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ABSTRACT

Dipeptidyl peptidase-4 (DPP-4) inhibitors are oral anti-hyperglycemic 
drugs enabling effective glycemic control in type 2 diabetes (T2D). Despite 
DPP-4 inhibitors’ advantages, the patients’ therapeutic response varies. In this 
retrospective cohort study, 171 Taiwanese patients with T2D were classified as 
sensitive or resistant to treatment based on the mean change in HbA1c levels. 
Using an assumption-free genome-wide association study, 45 single nucleotide 
polymorphisms (SNPs) involved in the therapeutic response to DPP-4 inhibitors  
(P < 1 × 10-4) were identified at or near PRKD1, CNTN3, ASK, and LOC10537792.  
A SNP located within the fourth intron of PRKD1 (rs57803087) was strongly 
associated with DPP-4 inhibitor response (P = 3.2 × 10-6). This is the first 
pharmacogenomics study on DPP-4 inhibitor treatment for diabetes in a Taiwanese 
population. Our data suggest that genes associated with β-cell function and 
apoptosis are involved in the therapeutic effect of DPP-4 inhibitors, even in the 
presence of additional oral anti-diabetic drugs. Our findings provide information 
on how genetic variants influence drug response and may benefit the development 
of personalized medicine.

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 11), pp: 18050-18058

Research Paper



Oncotarget18051www.impactjournals.com/oncotarget

INTRODUCTION

Type 2 diabetes (T2D), also known as non-insulin-
dependent diabetes mellitus, is a common complex disease 
with an increasing prevalence worldwide. In 2000, more 
than 171 million adults were diagnosed with T2D globally, 
which is expected to rise by 4.4%, affecting 366 million 
adults by 2030 [1].

The current treatment for T2D aims to control 
blood glucose levels and prevent diabetic complications. 
Nowadays, several anti-hyperglycemic drugs are available 
for T2D therapy, including metformin, sulfonylureas, 
thiazolidinediones (TZDs), alpha-glucosidase inhibitors, 
and insulin injections [2]. However, many patients with 
T2D experience initial success with anti-hyperglycemic 
drugs, only to become resistant to monotherapy over time, 
thus necessitating either an ancillary anti-diabetic agent 
or a transition to insulin in order to restore acceptable 
glycemic control. Approximately 40% of the individuals 
being treated for T2D fail to reach the desired glycosylated 
hemoglobin (HbA1c) target of <7%. In a study of long-
term glycemic control in T2D, Kahn et al. [3] showed 
accumulative incidences of monotherapy failures at 5 
years, including 15% failure with rosiglitazone (a TZD), 
21% metformin (a biguanide), and 34% glyburide (a 
sulfonylurea). Thus, it is important to identify novel 
therapies that are more effective against T2D.

Dipeptidyl peptidase 4 (DPP-4) inhibitors are a class 
of oral hypoglycemic drugs approved by the FDA in 2006. 
Mechanistically, DPP-4 inhibitors increase incretin levels 
such as the levels of glucagon-like peptide-1 (GLP-1) and 
glucose-dependent insulinotropic polypeptides (GIP). 
GLP-1 and GIP are gut hormones secreted from L and 
K cells in the intestine in response to food intake [4, 5]. 
GLP-1 and GIP augment glucose-induced insulin release 
from pancreatic β-cells, suppress glucagon secretion, and 
slow gastric emptying [4, 5]. Both hormones are DPP-4 
target proteins and are rapidly degraded and inactivated 
by proteolysis [6, 7]. Therefore, DPP-4 inhibitors, 
which can slow enzymatic cleavage that prevents the 
degradation of active incretins (GLP-1 and GIP), are used 
to enhance incretin-induced glycemic control. They have 
been proposed as potential therapeutic agents for T2D 
treatment.

