

Grace Ramamoorthy Student ID: 10278389

11/26/2010

RESEARCH PAPER BASED

ON BIGTABLE

A Distributed Storage System For Structured Data by

Fay Chang, Jeffrey Dean & co.,

Bigtable is a distributed storage system used by Google for storing vast amount

of structured data. This research paper is a study of the Bigtable technology,

the research orientation given by Richard Schantz and Douglas Schmidt in their

paper Middleware for Distributed Systems and the characteristics of ubiquitous

computing identified by Tim Kindberg and Armando Fox in their paper on

System Software for Ubiquitous Computing.

 11/26/2010

 1

Research paper based on Bigtable

A Distributed Storage System For Structured Data by Fay Chang, Jeffrey

Dean & co.,

TECHNOLOGY USED BY BIGTABLE:
Bigtable is a distributed storage system for structured data. Bigtable can handle data

that scales to a very large size, even to petabytes, distributed across thousands of

servers. Many Google projects such as Google Earth, Google Finance, and Orkut with

varied latency requirements and real-time processing use Bigtable to store their data.

These applications have asynchronous processes updating the data simultaneously at a

very high speed. A read/write of about a million operations per second is what is

expected.

Bigtable stores data as a distributed multidimensional sorted map with row, column and

timestamp. It places frequently accessed columns together as column families. Storing

the timestamp allows multiple versions

of the contents to be stored in the same

cell and users can access the most

recent version or base query on

timestamp range. Rows are ordered

lexicographically and groups of

contiguous rows are stored on same

machines as a single tablet for easy

access.

Following Google's philosophy, Bigtable

is an in-house development designed to run on commodity hardware. Bigtable allows

Google to have a very small incremental cost for new services and expanded computing

power. Bigtable is built atop Google File System to store data and log files, cluster

management system for scheduling jobs, MapReduce for simplified large-scale data

processing, and a distributed lock service called Chubby to liaise between the tablets

servers that handle the data and the clients.

Chubby is a highly available file server responsible to ensure that there is only one

active master, to store the bootstrap location of the Bigtable data, to service tablet

servers and to store the schema information.

Bigtable implementation involves one Master server and many tablet servers. The

master assigns data tablets which are contiguous rows of data in a table to tablet

servers, balances the load and collects garbage. The tablet servers service the clients.

The data is stored as tables and each table is split into many tablets based on a range of

rows. Table/ tablets are split automatically when the size of the tablet increases or the

Bigtable stores data as a

distributed multidimensional

sorted map with row, column

and timestamp.

 11/26/2010

 2

load becomes heavy on a tablet. There is no replication of tablets. Each tablet is

serviced by only one tablet server. Access to data is in the form of a three level

hierarchy. The first level is an address in the chubby to the root directory; the second

level is the address of the tablet in the metadata table. The third level is the actual

address of the user tablet that contains the data. The traffic on the root directory is

regulated by caching the information of the metadata tablet on the client machines and

also dedicating one tablet server to service just that metadata tablet. In case of this

tablet server going down, the cached data on the clients are used until the metadata

tablet is reassigned. If the need arises, it is also possible to replicate this metadata

information. The chubby directory keeps track of the tablets assigned to various tablet

servers. When the user needs any information, the three-level hierarchical access takes

the user straight to the tablet without worrying about the actual physical location. This

completely abstracts the path access from the user.

BIGTABLE AND THE SCHANTZ AND SCHMIDT RESEARCH

ORIENTATION:

Looking at the performance of Bigtable over the past few years in search intensive

applications with huge data to crunch, we can realize that Bigtable has to some degree

overcome the challenges posed by Schantz and Schmidt in their paper on Middleware

for Distributed Systems. In the section on challenges and opportunities, they point out

that “the desirable properties of the system of systems should include predictability,

controllability and adaptability with respect to features such as time, quantity of

information, accuracy, confidence, and synchronization”.

