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Abstract 

It is a basic task in high-throughput gene expression profiling studies to identify differentially 
expressed genes (DEGs) between two phenotypes. But the weakly differential expression signals 
between two phenotypes are hardly detectable with limited sample sizes. To solve this problem, 
many researchers tried to combine multiple independent datasets using meta-analysis or batch 
effect adjustment algorithms. However, these algorithms may distort true biological differences 
between two phenotypes and introduce unacceptable high false rates, as demonstrated in this study. 
These problems pose critical obstacles for analyzing the transcriptional data in The Cancer Genome 
Atlas where there are many small-scale batches of data. Previously, we developed RankComp to 
detect DEGs for individual disease samples through exploiting the incongruous relative expression 
orderings between two phenotypes and further improved it here to identify DEGs using multiple 
independent datasets. We demonstrated the improved RankComp can directly analyze integrated 
cross-site data to detect DEGs between two phenotypes without the need of batch effect 
adjustments. Its usage was illustrated in detecting weak differential expression signals of breast 
cancer drug-response data using combined datasets from multiple experiments. 
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Introduction 
Detecting differentially expressed genes (DEGs) 

between two phenotypes is a basic task in 
high-throughput biological studies. It is often hard to 
detect DEGs under the circumstances where the genes 
are differentially expressed only slightly between two 
phenotypes. Especially when the sample size is not 
sufficiently large, detecting enough DEGs for 
subsequent studies is difficult. Nevertheless, it can 
often be found multiple datasets with regards to the 
same biological questions from public repositories 
such as Gene Expression Omnibus (GEO) [1] and 
ArrayExpress [2]. A natural solution to raise statistical 
power is to combine these datasets produced by 
different laboratories to effectively detect weak 
biological signals. However, experimental batch 

effects hinder the direct combination of different 
datasets [3]. This problem is also a critical obstacle for 
analyzing transcriptional data in The Cancer Genome 
Atlas (TCGA) where data scatter over many 
small-scale batches. 

To make the full use of information available 
from multiple datasets, meta-analysis utilizes 
statistical techniques to combine results such as 
p-values [4], effect sizes [5, 6] and ranks [7, 8] obtained 
from independent studies, but high false-negative 
rates can arise due to small sample sizes and large 
scale of heterogeneity [9]. More sophisticated 
hierarchical Bayesian methods ‘borrow' information 
across all genes to sharpen inferences about which 
genes are differentially expressed [10-13]. However, 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

893 

the key assumption of hierarchical models tends to 
introduce biases when estimating the variances of 
genes [14]. Other researchers considered normalizing 
data across studies using various batch effect 
adjustment methods such as DWD [15], PAMR [16], 
geometric ratio-based method [17], XPN [18], ComBat 
[19], SVA [20] for microarray data, RUV [21, 22] and 
svaseq [23] for RNA-sequencing data. However, the 
normalization of datasets of different batches may 
distort the true biological signal [24, 25] and even 
induce spurious group differences, especially when 
phenotypic groups are not evenly distributed across 
batches [26, 27]. 

Recently, based on the finding that the relative 
expression orderings (REOs) of gene pairs are 
generally stable in a particular type of normal tissues 
but widely disrupted in diseased tissues, we have 
developed an algorithm named RankComp to detect 
DEGs for individual disease samples by analyzing the 
disrupted REOs [28]. In this article, we extended the 
application of RankComp to identify genes that 
exhibit differential expression patterns between 
distinct groups. The merits that REOs are insensitive 
to experimental batch effects [29] and highly 
consistent across different platforms [30] make 
RankComp feasible for a cross-study comparison of 
gene expression. 

Materials and Methods  
Data and pre-processing 

All data used in this study were collected from 
GEO and TCGA as summarized in Table 1. Each of 
three cancer types included three cancer-normal 
datasets for evaluating the performance of 
RankCompV2. In our examples of application below, 
we gathered five microarray expression datasets of 
estrogen receptor (ER) negative and positive breast 
cancer patients treated with neoadjuvant 
chemotherapy including paclitaxel, 5-fluorouracil, 
cyclophosphamide and doxorubicin. Responses to 
preoperative chemotherapy categorized as a 
pathological complete response (pCR) or residual 
invasive cancer (RD) were known for every patient.  