DPP-4 inhibitors enable effective glycemic control 
with a low risk of hypoglycemia, neutral effects on body 
weight, and the convenience of once-daily oral dosing, 
which may improve patient adherence to therapy [8]. 
Several studies [9, 10] demonstrated that DPP-4 inhibitor 
treatment may be associated with a reduced incidence 
of cardiovascular (CV) events. Furthermore, DPP-4 
inhibitors augment insulin secretion and increase β-cell 
mass by stimulating β-cell differentiation and proliferation 
by reducing oxidative and endoplasmic reticulum stress, 
inflammation, and apoptosis both in vitro and in pre-
clinical models of T2D [11–15]. Recently, the DPP-4 

inhibitors linagliptin [16] and saxagliptin [17] have been 
shown to improve glycemia and β-cell function in clinical 
trials. For these reasons, DPP-4 inhibitors are expected to 
improve treatment outcomes in patients with T2D.

A number of factors contribute to inter-individual 
differences in anti-diabetic drug responses, including age, 
sex, disease, drug and food interactions, co-morbidity, 
and genetic factors. A recent meta-analysis revealed that 
DPP-4 inhibitors decrease glycated hemoglobin (HbA1c) 
levels more markedly in Asians than in non-Asians 
[18], and the clinical factors underlying DPP-4 inhibitor 
resistance have been examined more intensely in Asian 
subjects [19–22]. Thus, genetic variations among different 
ethnic groups may alter the metabolism and therapeutic 
response of DPP-4 inhibitors, as previously demonstrated 
by pharmacogenomic and pharmacogenetic studies [23, 
24]. Accordingly, the genetic effects of several genes such 
as DPP4 [25, 26], GLP1R [27, 28], and TCF7L2 [29] on 
the therapeutic response of DPP-4 inhibitors in patients 
with T2D have been investigated in clinical trial and case-
control studies with a candidate gene approach. In the 
present report, we used an assumption-free genome-wide 
association study (GWAS) to identify the potential genes 
involved in the therapeutic response to DPP-4 inhibitors 
among patients with T2D in a Taiwanese population. 
While this is the first pharmacogenomic study of DPP-4 
inhibitor treatment for diabetes in a Taiwanese population, 
the findings could provide some information on how 
genetic variants influence drug response and may benefit 
the development of personalized medicine.

RESULTS

The study population consisted of 171 diabetic 
patients in stage I undergoing DPP-4 inhibitor therapy for 
GWAS. Four different DPP-4 inhibitors were prescribed, 
including sitagliptin, saxagliptin, vildagliptin, and 
linagliptin. The number of patients in each drug category 
was 114 (66.7%), 22 (12.9%), 23 (13.5%), and 12 (7%), 
respectively. Among them, 169 patients (98.9%) used 
DPP-4 inhibitors as a second treatment. Additionally, 
29.8% and 64.3% of the patients were taking one or 
two oral anti-diabetic drugs (OADs), respectively, at the 
beginning of the study, and metformin and sulfonylurea 
were the two most common OADs used in the population. 
Detailed demographic and clinical characteristics of these 
patients are presented in Table 1. After DPP-4 inhibitor 
therapy, the patients exhibited significant differences in 
ΔHbA1c values, both with and without baseline HbA1c 
stratification (p < 0.001; data not shown). Further analysis 
revealed that the mean value of ΔHbA1c was significantly 
different among patients with different baseline HbA1c 
levels because patients with higher baselines (> 8%) 
displayed greater treatment responses (p < 0.001) (Table 
2). Therefore, patients were classified as either sensitive 
or resistant based on their responses to DPP-4 inhibitor 
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treatment (detailed information regarding the classification 
is provided in the Materials and Methods section). No 
significant association was observed between the response 
to DPP-4 inhibitor therapy and patient’s sex, age, body 
mass index (BMI), disease duration, self-reported disease 
history (hypertension and cardiovascular disease), or lipid 
profile (cholesterol, triglycerides, high-density lipoprotein, 
and low-density lipoprotein) at enrollment (Table 3; all p > 
0.05). However, the treatment-sensitive patients tended to 
have higher a BMI (> 27) than their resistant counterparts 
(44.8% vs. 31.2%; p = 0.052) (Table 3).