Bigtable with the help of the secure Chubby locking system has assured users of

reliability of service with respect to quantity of information. By restricting the servicing of

clients to just the tablet server, Bigtable is

able to service clients even in the event of

the sudden death of the Master. When the

Master comes up again, the Master is able

to restore the situation by looking at the

directory in the Chubby for tablet server

assignments. This ensures that the clients

are continuously serviced without any loss

of time or resource. Bigtable also provides

the users an option to choose their data

access remotely or in-memory – This

ensures timely response. Caching tablet

location information in the client machine is another facility that Bigtable offers to

improve performance with respect to time.

In their paper on Middleware, in the Research Orientation section, Schantz and Schmidt

propose a concept: “Multiple system behaviour must be made available based on what

Bigtable with the help of the

secure Chubby locking system

has assured users of reliability of

service with respect to quantity

of information.

 11/26/2010

 3

is best under various conditions”. They propose this to ensure that the middleware

abstraction is well defined. To achieve this, they suggest that information must be

gathered regarding user and resource requirements and system conditions. In the

Bigtable setup, by allowing users to

decide their access preference a balance

is reached in performance. Data is then

accessed either remotely or in-memory.

This will meet the user need optimally.

Secondly, the distributed data resides in

tablet servers. The master keeps track of

the lock position of each tablet server

and the Chubby. As and when a tablet

server loses connection or removed from

the cluster to optimize machine use, the

master reallocates the data tablets of

that tablet server on other available

tablet servers. When users need any

data, they will not have to worry about

the change in the namespace or the

address of the location of the servers, the chubby works through the nitty gritty and the

three-level hierarchy and the user is able to get the data from the distributed system.

The cluster management system, chubby and the master handle the availability of

machines, reallocation of the data, maintaining the current allocation of the data tablets

and the list of the active serving tablet servers between them. In case of the tablet server

or the master’s sudden death, the user is not affected. I feel the middleware abstraction

in Bigtable has reached the “control interoperability” that Schmidt and Schantz speak

about.

The I/O operations in Bigtable are performance tuned. All writes are queued and

written as group jobs on memtables in the memory. These are flushed from time to time

when the memtable size reaches a threshold limit and memtables are converted into

SSTables which are real files in the GFS. All reads will merge SSTable data with

memtable data to get the required data. But these are not visible to the user. All mutation

information is stored in log tables.

By addressing network issues, I/O operations, data replication and performance tuning

Bigtable optimizes each area to give an overall optimized performance, Bigtable

addresses QoS requirements that Schmidt and Schantz emphasis. According to them,

“Decisions for managing QoS are made at design time, at configuration/deployment

time, and /or at runtime.” They talk about “end-to-end QoS requirement and aggregate

requirements”. Since Bigtable development was not piece-meal but was proprietarily

done, an end-to-end optimization is achieved.

The cluster management

system, chubby and the master

handle the availability of

machines, reallocation of the

data, maintaining the current

allocation of the data tablets

and the list of the active serving

tablet servers between them.

 11/26/2010

 4

BIGTABLE AND THE KEY CHARACTERISTICS DEFINED BY

KINDBERG AND FOX:

Kindberg and Fox in their paper on System Software and Ubiquitous Computing, raise

two issues: physical integration and spontaneous interoperation. According to them

ubicomp must deliver functionality in our everyday world. One of the challenges they

point out is for “the software to adapt to changing environments, tolerance to routine

failures or failure like conditions and security”. With Bigtable applications such as Google

Maps, Google Earth, and Orkut adapting to changing environment and bandwidth is the

key as users could potentially use the same app on a laptop or a mobile phone. Bigtable

scales well. As regard to security in a changing environment – all reads and writes

are verified in the Chubby for access rights. As regards to failures – Chubby failure is a

major cause of concern as that’s the main arm of the distributed app, but testing have

proved that failure due to chubby crash is

less than 0.005%.

Bigtable has the potential for spontaneous

interoperation as it allows storage and

access of information. It works well with

other products such as MapReduce and

employs the available features in those

components without repeating them again.

For example when Bigtable works with

GFS, it uses the replication facility of GFS

and in Google Earth the compression is

disabled as the images are already compressed.