For each microarray expression dataset, quantile 
normalized expression data were separately acquired 
through processing the raw intensity files (.CEL) with 
the RMA algorithm [31]. With the custom CDF file, 
each probe set ID was mapped to Gene ID, and then 
probe sets that mapped to multiple Gene IDs or did 
not map to any Gene ID were removed. The 
expression measurements of all probe sets 
corresponding to the same Gene ID were averaged to 
obtain a single measurement (on the log2 scale). For 
each RNA-seq dataset, the RPKM (reads per kilobase 
of exon model per million mapped reads) [32] values 

and raw counts were both download from TCGA. 
After removing genes with a value of 0 in more than 
75% of samples, other zero values were filled with the 
smallest count in the expression data. The Ensembl 
gene IDs corresponding to the unique Entrez gene IDs 
of protein coding genes were used. The RPKM values 
were used in RankCompV2 and the raw counts were 
the input of RUV and svaseq method. The measured 
values, such as RPKM [32], FPKM [33] and TPM [34], 
normalizing both the gene transcription length and 
the sequencing depth, can represent the actual gene 
expression abundance and thus can be applied to the 
REOs-based methods. 

The Rank Comp and RankCompV2 algorithm  
RankComp was developed for identifying DEGs 

in individual samples by analyzing the disrupted 
REOs in the disease samples through comparing with 
the highly stable normal REOs landscape [28, 30]. In 
RankCompV2, we identified the stable gene pairs 
with significantly consistent REOs [30] in a control 
group and a disease group, respectively. Here, a 
parameter φ with default value of 5% was used to 
screen stable REOs. Focusing on the overlaps of the 
two lists of stable gene pairs, the concordant and the 
reversal REOs between two groups were identified. 
Then Fisher’s extract test was used to identify 
candidate DEGs which may disrupt the gene 
correlation structure. 

To minimize the potential effect of other genes’ 
expression changes on the Fisher’s exact test for a 
particular gene, an iterative filter process which is 
analogous to the strategy used in our previous study 
[35] was conducted. For each gene after excluding 
those gene pairs involving the differently expressed 
partner genes from the concordant and the reversal 
gene pairs, the Fisher's exact test was performed again 
until the number of DEGs did not change in two 
successive iterations. The flow of the algorithm can be 
found in Figure 1.  

The filter process is the major difference between 
the RankCompV2 and the RankComp algorithm. 
Firstly, RankCompV2 excluded gene pairs composed 
the gene and the potential DEGs in both consistent 
gene pairs and reversal gene pairs. While RankComp 
algorithm only excluded gene pairs composed with 
the gene and those potential DEGs with the opposite 
dysregulation direction in reversal gene pairs, which 
may decrease statistical power. Secondly, RankComp 
performs only one filtering step, which reduces only 
partially the influence of other genes’ expression 
changes on the Fisher’s exact test for a particular gene 
[35]. RankCompV2 and RankComp are implemented 
in C language and available at GitHub 
(https://github.com/pathint/reoa). 
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Figure 1. A schematic diagram of the RankCompV2 algorithm. Focusing on the overlaps of the two lists of stable gene pairs, the stable REOs in the control samples 
are defined as the background stable REOs while the reversely stable REOs in the case samples are defined as the reversal REOs of the disease. For a given gene G1, 
a indicates the number of gene pairs with the REO pattern (G1 > Gi), and b indicates that with (G1 < Gj) in background stable REOs; x indicates the number of 
reversal gene pairs with shift (G1 < Gj→G1 > Gj) and y indicates the number of reversal gene pairs with shift (G1 > Gi→G1 < Gi) in reversal REOs of the disease [28, 
30, 35]. 

 

Other algorithms 
RankProd, a meta-analysis algorithm and 

available as an R package, was also tested to identify 
DEGs in merged datasets from different studies [7]. 
The number of permutations was set to 1000. Genes 
identified as both up- and down-regulated were 
deleted. Combat uses an empirical Bayesian 
framework to remove batch effects from microarray 
expression data [19]. The algorithm was performed by 
the sva package in R [20]. The algorithm savseq was 
also performed with default parameters in the sva 
package for removing batch effects from sequencing 
data [23]. The RUVSeq package includes three 
methods to remove batch effects from RNA-Seq Data. 
RUVg uses negative control genes, assuming constant 
expression across different samples, RUVs uses 
replicate control samples and RUVr uses residuals to 
normalized RNA-Seq read counts among samples. 
Here only the RUVr method can be performed. 

Pathway enrichment analysis 
The gene categories for function enrichment 

analysis were downloaded from Gene Ontology (GO) 
[36] in March, 2016. The GO-function algorithm [37] 
was used to determine the significance of biological 

pathways, molecular functions, and cellular 
components enriched with a set of interested genes by 
hypergeometric distribution test. 