In stage I, a preliminary GWAS, performed in 83 
sensitive and 88 resistant patients, identified 45 single-
nucleotide polymorphisms (SNPs) associated with the 
DPP-4 inhibitor treatment response (p < 10−4). A SNP 
located within the fourth intron of the protein kinase D1 
gene (PRKD1; rs57803087) on chromosome 14 showed 
the strongest association with the DPP-4 inhibitor 
response (p-value for the trend test = 3.2 × 10−6) (Table 
4). Two other SNPs, rs10511037 and rs62266510, located 
on chromosome 3 were also associated with the treatment 
response and are approximately 5-kb upstream of the 

Table 1: Demographics of the study population in GWAS stage (stage I) for DPP-4 inhibitor pharmacogenomics study

Total (N = 171) Men (N = 80) Women (N = 91) P (♂vs♀)

Age (years)

 ≦60 years (median) 89 (52.0%) 43 (53.8%) 46 (50.5%)

 >60 years 82 (48.0%) 37 (46.3%) 45 (49.5%) 0.679

BMI (kg/m2)

 <24 49 (28.7%) 23 (34.8%) 26 (33.3%)

 24-27 41 (24.0%) 20 (30.3%) 21 (26.9%)

 ˃27 54 (31.6%) 23 (34.8%) 31 (39.7%) 0.820

 Missing 27 (15.8%)

eGFR

 ≧60 (median) 116 (67.8%) 50 (75.8%) 66 (89.2%)

 <60 24 (14.0%) 16 (24.2%) 8 (10.8%) 0.035

 Missing 31 (18.1%)

Baseline HbA1c (%)

 7-<8% 68 (39.8%) 35 (43.8%) 33 (36.3%)

 8-<9% 55 (32.2%) 25 (31.3%) 30 (33.0%)

 ≧9% 48 (28.1%) 20 (25.0%) 28 (30.8%) 0.564

Changed HbA1c (%) -0.95 ± 1.07 -0.98 ± 1.32 -0.92 ± 0.80 0.716

DM duration (years) 9.8 ± 6.5 9.32 ± 5.77 10.23 ± 7.07 0.361

FPG (mg/dL) 176.77 ± 47.53 171.38 ± 47.27 181.43 ± 47.53 0.172

BP (mmHg)

 Systolic BP 133.69 ± 15.61 135.32 ± 16.48 132.18 ± 14.79 0.213

 Diastolic BP 80.34 ± 8.97 80.73 ± 9.01 79.97 ± 8.98 0.604

OHA

 1 OHA 2 (1.2%) 2 (2.5%) 0 (0%)

 2 OHA 51 (29.8%) 26 (32.5%) 25 (27.5%)

 3 OHA 110 (64.3%) 49 (61.3%) 61 (67.0%)

 4 OHA 8 (4.7%) 3 (3.8%) 5 (5.5%) 0.446

Values are presented as N (%) or mean ± SD; Abbreviation: BMI: body mass index; eGFR: estimated glomerular filtration 
rate; HbA1c: hemoglobin A1c; DMD: diabetes mellitus duration; FPG: fasting plasma glucose; BP: blood pressure; OHA: 
oral hypoglycemic agents. P value for two sample independent t test or ANOVA test
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contactin 3 gene (CNTN3). Chromosome 6 contained 
two pairs of significant SNPs, rs7755097/rs9376211 and 
rs4946688/rs1948999, located in the intron region of the 
gene encoding apoptosis signal-regulating kinase 1 (ASK1) 
and within an uncharacterized gene, LOC105377923, 
respectively. After adjusting for BMI as a potential 
confounding factor, rs57803087 on chromosome 14 
continued to be the most predictive of the DPP-4 treatment 
response, with the other SNPs also maintaining their 
statistical significance.

