
4/14/16	

1	

Research based on Clone
Detection

Overview

•  An empirical study of code clone
genealogies [1]

•  A case study of cross-system porting in
forked projects [2]

2	

4/14/16	

2	

An empirical study of code
clone genealogies

Based on Miryung Kim’s lecture [4]

Problem Statement

•  People believe that code clones indicate
bad smells of poor design
– programmers may introduce bugs when

maintaining code clones inconsistently
•  Is that true?

4	

4/14/16	

3	

Findings in Previous Study[3]

•  Even skilled programmers create and
manage code clones with clear intent
– Programmers cannot refactor clones

because of programming language
limitations

– Programmers keep and maintain clones until
they realize how to abstract the common
part

– Programmers often apply similar changes to
clones

5	

Research Questions

•  How do clones evolve over time?
– Consistently changed?
– Long-lived (or short-lived)?
– Easily refactorable?

6	

4/14/16	

4	

Model of Clone Evolution

7	

Clone Group Evolution Pattern

•  Same: NG = OG
•  Add: at least a new clone is added to NG
•  Substract: at least an old clone is removed

from OG
•  Consistent Change: all clones are

consistently changed
•  Inconsistent Change: clones are changed

inconsistently
•  Shift: at least one clone in NG partially

overlap with a clone OG
8	

4/14/16	

5	

•  There can also be some other evolution
pattern, e.g., copy-paste-modify to
generate a whole new clone group

9	

Clone genealogy

•  A set of clone groups connected by
cloning relationship over time

10	

4/14/16	

6	

Clone Genealogy Extractor (CGE)

•  Given multiple versions of a program
– Find clone groups in each version using

CCFinder
– Find cloning relationship between clone

groups across versions based on text
similarity

– Identify a clone genealogy for each set of
connected clone groups

– Identify clone evolution behaviors in each
genealogy

11	

Experiment Settings

•  Two Java subject programs

12	

Program	 carol	 dnsjava	
LOC	 7878	 -‐	 23731	 5756	 -‐	 21188	

dura?on	 2	 yrs.	 2	 mos.	 5	 yrs.	 8	 mos.	
versions	 37	 224	

4/14/16	

7	

Detected Clone Genealogies

13	

RQ1: How often do programmers
change clones consistently?

•  Approach
– A genealogy has a “consistent change”

pattern iff all lineages include at least one
consistent change pattern

•  Result
– 38% and 36% of genealogies include a

consistent change pattern

14	

4/14/16	

8	

RQ2: What is the life time of clones?

•  Separate live genealogies from dead
genealogies
– Dead genealogies: those which do not

contain clones in the final version
•  Calculate the life span of each dead

genealogies

15	

Result

16	

•  Among 109 clone genealogies of carol,
53 are dead

•  Among 125 clone genealogies of dnsjava,
107 are dead

•  Among the dead genealogies:

4/14/16	

9	

How do lineages disappear?

17	

Contrary to conventional wisdom, immediate refactoring
may be unnecessary or counterproductive in some cases.

RQ3: Are clones easily refactorable?

•  A clone group is locally unfactorable if
– programmers cannot use standard

refactoring techniques, or
– programmer must deal with cascading non-

local changes, or
– programmers cannot remove duplication due

to programming language limitations.

18	

4/14/16	

10	

Example

19	

64% and 49% of genealogies
are locally unrefactorable

Summary

•  Immediate and aggressive refactoring
may be unnecessary for volatile and
diverging clones

•  Refactoring may not help many long-
lived and consistently changing clones

•  Q: Do you have other observations?

20	

4/14/16	

11	

A Case Study of Cross-System
Porting in Forked Projects [2]

Based on Baishakhi Ray’s slides

Problem Statement

•  Software forking is important
– Developers create a variant product by

copying and modifying an existing product
– E.g., FreeBSD, OpenBSD, and NetBSD

evolve from the same code base
•  What is the characteristic of code

changes ported between peer projects?

22	

4/14/16	

12	

Research Questions

•  How often do developers port edits
between projects?

•  Are ported changes more defect-prone
than others?

•  How many developers are involved in patch
porting?

•  How long does it take for a patch to
propagate across projects?

•  Where is the porting effort focused on?

23	

Methodology

•  Repertoire: Detect ported edits by
finding code clones in diff files using
CCFinder

•  Accuracy measurement
– Construct a ground truth set of known

ported edits, and use it to evaluate
precision and recall of Repertoire

– 94% precision and 84% recall

24	

4/14/16	

13	

RQ1: How often do developers
port edits?

25	

Result

26	

4/14/16	

14	

RQ2: Are ported edits more error-
prone than others?

27	

•  CLOC: Cumulative number of changed lines
•  The correlation between bug fixes and

ported edits is weaker than that between
bug fixes and non-ported edits

•  Q: Any improvement for the experiment?

RQ3: How many developers are involved
in porting patches from other projects?

28	

4/14/16	

15	

RQ4: How long does it take for a patch
to propagate to different projects?

29	

RQ5: Where is the porting effort
focused on?

30	

4/14/16	

16	

Top 4 directories with the largest
amount of ported changes

31	

Implications

•  Call for automated approaches for cross-
system porting (implied from RQ1)

•  Call for tools to notify developers of
potential collateral evolution and cross-
system change impact analysis (implied
from RQ5)

•  Q: Any research questions you want to ask
and make implications based on that?

32	

4/14/16	

17	

Reference

[1] Miryung Kim, Vibha Sazawal, David Notkin, and
Gail C. Murphy, “An empirical study of Code Clone
Genealogies”, ESEC-FSE ’05
[2] Baishakhi Ray and Miryung Kim, “A Case Study
of Cross-System Porting in Forked Projects”, FSE
’12
[3] Miryung Kim, Lawrence Bergman, Tessa Lau,
David Notkin, ”An Ethnographic Study of Copy
and Paste Programming Practices in OOPL”
[4] Miryung Kim, “Empirical Studies of Clone
Evolution Clone Genealogies”, lecture in Fall 2010

33	

