Research Design for Causal Inference

High-Level Overview w. Application to Diabetes

Bernie Black

Nicholas Chabraja Professor Northwestern University, Pritzker School of Law and Kellogg School of Management bblack@northwestern.edu

> (ADA Research Symposium, fall 2018) [no conflicts]

Causal Inference Workshop(s)

- For (much) more: I co-organize a summer workshop at Northwestern on Research Design for Causal Inference
 - <u>https://northwestern.app.box.com/files/0/f/3437924</u>
 <u>886/Causal Inference Workshops</u>
 - Main workshop w. world-class speakers
 - Advanced workshop: selected topics, vary by year
- A bit about me: Author page on SSRN:
 - http://ssrn.com/author=16042
- Northwestern faculty page:
 - <u>http://www.law.northwestern.edu/faculty/profiles/Be</u> <u>rnardBlack/</u>

Hierarchy of Research Designs

- Randomized experiments (RE)
 - Simple, block, and pair RE
 - Intent-to-treat designs: One- and two-sided noncompliance
- "Natural" experiment (shock-based) designs
 - Regression discontinuity (RD)
 - Sharp and fuzzy RD
 - Difference-in-differences (DiD)
 - Simple DiD, distributed lag, and leads-and-lags designs
 - Triple difference designs
 - "DiD-continuous" (dose-response) designs
 - combined DiD/RD designs [strengths of both]
 - instrumental variables [will not discuss]
- Pure observational studies [rely on "balancing"]
 - Trimming to common support
 - Matching [many ways]
- Combined DiD/balancing

Others talked about DiD

- Including DiD/balancing
 - Often better than DiD alone
- I will discuss RD (often next best to RCT)
- Confusing terminology: ITS (interrupted time series)
 - with a control group is DiD
 - For same person (unit) with sharp treatment response to time, and sharp unit response to treatment, can be RD
 - Without either of these, is often a weak design

Goal for credible causal inference

- If you don't have an RCT, come as close as you can
- Make your assumptions as weak as you can
- Credible causal inference:
 - comes from clean design; not fancy analysis
- How to look for good research designs
 - And spot them when you bump into them

Toward Stronger Research Design

5

- Goal is "credible causal inference"
 - No research design is perfect
 - One hopes that a project moves toward that goal
- Often called "identification"
 loose term, multiple meanings: I will avoid it
- Some projects don't permit causal claims
 - Pure prediction

Regression is (often) evil

- Edward Leamer (1983), Let's Take the Con out of Econometrics, 73 American Economic Review 31-43:
 - "Hardly anyone takes data analyses seriously. Or perhaps more accurately, hardly anyone takes anyone else's data analyses seriously."
- Paul Rosenbaum (2017), Observation and Experiment 46:
 - Commonly, statistical hypotheses refer to parameters or aspects of a convenient statistical model, and then a separate argument, not always a particularly clear or compelling argument, is invoked to connect this convenient but rather technical model to the scientific problem at hand [causal inference, say]. ... [T]hese connectivity arguments are often most compelling to people who do not understand them, and least compelling to people who do.
- IMHO: these skeptical views remain still true today, for "classic" studies, using "regression"

Notation

- "Dependent" or "outcome" variable Y
- Main "Independent" or "predictive" variable X₁
- (Maybe) some "control" variables or "covariates" X₋₁= (X₂, X₃, ... X_K)
- boldface = vector or matrix
- Sample size N, observations indexed by i
- Often "panel data" over time, indexed by t
- Notation convention:
 - CAPITAL LETTERS for random variables (X)
 - Lowercase for *specific realizations* in the sample (x)
 - Exception: bold, capital X for a matrix in the sample
 - But I'll sometimes forget my own convention

Outcome	Predictor Variable of interest	First Covariate	Last Covariate
<i>y</i> ₁	<i>x</i> ₁₁	<i>x</i> ₁₂	 x_{1K}
<i>y</i> ₂	<i>x</i> ₂₁	<i>x</i> ₂₂	 x_{2K}
<i>y</i> ₃	<i>x</i> ₃₁	<i>x</i> ₃₂	 x_{3K}
	•••	• • •	 •••
\mathcal{Y}_N	x_{N1}	x_{N2}	 x_{NK}

 x_{ik} is the *i*th observation of the *k*th covariate Want to know: Will ΔX_1 cause ΔY ?