Subsequently, we replicated the six most significant 
SNPs from stage I in an additional 39 sensitive responders 
and 39 resistant responders. None of the SNPs showed a 
significant association with the DPP-4 inhibitor response. 
After the GWAS (stage I) and replication (stage II) results 
were combined, rs57803087, located within PRKD1, 
remained significantly associated with the DPP-4 inhibitor 
response (Table 4).

DISCUSSION

To our knowledge, this is the first pharmacogenomic 
study of DPP-4 inhibitor treatment for T2D in a Taiwanese 

population. In the present study, DPP-4 inhibitors served 
as an add-on therapy. More than 98% of the subjects used 
more than one OAD instead of DPP-4 inhibitors alone, and 
the average HbA1c level was reduced by 0.95%, which 
is comparable with the data from a previous report [9]. 
Several factors can influence the therapeutic response to 
DPP-4 inhibitors as a primary or ancillary treatment [19, 
30]. Baseline HbA1c values and shorter disease durations 
are important predictors of the efficacy of OADs, 
including DPP-4 inhibitors [8]. In our retrospective cohort 
study, subjects with higher baseline HbA1c values showed 
a better therapeutic response to DPP-4 inhibitor treatment. 
However, no significant association with disease duration 
was observed.

DPP-4 inhibitors prevent the degradation of 
incretins, GLP-1 and GIP, in response to glucose-
dependent insulin secretion. Previous studies showed that 
polymorphism in DPP4 [25, 26] and GLP1R [27, 28], 
which are directly involved in the mechanism of action 
of DPP-4 inhibitors, was associated with the glycemic 
response to DPP-4 inhibitor treatment. Appropriate 
regulation of insulin secretion may also be related to DPP-
4 inhibitor efficacy. Our data indicate that genes associated 

Table 2: The HbA1c difference from baseline to 3 months after enrollment

N (%) Changed HbA1c
Mean (SD) P-value

Sex
 Male 80 (46.8%) -0.984 (1.32) 0.716
 Female 91 (53.2%) -0.922(0.80)
Age
 ≦60 89 (52.0%) -0.988 (0.96) 0.641
 >60 82 (48.0%) -0.911 (1.18)
eGFR
 50+ 128 (74.9%) -0.907 (0.82)
 <50 12 (7.0%) -0.458 (1.36) 0.092
BMI
 <24 49 (28.7%) -1.137 (0.88)
 24-27 41 (24.0%) -0.866 (1.37)
 >27 54 (31.6%) -0.813 (0.81) 0.243
DM duration
 ≦8 86 (50.3%) -0.998 (0.98) 0.567
 >8 85 (49.7%) -0.904 (1.16)
Baseline HbA1c (%)
 7-<8% 68 (39.8%) -0.465 (0.52) <0.001
 8-<9% 55 (32.2%) -0.918 (0.76)
 9%+ 48 (28.1%) -1.677 (1.49)

Abbreviation: BMI: body mass index; eGFR: estimated glomerular filtration rate; HbA1c: hemoglobin A1c; DM: diabetes 
mellitus; FPG: fasting plasma glucose; BP: blood pressure; OHA: oral hypoglycemic agents. P value for two sample 
independent t test or ANOVA test
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with β-cell function and apoptosis may be involved in 
the therapeutic effect of DPP-4 inhibitors, even when 
additional OADs are used. First, rs9376211 is located 
withinthe ASK1 intron region on chromosome 6. Previous 
studies have shown that ASK1 variants are associated 
with skeletal muscle ASK1 expression, in vivo insulin 
resistance, and T2D in Pima Indians [31]. ASK1 encodes 
the ASK1 protein, a member of the large mitogen-activated 
protein kinase kinase kinase (MAP3K) family that 
activates downstream MAPKs, c-Jun N-terminal kinase 

