordinates are known in synthetic
images.

4.1.1. Evaluation of Segmentation Accuracy and Robustness.
Figure 1 shows three types of synthetic images of size 512 ×
512. In Figure 1(a), the diameters of the simulated vascular
structures range from 1 pixel to 15 pixels. In Figure 1(b),
directions of the vascular structures are simulated by counter-
clockwise rotation with an interval of 30 degrees starting
from the vertical direction. In Figure 1(c), the intensities
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(a) (b) (c)

Figure 1: Synthetic images. (a) Image with different diameters. (b) Image with different directions. (c) Image with different intensities.

(a) (b) (c) (d) (e)

Figure 2: The vascular tree model with different complexities. (a) A branch. (b) Two branches. (c) Four branches. (d) Six branches. (e) Eight
branches.

of the vessels from left to right are set between 32 to 256
with an increment of 32, while the intensity of background
is 0. Meanwhile, five vascular tree models with different
complexities are presented in Figure 2.

Figure 3 shows the segmentation rate with different vessel
diameters, vessel directions, vessel intensities, and vessel
complexities. It can be seen that the proposed method can
provide accurate segmentation results, and the segmentation
rates for all the synthetic images are over 95%. Moreover,
the segmentation accuracy is insensitive to vessel diameter
or vessel direction and all the cases could be segmented
completely. Unfortunately, it has a limit on vessel intensity.
If a vessel structure is not obvious compared with the
background in the image, the proposed method cannot
obtain the expected outcome as shown in Figure 3(c). When
the intensity of the vessel structures is lower than 64 with the
background intensity equal to 0, the segmentation rate is close
to 0. But this kind of vessel structure is rare in clinical practice.
Simultaneously, with the increasing complexity of vessel
structure, the segmentation rate presents a slight downward
tendency as shown in Figure 3(d). Therefore, the proposed
method is effective for the extraction in images with vessel-
like structures.

To investigate the sensitivity of the proposed method to
noise, we used the synthetic image of size 256 × 256 with
a vessel-like structure of varying width and orientation in
Figure 4(a), and added zeromean Gaussian noise of standard
deviations ranging from 5 to 30 to this image. Figure 4(b)

shows the segmentation rate for Gaussian noise of the various
standard deviations. It is easy to see from Figure 4(b) that the
segmentation rate decreases slightly but remains above 97%
with increasing noise levels in the image. Figure 5 shows the
segmentation results under different noise levels. Obviously,
the proposed method is robust to noise in that it can extract
the tree structure effectively at the various noise levels.

4.1.2. Comparison of Vessel Segmentation Methods. In this
section, we compared the segmentation results of the pro-
posed method with those of other two vessel segmenta-
tion techniques, Hessian-based multiscale filtering [5] and
Hessian-based multiscale filtering combined with Chan-Vese
model [24], on the synthetic image. The synthetic image
of size 512 × 512 used in this part is given in Figure 6(a).
Figure 6(b) shows that the Hessian-based multiscale filtering
can locate vessel structures accurately but with inaccurate
scales, which means that it is suitable to generate the initial
contour. Hessian-based multiscale filtering combined with
Chan-Vese model can converge to the boundary of the
vascular structure exactly, but it will leak into neighboring
nonvascular structures where the contrast is low as shown in
Figure 6(c). The result of the proposed method presented in
Figure 6(d) is of high accuracy and completely unaffected by
nonvascular structures because of the introduction of a new
class of external constrained term𝐹

𝜎
to penalize the evolution

distance of the contour. The segmentation rate of Hessian-
based multiscale filtering, Hessian-based multiscale filtering
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Figure 3: The segmentation rate with different (a) vessel diameters, and (b) vessel directions, (c) vessel intensities, (d) vessel complexities.
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Figure 4: Analysis of noise sensitivity. (a) Original image. (b) Influence of noise levels.
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(a) (b) (c) (d) (e)

Figure 5: The segmentation results at different noise levels. (a) Original image. Standard deviation is 5, 10, 20, and 30 from (b) to (e).

(a) (b) (c) (d)

Figure 6:The segmentation results of the above three methods. (a) Original image. (b) Hessian-based multiscale filtering. (c) Hessian-based
multiscale filtering combined with Chan-Vese model. (d) The proposed method.

(a) (b) (c) (d)

Figure 7: Segmentation results of the above three methods. (a) A 2D slice view. (b) Hessian-based multiscale filtering. (c) Hessian-based
multiscale filtering combined with Chan-Vese model. (d) The proposed method.

(a) (b) (c) (d)

Figure 8: Enlarged view of the marked green box in Figure 7. (a) A 2D slice view. (b) Hessian-based multiscale filtering. (c) Hessian-based
multiscale filtering combined with Chan-Vese model. (d) The proposed method.
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combined with Chan-Vese model, and the proposed method
are 88.71%, 92.32%, and 98.14%, respectively.

4.2. Experiments on MRA Images. In this section, we applied
the proposed method on 2D slices extracted from a 3D
abdomen MRA image. The image size is 512 × 512 × 60
voxels with pixel spacing 0.51mm × 0.51mm × 1mm which
is acquired from syngo MR B15 by routine clinical scan.
The 2D slices were generated by slicing through the 3D
image in the direction of the coronal plane with 3D Quantify
(a multiplanar visualization software) [27]. For the clinical
images, there is no “ground truth” to prove presence or
absence of the vessel structures or their sizes or positions.
Thus, we evaluated segmentation results of the proposed
method and the other two methods by visual inspection.

Figure 7(a) shows one of the 2D slices used in our
experiments. We compared our proposed method with the
Hessian-based multiscale filtering and Hessian-based multi-
scale filtering combined with Chan-Vese model. The results
are presented in Figures 7(b), 7(c), and 7(d). Figure 8 shows a
partially enlarged view of the marked green box in Figure 7.
Obviously,Hessian-basedmultiscale filtering cannot estimate
the scales of the vessel structures exactly inferred from
the segmentation of the main renal artery on the left of
Figure 8(b). Similar to Figure 6(c), the result of Hessian-
based multiscale filtering combined with Chan-Vese model
leaks into adjacent nonvascular structures due to the low
contrast as shown on the right side of Figure 8(c). Figure 8(d)
demonstrates that the proposed method successfully and
accurately extracts most of the vascular structures.

5. Conclusions

This paper presented an automatic technique for extracting
vascular tree in medical images. Distinctively, the proposed
method introduces an external constrained term 𝐹

𝜎
based on

𝜎 used inHessianmatrix with Gaussian function convolution
into the level set to avoid the segmentation leakage of
nonvascular structures. In the evaluation based on synthetic
images, the segmentation rate of the proposed method is
over 97% and it is robust to noise. The results for clinical
datasets demonstrate that the proposed method is suitable
and effective for the extraction of vascular tree in medical
images. The main drawback of our method is that it cannot
obtain expected results when the image contrast is very
low. Future work will concentrate mainly on optimizing the
performance on low contrast images and accuracy evaluation
of our method for clinical datasets.
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