The OLS regression model is

- Model: $y_i = \alpha + \beta x_{i1} + \sum_{k=2}^{K} (x_{ik} \gamma_k) + \varepsilon_i$
- In matrix notation:

$$\mathbf{y} = \alpha \mathbf{1}_N + \beta \mathbf{x}_1 + \gamma \mathbf{X}_{-1} + \boldsymbol{\varepsilon}$$

- $-\alpha$, β are scalars
- **y**, ε are N × 1 "column" vectors
- $\mathbf{1}_N$ is an N × 1 column vector of "1's
- x_1 is N × 1 column vector for principal variable of interest
- X_{-1} is a N × (k 1) matrix of "covariates"
- γ is a 1 × (k-1) row vector of model parameters
- \mathbf{y}_{i} , \mathbf{x}_{ik} are elements of the N × (k + 1) "design matrix"
- Note: different books have different variations of this equation
 - they (should be) equivalent and only look different

OLS Estimation

• Estimation:

 $y_i = \hat{\alpha} + \hat{\beta} x_{i1} + \hat{\gamma} x_{i,-1} + e_i$

- Two changes:
 - $-\beta$ is an **estimand** (something we want to estimate)
 - OLS provides an estimator (one way to estimating the model "parameters", which are the estimands)
 - OLS produces an estimate of each parameter
 - Estimated parameters get "hats"
 - OLS replaces the unobserved error ϵ with residual e

Causal inference replaces regression with . . .

- What is often called the "Rubin causal model"
- Major simplification:
 - Replace X_1 with **binary** W (treatment "dummy")
 - Some units are "treated" ($w_i = 1$)
 - Others are "control" ($w_i \ = 0$)
- Multi-valued w = straightforward extension, clunky
 - Continuous = Important in medical research (dose/response), but at research frontier

Major conceptual move: Potential outcomes

- Define: Every unit *i* has two "potential outcomes"
 - $y_i(w = 1) :=$ outcome if treated [shorthand y_{i1}]
 - $y_i(w = 0) :=$ outcome if control [shorthand y_{i0}]
- One of these is observed; one is not
 - Missing outcome is often called "counterfactual"
 - I prefer to think of it as "real", just not observed
- Compare: $y_i^{obs} := w_i y_i(1) + (1 w_i) y_i(0)$
- Regression tempts you to treat y_i^{obs} as a real quantity
 - It's not. It's a mixture of y_{i0} and y_{i1} you happen to observe

Causal Inference as Missing Data Problem

- Treatment effect: $\tau_i = (y_{1i} y_{0i})$
- Rubin's central insight: Causal inference is a missing data problem:
 - Neyman (1923) developed potential outcomes for RCTs
 - Rubin applied this idea to observational studies
 - Must credibly estimate the missing potential outcomes
 - "Fundamental problem of causal inference" [Holland, 1986]

Second major complication, and conceptual move

- Heterogeneous treatment effects
 - Treatment effect: $\tau_i = (y_{1i} y_{0i})$ depends on characteristics of unit *i*
 - $-\tau_i$ depends on (varies with) both \mathbf{x}_i and \mathbf{u}_i

Regression uses Yobs

• Regression is really:

 $Y^{obs} = \alpha + \beta W + \gamma X_{-1} + \epsilon$

- Mixture in; mess out, except special cases
- Regression also assumes homogeneous treatment effects (same β for everyone)
- With two potential outcomes, and missing covariates **u**, the true design matrix is:

The (even more missing) design matrix is								
Outcome if treated	Outcome if control	Treatment effect	Treatment dummy	First covariate		Last Covariate	Unobserved covariates	
y_{11}	y_{10}	τ ₁	<i>w</i> ₁	<i>x</i> ₁₂		x_{1K}	\mathbf{u}_{K}	
y_{21}	y_{20}	τ2	<i>w</i> ₂	<i>x</i> ₂₂		x_{1K}	\mathbf{u}_{1K}	
<i>y</i> ₃₁	<i>y</i> ₃₀	τ ₃	<i>w</i> ₃	<i>x</i> ₃₂		<i>х</i> _{3к}	u _{3K}	
<i>y</i> ₄₁	${\mathcal Y}_{40}$	$ au_4$	<i>w</i> ₄	<i>x</i> ₄₂		$x_{4\mathrm{K}}$	U _{4K}	
y_{N1}	y_{N0}	τ_{N0}	w _N	x_{N2}		x_{NK}	u _{NK}	

red = not observed

Want to know: Is $y_{i1} \neq y_{i0}$? Equivalently, is $\tau_i \neq 0$

This is a hard problem

- Regression, applied to the partial data we observe, won't get us there
 - Except in special cases
- Often not "math hard"
 Instead "design hard"
- We need research designs that let us:
 - credibly estimate the missing potential outcomes
 - Allow for heterogeneous treatment effects
 - not worry about the omitted covariates
- That's what causal inference is about!