(JNK) and p38 MAPK, and is essential for the cellular 
response to various stressors. As such, ASK1 signaling 
can elicit cell death, differentiation, inflammation, and 
survival [32, 33]. In pancreatic β-cells, ASK1 is involved 
in the oxidative stress-induced thioredoxin-interacting 
protein (TXNIP)-dependent apoptosis cascade [32, 34]. 
Moreover, recent studies have demonstrated that the 
TXNIP signaling pathway is involved in inhibition of 
β-cell apoptosis by GIP [35, 36]. Collectively, our data 
suggest that the increase in GIP concentration mediated 

Table 3: The baseline characters for sensitive groups and resistant groups

Resistant Responders
(N = 88)

Sensitive Responders
(N = 83) P value

Sex
 Male 44 (50%) 36 (43.4%)
 Female 44 (50%) 47 (56.6%) 0.385
Age
 ≦60 51 (58%) 38 (45.8%)
 >60 37 (42%) 45 (54.2%) 0.111
BMI
 <24 33 (42.9%) 16 (23.9%)
 24-27 20 (26.0%) 21 (31.3%)
 >27 24 (31.2%) 30 (44.8%) 0.052
eGFR
 ≧50 66 (91.7%) 62 (91.2%)
 <50 6 (8.3) 6 (8.8%) 0.918
DM duration
 ≦8 50 (56.8%) 36 (43.4%)
 >8 38 (43.2%) 47 (56.6%) 0.079
Baseline HbA1c
 7-<8% 35 (39.8%) 33 (39.8%)
 8-<9% 31 (35.2%) 24 (28.9%)
 9%+ 22 (25%) 26 (31.3%) 0.566
Hypertension*
 yes 33 (42.9%) 35 (47.3%) 0.584
 no 44 (57.1%) 39 (52.7%)
Cardiovascular disease*
 yes 4 (8.3%) 7 (16.3%) 0.246
 no 44 (91.7%) 36 (83.7%)
Cholesterol 169.44 (29.51) 172.38 (29.47) 0.534
Triglyceride 149.06 (104.43) 166.75 (144.39) 0.384
HDL 49.25 (12.78) 47.30 (12.82) 0.344
LDL 99.25 (28.07) 99.65 (29.93) 0.933

Values are presented as N (%); Abbreviation: BMI: body mass index; eGFR: estimated glomerular filtration rate; HbA1c: 
hemoglobin A1c; DM: diabetes mellitus; HDL: high density lipoprotein; LDL: low density lipoprotein
*self-reported disease history P value for chi-square test.



Oncotarget18055www.impactjournals.com/oncotarget

by DPP-4 inhibitors may inhibit pancreatic β-cell death. 
Thus, patients harboring ASK1 variants, in whom GIP-
mediated cell protection is compromised, may be more 
resistant to this form of therapy.

A second SNP (rs57803087) was located in the intron 
region of the PRKD1 gene on chromosome 14. PRKD1 is 
a serine/threonine kinase that controls a variety of cellular 
functions, including membrane receptor signaling, Golgi 
transport, mitochondrial oxidative stress responses, gene 
transcription, cell morphology, motility, and adhesion [37]. 
Studies have demonstrated that agonists of G-protein-
coupled receptor 40 (GPR40) and free fatty acid (FFA) 
receptor 1 (FFAR1) are induced by β-cell insulin secretion 
[38]. Additionally, PRKD1 activation contributes to the 
GPR40-mediated insulin secretion from β-cells [39]. FFA-
induced GPR40 activation results in the generation of diacyl 
glycerol via the phospholipase C-mediated hydrolysis of 
membrane phospholipids, PRKD1 activation, cortical actin 
depolymerization, and potentiation of a second phase of 
glucose-stimulated insulin secretion [39]. Moreover, Kong 
et al. [40] have reported that the M3 muscarinic receptor 
promotes the insulin release via receptor phosphorylation/
arrestin-dependent PRKD1 activation. Importantly, both 
of these PRKD1 activation mechanisms potentiate insulin 
secretion.