Reproducibility evaluation of DEGs 
We used the POG (Percentage of Overlapping 

Genes) score [38, 39] and the concordance score to 
evaluate the reproducibility of DEGs identified from 
two independent datasets. If two lists of DEGs with 
length L1 and L2, have n overlaps, among which s have 
the same dysregulation directions (up- or 
down-regulation), then the POG score from list 1 (or 
2) to list 2 (or 1), denoted as POG12 (or POG21), is 
calculated as s/L1 (or s/L2), and the concordance score 
is calculated as s/n. We evaluated whether a 
concordance score is higher than what expected by 
chance using a binomial distribution test as follows, 

 
where p0 (p0=0.05) is the probability of a gene 

having the concordant dysregulation direction in the 
two lists by chance. 
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Results  
Performance of RankCompV2 in a single 
dataset 

Three datasets were collected for each of three 
cancer types (COAD, ESCC and BRCA) to evaluate 
the performance of RankCompV2 in terms of 
precision calculated as the concordance score between 
the identified dysregulation directions and the 
observed directions based on the average expression 
values between the cancer and normal samples.  

With FDR < 5%, there were 3858, 5067 and 3732 
DEGs identified by RankCompV2 in the GSE23878, 
GSE37364 and GSE20916 datasets of COAD, and the 
corresponding apparent precisions of these DEGs 
were 99.97%, 100%, and 100%, respectively (Figure 
2A). We also evaluated the reproducibility of these 
DEGs across datasets. For the three DEG lists, more 
than 63% DEGs identified in one dataset can be found 
in another dataset (Supplementary Table S1) and the 
pair-wise concordance scores are more than 96% 
(binomial test, p < 1.0E-16). Similar results were 
observed in datasets of ESCC and BRCA. For ESCC, 
the DEGs identified from each dataset had a precision 
of 100%. Not surprisingly, every DEGs lists were 
highly reproducible (Supplementary Table S1). In 
three batches of BRCA, RankCompV2 accurately 
detected DEGs in each dataset with a precision above 
97% (Figure 2A), and the concordance scores of every 
two DEGs lists were 100%. Even 84% DEGs identified 
in Batch 96 were also identified in Batch 93 
(Supplementary Table S1). These results suggest that 
RankCompV2 can accurately detect DEGs between 
distinct phenotypic groups in a single dataset.  

Comparing RankCompV2 with other 
approaches in the merged datasets  

We further applied RankCompV2 to identify 
DEGs by merging the three datasets for each cancer. 
With FDR < 5%, we obtained 5619, 3290 and 7866 
DEGs for COAD, ESCC and BRCA, respectively 
(Figure 2B). It was obvious that combining multiple 
datasets led to more discoveries of DEGs than a single 
dataset with the same FDR control. To judge whether 
these DEGs are truly dysregulated, we compared 
them with their original dysregulation directions in 
each dataset. If original dysregulation directions of 
the DEG are conflicting with each other in the three 
datasets of the same cancer type, it is high likely that it 
is a false discovery. We calculate the false rates of the 
identified DEGs in the merged datasets. Among DEGs 
identified by RankCompV2, false rates were 10.16%, 
2.71% and 8.12% in the COAD, ESCC and BRCA 
merged datasets, respectively.  

For the original RankComp method, only 3526, 

1991 and 4061 DEGs were identified with false rates of 
6.69%, 1.51% and 3.15% in the COAD, ESCC and 
BRCA merged datasets, respectively. RankCompV2 
substantially improved the statistical power at the 
cost of a slight decrease in accuracy. Further 
comparison found all DEGs identified by RankComp 
were covered by RankCompV2 and the concordance 
scores of the two lists were all 100% in the three 
merged datasets. 

RankProd performs a meta-analysis on the 
merged datasets. Compared with RankCompV2, 
RankProd identified more DEGs (7979) in the COAD 
merged dataset, but the false rate was up to 18.34%. 
For the merged datasets of ESCC and BRCA, 4438 and 
7633 DEGs were identified with a false rate of 7.86% 
and 15.98%, respectively. Fewer DEGs accompanied 
with lower false rates. A special problem of RankProd 
is that many genes could be identified as both up- and 
down- regulated DEGs. In our study we had deleted 
these conflicting DEGs.  

Batch effect correction by Combat was 
performed in the COAD and ESCC merged datasets 
measured by the microarray platforms. Although the 
false rate for the merged ESCC dataset was 7.51%, it 
reached up to 21.48% for the merged COAD dataset. 
For RNA-Seq data of BRCA, edgeR was performed on 
the adjusted data to identify DEGs after removing the 
batch effects by svaseq and RUVr, respectively. In the 
adjusted BRCA data with svaseq and RUVr, 13300 
and 12436 DEGs were identified with a false rate of 
10.00% and 4.98%, respectively. All results were 
summarized in Figure 2B. 