Core assumption 1: manipulation

- w_i is manipulable
- Counterexample: Effect of gender on income
 - Observe y_{i1} = income if male
 - Want to impute y_{i0} = income if female
 - All else about you is the same (ceteris paribus)
- Not achievable
 - "no causation without manipulation" [Holland, 1986]
 - If you were dictator, with infinite resources [and no morals], could you design an experiment to answer the question you have in mind? [Dorn, 1953]

Core Assumption 2 (& 3): SUTVA

- "Stable Unit Treatment Value Assumption"
- Really two separate assumptions:
 - 1. Only one kind of treatment (w = 0 or 1)
 - Can be relaxed (multivalued and continuous treatments)
 - 2. Responses of different units are independent:

$$\tau_i \stackrel{\perp}{=} (\tau_j, w_j) \forall j \neq i$$

Can call this "**SUTVA independence**" Example: Chronic disease, but not infectious disease

Major concept: "Assignment mechanism"

- Process (perhaps unknown) for determining which units are treated
- For example, is assignment *random*?

 $\mathbf{w} \perp (\mathbf{y}_0, \mathbf{y}_1, \mathbf{x}_{-1}, \mathbf{u})$

- If yes, then treated and controls are similar on:
 - Observables x-1 and unobservables u
 - No omitted variable bias!
 - Difference in means recovers **average** treatment effect: ATE = $E[y_1-y_0] = E[y_1|w=1] - E[y_0|w=0]$

$$-\widehat{ATE} = \widehat{\tau}_{naive} = \overline{y_1^{obs}} - \overline{y_0^{obs}}$$

• So does regression: Stata: regress y w, robust

Regression Discontinuity (RD)

- Not really about regression, but can't change the name
 - Units above some sharp (arbitrary) threshold are treated
 - Units below the threshold are controls
- Treated units above but close to threshold = very similar to control units below but close
 - On observables **and** unobservables
 - Except "running variable" for the threshold
- (Almost) "as good as random" assignment to treatment

Some of many medical examples

- Metformin prescribed if HbA1c > 6.5
- Statins prescribed if LDL > [well, its getting complicated]
- Blood pressure meds recommended if systolic pressure > 140 mmHg
- Bariatric surgery recommended if BMI > 40

RD terminology

- "Sharp" RD
 - All units above threshold are treated
 - No units are treated below threshold
- Real world: "fuzzy" RD:
 - More (but not all) units treated above threshold
 - Fewer (but not zero) treated below threshold
- I will discuss only sharp RD (lack of time)
 - Can be seen as "intent to treat"
 - For fuzzy RD, use IV to recover causal estimate for "compliers" instrumental variables
 - Treated only if above threshold

Sharp RD formalism

- "Running variable" r
- [Units treated (w = 1) if above threshold (r > r₀)
- Units are control (w = 0) if below threshold (r < r₀)
- Within "bandwidth" around r₀: r ⊂ [r₀-π, r₀+ π]
 units on both sides are similar → w ^(close to) ⊥ (y₀, y₁)
- Use RCT methods within bandwidth around r₀
 But control for non-random assignment of r

RD can recover RCT estimates

- Across a variety of fields, dual-design studies find similar RD and RCT estimates
 - Buddelmeyer and Hielke (2004)
 - Black, Galdo and Smith (2007)
 - Cook and Wong, (2008)
 - Cook, Shadish and Wong (2008)
 - Green et al., (2009)
 - Berk et al., (2010)
 - Shadish et al. (2011)
 - Gleason, Resch, and Berk (2012)
 - Moss, Yeaton and Lloyd (2014)
- Not true for DiD or IV

Requirements for running variable

- Ideal: (nearly) continuous around r₀
 OK if binned, if bin size < plausible π
- Ideal: $r \perp$ other variables
 - small correlation is ok: small change in r → very small predicted change in x, u
- Testable for **x**: "covariate balance"
 - Similar means on both sides of threshold

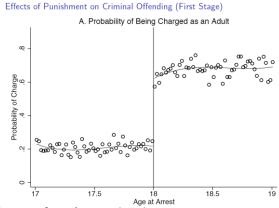
"Almost as good as random"

- Running variable needs special attention
 - For all else, if threshold is truly arbitrary
 - And we're close enough to the threshold
 - Covariates x are similar near threshold:
 - $E[\mathbf{x} | r_0 \pi < r < r_0] \approx E[\mathbf{x} | r_0 < r < r_0 + \pi]$
 - This is also true for unobservables **u**!
- So, if we can control for running variable:
 - We are close to a randomized experiment
 - Can confirm if close enough for observables
 - But must stay near threshold