There are several limitations to this study. First, we 
recognize that this study had low statistical power, owing 
to its limited sample size. Based on the sample size (127 
resistant responders vs. 122 sensitive responders after 
combining the subjects from the stage I GWAS and stage 
II replication) and the difference in the allele frequency 

for the revealed SNPs (range: from 13.2% to 18.7%), the 
power was 63.3% to 86.5% (Table 4). The results did not 
reach statistical significance after a Bonferroni correction, 
and false positive results may exist. Very little is known 
about the contribution of patient genetics to DPP-4 
inhibitor responses. Therefore, analyses with larger sample 
sizes could potentially identify additional genetic variants 
to enable better predictions for personalized or stratified 
medicine. Second, metformin is known to increase GLP-
1 secretion by intestinal L-cells. Thus, the combination 
of metformin and DPP-4 inhibitor treatment may exert a 
stronger effect on β-cell function [41, 42]. In the present 
study, >98.8% of patients received other drug therapies 
in addition to DPP-4 inhibitors. For this reason, the 
therapeutic effect of single-agent DPP-4 inhibitors could 
not be determined. Third, the insulin secretory capacity 
decreases according to the duration of T2D [43] and could 
thus be another predictor of the DPP-4 inhibitor efficacy 
[8, 19, 30]. Accordingly, clinical trials have shown that 
the DPP-4 inhibitors linagliptin [16] and saxagliptin [17] 
better preserved β-cell function in recently diagnosed 
(< 24 months) T2D patients. Similarly, the Saxagliptin 
Assessment of Vascular Outcomes Recorded in Patients 
with Diabetes Mellitus (SAVOR-TIMI 53) trial showed 
that saxagliptin-mediated preservation of β-cell function 
was better in patients with higher homeostatic model 
assessment 2 (HOMA2) scores prior to DPP-4 inhibitor 
treatment [17]. However, the baseline β-cell function 
was not measured in the present study. Thus, we cannot 
exclude the effect of variations in baseline β-cell function 
on the DPP-4 therapeutic response. Fourth, we were 

Table 4: Summary of the SNPs associated with the effects of DPP-4 inhibitors in Type 2 diabetes in the GWAS stage 
and replication stage

dbSNP ID Chr. Nearest Gene

GWAS Replication Overall

Resistant 
Responders 

(n=88)

Sensitive
Responders 

(n=83)

Resistant 
Responders 

(n=39)

Sensitive 
Responders 

(n=39)

Resistant 
Responders 

(n=127)

Sensitive 
Responders 

(n=122)
P value Power

rs10511037 3 CNTN3 12.5% 31.5% 26.9% 28.2% 16.9% 30.5% 1.14E-06 70.6%

rs62266510 3 CNTN3 15.9% 33.9% 32.1% 34.6% 20.9% 34.1% 2.94E-07 63.3%

rs4946688 6 LOC105377923 54.5% 30.9% 46.2% 38.5% 52.0% 33.3% 3.69E-16 82.3%

rs1948999 6 LOC105377923 54.5% 31.3% 44.9% 37.1% 51.6% 33.2% 7.89E-16 81.1%

rs7755097 6 ASK1 12.5% 30.1% 17.9% 21.8% 14.2% 27.5% 3.49E-06 71.1%

rs9376211 6 ASK1 19.8% 40.7% - - - - - -

rs57803087 14 PRKD1 17.0% 38.6% 19.2% 26.9% 17.7% 34.8% 2.51E-08 86.5%

Abbreviation: dbSNP ID: SNP database identification; Chr: chromosome; GWAS
*Risk allele is the allele with higher frequency
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unable to exclude the possibility of drug interactions, 
which would need to be further investigated. For example, 
exposure to saxagliptin and its primary metabolite may be 
significantly modified when saxagliptin is co-administered 
with strong specific inhibitors (ketoconazole or diltiazem) 
or inducers (rifampicin) of the cytochrome P450 3A4/5 
isoform [44]. Moreover, some lipid-lowering drugs such 
as statins could increase the HbA1c value. Unfortunately, 
the information on lipid-lowering drugs taken by the 
recruited patients simultaneously with DPP-4 drugs was 
not available. However, no significant differences in the 
hypertension history, cardiovascular disease history, 
or lipid profiles (cholesterol, triglycerides, low-density 
lipoprotein, and high-density lipoprotein) were observed 
between the responders and non-responders at enrollment; 
therefore, the potential for selection bias was minimal.