All these results indicated RankProd and batch 
effect removal algorithms likely distort true biological 
differences between two phenotypes and introduce 
unacceptable high false rates in some datasets. In 
contrast, RankCompV2 can detect accurate DEGs in 
these datasets and it is a good choice for identifying 
DEGs across different studies. 

Simulation experiments on null datasets 
Basically, RankCompV2 is an empirical 

algorithm, where the parameter φ is used in the 
determination of stable REOs for each group. 
Simulation experiments on null data were performed 
to evaluate the false discovery rates of DEGs under 
the default settings φ = 5%.  

For each dataset, the normal samples were 
randomly divided into two groups to simulate null 
datasets, and RankCompV2 was applied to identify 
DEGs with the default settings. The experiments were 
repeated 100 times. No DEG was detected in 90, 95 
and 88 out of the 100 experiments in the null dataset 
created from the merged COAD, ESCC and BRCA 
datasets, respectively. Similar results were observed 
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in the null data simulated from each of the nine single 
(i.e., non-merged) datasets (Figure 3). The most DEGs 
identified was in the null data simulated from the 
Batch 93 dataset where 18 DEGs were found on 
average but this number was not disastrous compared 
with 6021 DEGs identified in the real data. The above 
extensive simulate results indicate that the default 
parameter setting produce negligible number of false 
discoveries.  

Application of RankCompV2 to breast cancer 
drug-response data 

To further illustrate the merits of the 
RankCompV2, five expression datasets of breast 
cancer patients receiving the neoadjuvant chemo-
therapy of paclitaxel, 5-fluorouracil, cyclophospham-
ide and doxorubicin were collected from the GEO 
database (Table 1). The expression patterns of ER 
positive and ER negative subtypes were analyzed 
separately. Limited or even zero DEGs between pCR 
and RD groups were identified in each dataset by 

t-test or Limma [40] with FDR< 10% (data not shown). 
With RankCompV2 applied to the integrated ER 

negative dataset, we identified 36 up-regulated and 
373 down-regulated genes in the RD group. These 409 
DEGs were significantly enriched in 18 biological 
pathways of GO (Figure 4A, Supplementary Table 
S2). Most of these pathways were known associated 
with the chemotherapy resistance including cell cycle, 
DNA replication and DNA repair related pathways 
[41-46]. Other pathways were also enriched, including 
RNA processing, positive regulation of macromole-
cule biosynthetic process, cellular macromolecular 
complex assembly, positive regulation of RNA 
metabolic process and protein-DNA complex subunit 
organization, and they serve the future research 
direction for the chemotherapy resistance mechanism 
of ER negative breast cancer. These 409 DEGs were 
also significantly enriched in 6 molecular functions 
(Supplementary Table S3) and 14 cellular components 
(Supplementary Table S4) of Gene Ontology. 

 
Figure 2. Performance evaluation of different algorithms. (A) Performance of RankCompV2 in nine datasets; (B) Comparison of the results of RankCompV2 with 
other algorithms in merged COAD, ESCC and BRCA datasets, respectively. 
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Figure 3. Stacked bar chart for the distribution of the numbers of DEGs identified from the simulated null datasets among 100 repeated experiments. 

 
For the ER positive breast cancer, RankCompV2 

identified 63 up-regulated and 141 down-regulated 
genes in the RD group. Only 40 of the 204 DEGs were 
included in the 409 DEGs of the ER negative dataset. 
These 204 DEGs were significantly enriched in 17 
pathways (Figure 4B, Supplementary Table S2). 
Besides cell cycle and DNA replication related 
pathways, immune related pathways including 
lymphocyte mediated immunity, adaptive immune 
response based on somatic recombination of immune 
receptors built from immunoglobulin superfamily 
domains, positive regulation of T cell activation and 

defense response to virus were also enriched. 
Furthermore, the phagocytosis pathway was also 
significantly enriched. These novel pathways suggest 
a different resistance mechanism in ER positive breast 
cancer. Simultaneously, 6 molecular functions 
(Supplementary Table S3) and 12 cellular components 
(Supplementary Table S4) of Gene Ontology were 
enriched with the 204 DEGs. 

The two applications demonstrate the power of 
RankCompV2 in using public data for the discovery 
of signals that are too weak to be identified in a single 
experiment.  