Some discontinuity examples

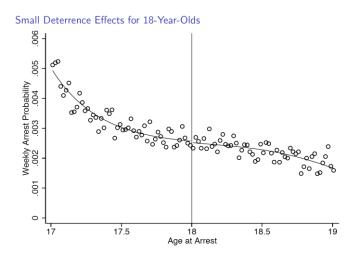
- Graphical: Discontinuity in prob. of treatment
 And in outcome
- [Go to McCrary slides]
 - For each, show discontinuity first
 - Ask if expect an effect
 - Then show effect [or not]
- Discuss local nature of estimate:
 - units near the discontinuity
 - "compliers": units affected by the discontinuity

Lee & McCrary (charged as adult)

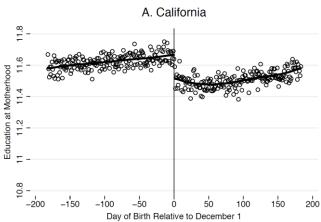


Practical advice: If can't see the discontinuity: It probably isn't there.

Second stage

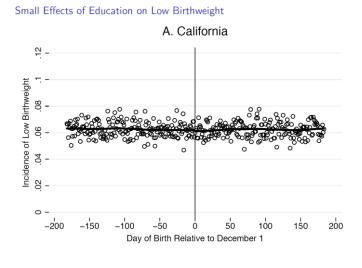


Mother birthdate and education



Effects of Education on Infant Health: California (First Stage)

Mother birthdate and low-weight birth

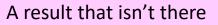


Two (apparently) Cleaner Health Care Examples

- Newborn birthweight ("very low" < 1,500 grams)
 - Almond, Doyle, Kowalski and Williams (QJE 2010)
 - More intense treatment
 - 18% lower 1-year mortality just below threshold!
 - Apparently clean . . .
 - But Barecca, Guldi, Lindo and Waddell (2011) (donut holes)
- Mother length of stay (two midnights)
 - Almond and Doyle (2011)
 - No benefit of longer stay [readmissions, mortality]

RD and value of graphing

- If you can't easily see the treatment discontinuity
 - Hard to find results
 - Hard for them to be convincing, if you find them
- If you can't see the outcome discontinuity . . .
 - It probably isn't there



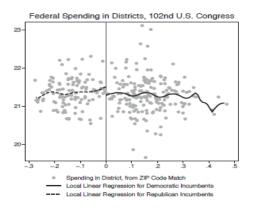


Figure 2: RD example

Even if the author thinks it is. Source: Austin Nichols (2007), Causal Inference with Observational Data, 7 Stata Journal 507-541 2007)

Manipulation risk

- Can units manipulate which side of the threshold they are on?
- Careful check for covariate balance
 - below vs. above threshold
 - for fuzzy RD, actual treated vs. actual controls
 - Distribution of (x|r) smooth for broader bandwidths
- If units can choose whether to be treated:
 - Similar densities below and above threshold
 - Density continuous and smooth at r₀ [McCrary (2008)]

Placebo tests

- Placebo tests:
 - Placebo discontinuity at different thresholds
 - pick lots of them: Compute jumps at threshold for each.
 - Randomization inference can be useful
 Is observed jump in upper tail of distribution of jumps
 - Placebo outcomes: other covariates
 - If threshold introduced at time T
 - Should be no effect before that

Control for running variable: options

- None (if bandwidth is narrow enough)
 - With unit fixed effects, covariates, one time period:

- $y_i = \alpha + \delta_{RD}^* w_i + x_i \beta + \varepsilon_i$ [With $w_i = 1$ if $r_i > r_0$]

• Linear plus jump at threshold

 $- y_i = \alpha + \gamma^* r_i + \delta_{RD}^* w_i + x_i \beta + \epsilon_i$

Linear (different slopes) plus jump

 $- y_{i} = \alpha + \gamma_{below} * r_{i} + \gamma_{above} * r_{i} * w_{i} + \delta_{RD} * w_{i} + x_{i}\beta + \epsilon_{i}$

- Quadratic (or higher polynomial) in running variable, plus jump
- · Local linear regression on each side of jump
 - How flexible?
 - Is regression line a plausible model of the world?
 - You assume it is, when estimating jump at threshold
- Try various approaches, assess robustness!

I tend to prefer

- Start simple:
 - Linear with a jump, maybe different slopes
 - Quadratic with a jump
 - Maybe higher order polynomial with a jump

Advantage:

- Your model of the world is (continuous plus jump)
 - At least for first derivative
 - Often for second derivative too
 - Can't get a plot like Lieber's
 - Or Card, Dobkin and Maestas for that matter