Kindberg and Fox while explaining spontaneous interoperation talk about bootstrapping,

service discovery and interaction. For Bigtable to achieve this level of interoperation is

not far-fetched. The only address a client will require is of the root directory. From then

on Bigtable has a good three-level hierarchy for searching data. While explaining

interaction Kindberg and Fox talk about “priori knowledge of the methods in an arriving

service”. The interactions according to them can be “data-oriented”. They say “Data-

oriented interaction is a promising model that has shown its value for spontaneous

interaction inside the boundaries of individual environments.” With its existing APIs and

excellent infrastructure, Bigtable is an ideal example for such data-oriented interaction.

As Dan Farber in his news article puts it, “Bigtable as a web service will provide an

indexed data; APIs for storage and access with a potential to becoming a network

service for the planet.”

 As of now each service running Bigtable has its own cluster running Bigtable. There is a

move to run a Google-wide Bigtable system service. Bigtable also has adapted the

content to heterogeneous device types as users can access the data from a Bigtable

app using laptop, mobile or any other device.

Bigtable as a web service will

provide an indexed data; APIs

for storage and access with a

potential to becoming a network

service for the planet.

 11/26/2010

 5

Another concern Kindberg and Fox express is about robustness in a ubiquitous system.

“In spontaneous interoperation, they mention about associations that are gained and lost

unpredictably when devices enter or leave an environment”. In Bigtable we provide data-

oriented interaction. As far as losing service suddenly – due to unavailability of tablet

server or a tablet server taken out of the environment- this scenario is handled well in

the Bigtable infrastructure. The Master server will track down any unavailable servers

and reallocate the tablets to other tablet servers. The scenario of the sudden death of a

tablet server without deregistering and causing inconsistencies is again handled by the

Master server tracking each tablet server and balancing the load. There is a very small

chance of the service being unavailable or lost or causing inconsistencies. Kindberg and

Fox talk about “group communication to rediscover lost resources”. With Bigtable, the

Master server detects the status of each tablet server by checking the directory in the

Chubby file server as well as by asking the status from the tablet servers. Chubby

provides an efficient mechanism to check the status without incurring network traffic.

Next, Kindberg and Fox talk about “security and trust” in a ubiquitous environment.

Chubby is responsible for verifying the authorization of a user performing a read or a

write. As we deal with mutation of data, Chubby maintains a list of authorized writers and

every write request is validated against this list. Most of the time the list is available in

the Chubby client cache due to its frequent access.

 With respect to Kindberg and Fox’s comment on physical integration, the applications

listed in the paper do not imply Bigtable’s ability to integrate in every day physical

environment. However, given Bigtable’s potential and a more widespread usage, this

could be a possibility soon. For example a smart presentation room where the projector

automatically projects all of the previous works of a presenter based on the information

collected from a Bigtable cell on the presenter or a doctor’s consultation smart pad

showing the available treatments for a specific medical condition based on the

information collected from a Bigtable cell on the medical condition of a patient are not

far-fetched.

In conclusion, most research orientation directions given by Schantz and Schmidt are

already incorporated in some way in Bigtable infrastructure. The key characteristics

identified by Kindberg and Fox for ubiquitous computing are partly attained by Bigtable

design and can be extended to achieve complete physical integration.

References:
 Bigtable: A Distributed Storage System for Structured Data by Fay Chang, Jeffrey

Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,

Tushar Chandra, Andrew Fikes, Robert E. Gruber

 Middleware for Distributed Storage Systems by Richard E. Schantz and Douglas C.

Schmidt

 System Software for ubiquitous Computing by Tim Kindberg and Armando Fox

 http://video.google.com/videoplay?docid=7278544055668715642&q=bigtable#

http://video.google.com/videoplay?docid=7278544055668715642&q=bigtable

 11/26/2010

 6

 http://bigtable.appspot.com/

 http://andrewhitchcock.org/?post=214

 http://glinden.blogspot.com/2006/08/google-bigtable-paper.html

 http://news.cnet.com/8301-13953_3-9912172-80.html

http://bigtable.appspot.com/
http://andrewhitchcock.org/?post=214
http://glinden.blogspot.com/2006/08/google-bigtable-paper.html
http://news.cnet.com/8301-13953_3-9912172-80.html