In conclusion, the current study utilized a GWAS-
based approach to examine the pharmacogenetics of DPP-
4 inhibitor treatment for T2D in a Taiwanese population. 
Our data indicate that genes associated with β-cell 
function and apoptosis may be involved in the therapeutic 
effect of DPP-4 inhibitors, even when additional OADs 
are used. However, further studies are required to confirm 
the association of the genes identified in this study with 
the therapeutic effect of DPP-4 inhibitors using a larger, 
more ethnically diverse patient population.

MATERIALS AND METHODS

Study population identification

This was a retrospective cohort study using data 
generated from a systematic chart review of diabetic 
patients from our previous study population [45, 46], treated  
with a consistent dosage of DPP-4 inhibitors for > 60 
days. Endocrinologists performed the chart review. Co-
treatment with other OADs was permitted if dosing 
was maintained for 3 months before and after DPP-4 
inhibitor treatment. However, no incretin analog was 
allowed together with the DPP-4 inhibitors. Subjects 
with type 1 diabetes or undergoing insulin therapy were 
excluded from the analyses. Because DPP-4 inhibitors 
are primarily excreted in the urine and could be subject to 
renal function-associated effects, subjects with estimated 
glomerular filtration rates (eGFRs) of less than 30 mL/min 
per 1.73 m2 were excluded from the study. Additionally, 
patients with eGFRs between 30 and 50 mL/min per 1.73 
m2, taking ≤ 50 mg of sitagliptin/vildagliptin or ≤ 2.5 mg 
of saxagliptin/linagliptin, were also excluded. The study 
was approved by the Institutional Review Board of the 
China Medical University Hospital, and informed consent 
was obtained from all participants.

The patients were first stratified according to their 
baseline HbA1c values (≤ 6.99%, 7–7.99%, 8–8.99%, and 
≥ 9%) into four groups. The subjects were then classified 
as either sensitive or resistant to DPP-4 inhibitor treatment 

based on their treatment response change, determined 
by ΔHbA1 (the difference in HbA1c values before and 
after treatment). In each group, subjects with the ΔHbA1 
values higher or lower than the mean ΔHbA1 value for the 
group were defined as sensitive or resistant, respectively. 
In this two-stage study, we first genotyped 83 sensitive 
responders and 88 resistant responders via an exploratory 
genome-wide scan (stage I, total 171 subjects). In the 
replication stage, we genotyped six selected SNPs in 
an additional 39 sensitive responders and 39 resistant 
responders (stage II, total 78 subjects).

Genotyping and statistical analysis

Blood glucose and HbA1c levels were recorded 
before and > 60 days after a DPP-4 inhibitor treatment 
course. Genomic DNA from blood samples was genotyped 
with an Affymetrix CHB chip using standard quality control 
procedures. SNPs with the following conditions were 
excluded from the analysis: (1) individuals or SNPs with a 
call rate of < 95%; (2) p ≤ 0.0001 for the Hardy–Weinberg 
test for control; (3) SNPs with a minor allele frequency of < 
0.01; (4) samples with first-degree cryptic relationships; and 
(5) samples that were potentially 9% contaminated. In total, 
618,882 SNPs were included in the GWAS.

Various clinical variables were compared between 
groups using χ2 tests or two independent t-tests. The 
threshold p-value was set at 8.0 × 10−8 after a Bonferroni 
correction for SNP numbers (n = 618,882). All statistical 
analyses were conducted using the SAS statistical 
software, version 9.1 (SAS Institute, Inc., Cary, NC, 
USA). p < 0.05 (two-sided) was considered significant.
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