 

Table 1. Description of the datasets used in this study 

Number Platforms #Gene Control Case Control vs. Case Database 
GSE23878 GPL570a 20486 24 35 Normal vs. COAD GEO 
GSE37364 GPL570 20486 38 27 Normal vs. COAD GEO 
GSE20916 GPL570 20486 24 45 Normal vs. COAD GEO 
GSE29001 GPL571b 12432 12 12 Normal vs. ESCC GEO 
GSE20347 GPL571 12432 17 17 Normal vs. ESCC GEO 
GSE38129 GPL571 12432 30 30 Normal vs. ESCC GEO 
Batch93 RNASeqV2c 17618 16 41 Normal vs. BRCA TCGA 
Batch96 RNASeqV2 17675 15 41 Normal vs. BRCA TCGA 
Batch109 RNASeqV2 17679 15 70 Normal vs. BRCA TCGA 
The data of ER positive breast cancer 
GSE22093 GPL96d 12432 10 32 pCR vs. RD GEO 
GSE23988 GPL96 12432 7 24 pCR vs. RD GEO 
GSE42822 GPL96 12432 7 19 pCR vs. RD GEO 
GSE20271 GPL96 12432 6 83 pCR vs. RD GEO 
GSE20194T GPL96 12432 4 61 pCR vs. RD GEO 
The data of ER negative breast cancer 
GSE22093 GPL96 12432 18 37 pCR vs. RD GEO 
GSE23988 GPL96 12432 13 16 pCR vs. RD GEO 
GSE42822 GPL96 12432 13 15 pCR vs. RD GEO 
GSE20271 GPL96 12432 13 50 pCR vs. RD GEO 
GSE20194T GPL96 12432 16 16 pCR vs. RD GEO 
Note: a Affymetrix Human Genome U133 Plus 2.0 Array; b Affymetrix Human Genome U133A 2.0 Array; c UNC IlluminaHiSeq_RNASeqV2; d Affymetrix Human Genome U133A Array 
Abbreviation: COAD: Colon adenocarcinoma; ESCC: Esophageal squamous cell carcinoma; BRCA, Breast invasive carcinoma; pCR: pathologic complete response; RD, residual disease. 
GEO: Gene Expression Omnibus; TCGA, The Cancer Genome Atlas. 
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Figure 4. The enriched biological pathways by the DEGs in RD groups. 

 

Discussion  
Differing from traditional meta-analysis and 

batch effect adjustment algorithms, we provided a 
new perspective for differential expression analysis of 
merged datasets. The RankCompV2 method, based 
on the REOs of gene pairs within samples which were 
insensitive to batch effects and measurement 
platforms, can enrich DEGs, significantly and 
accurately, from the integrated cross-site datasets. 
RankCompV2 is an improved version of the original 
RankComp. But the validation results suggest that 
each has its own merits in analyzing the merged 
datasets. RankComp has a low statistical power but a 
high accuracy, while RankCompV2 has a higher 
statistical power but a slightly lower accuracy. For 
other algorithms, the normalization procedure and 
the batch effect adjustment algorithms may distort 
true biological differences between two phenotypes 
which induce many false discoveries [24-27].  

The RankCompV2 method facilitates the 
analysis of mRNA expression data in TCGA, where 
each batch has a small sample size and even only 
one-phenotype data, which cannot be dealt with by 
other methods. It is valuable to reuse the 
one-phenotype data, particularly the control datasets, 
since there lack the control samples in many disease 
studies, for example normal heart and brain tissues 

[47, 48].Our laboratory also evaluated the effect of 
biological factors such as gender, ethnicity, smoking 
status and age and find that these disease-related 
confounding factors might have an influence on REOs 
[49]. When applying the RnankCompV2 to two 
different groups, it is better to balance the 
confounding factors between the two groups. 

One flaw of RankCompV2 is its low statistical 
power. On one hand, none of approaches proposed to 
adjust the P-values for discrete statistics is widely 
accepted for application [50-55], we used the 
Benjamini-Hochberg FDR control approach for 
selecting DEGs tested by the Fisher's exact test, which 
tends to have insufficient power for discrete data 
because the null distribution of the p-values of 
discrete tests is not the uniform distribution required 
by the BH procedure [50, 56, 57]. Further studies on 
improving RankCompV2 is a work in progress. On 
the other hand, the RankCompV2 method tends to 
identify genes with large expression changes, which 
could form many reversal gene pairs. Such DEGs can 
disrupt the gene correlation structure between two 
phenotypes and might be of special biological 
significance because functionally related genes tend to 
express coordinately in a stable physiology or 
pathology state [24].  
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