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Abstract 

The metabolic properties of tumor microenvironment (TME) are dynamically dysregulated to achieve 
immune escape and promote cancer cell survival. However, in vivo properties of glucose metabolism in 
cancer and immune cells are poorly understood and their clinical application to development of a 
biomarker reflecting immune functionality is still lacking. 
Methods: We analyzed RNA-seq and fluorodeoxyglucose (FDG) positron emission tomography profiles 
of 63 lung squamous cell carcinoma (LUSC) specimens to correlate FDG uptake, expression of glucose 
transporters (GLUT) by RNA-seq and immune cell enrichment score (ImmuneScore). Single cell 
RNA-seq analysis in five lung cancer specimens was performed. We tested the GLUT3/GLUT1 ratio, the 
GLUT-ratio, as a surrogate representing immune metabolic functionality by investigating the association 
with immunotherapy response in two melanoma cohorts. 
Results: ImmuneScore showed a negative correlation with GLUT1 (r = -0.70, p < 0.01) and a positive 
correlation with GLUT3 (r = 0.39, p < 0.01) in LUSC. Single-cell RNA-seq showed GLUT1 and GLUT3 
were mostly expressed in cancer and immune cells, respectively. In immune-poor LUSC, FDG uptake was 
positively correlated with GLUT1 (r = 0.27, p = 0.04) and negatively correlated with ImmuneScore (r = 
-0.28, p = 0.04). In immune-rich LUSC, FDG uptake was positively correlated with both GLUT3 (r = 0.78, 
p = 0.01) and ImmuneScore (r = 0.58, p = 0.10). The GLUT-ratio was higher in anti-PD1 responders than 
nonresponders (p = 0.08 for baseline; p = 0.02 for on-treatment) and associated with a progression-free 
survival in melanoma patients who treated with anti-CTLA4 (p = 0.04). 
Conclusions: Competitive uptake of glucose by cancer and immune cells in TME could be mediated by 
differential GLUT expression in these cells. 

Key words: tumor microenvironment, tumor metabolism, glucose transporter, immunotherapy, lung cancer, 
lung squamous cell carcinoma 

Introduction 
Cancer cells constitute cancer-permissive 

settings in the tumor microenvironment (TME) by 
inducing failure of the anti-tumor immunity [1]. One 
of the mechanisms of cancer immune escape is the 
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competitive metabolic interaction between cancer 
cells and immune cells in nutrient deprivation 
environments [2, 3]. In particular, glucose, a key 
nutrient of the competition, is rapidly metabolized by 
enhanced aerobic glycolysis in cancer through the 
so-called Warburg effect [4]. As immune cell switch 
from a quiescent to an activated status is also 
associated with enhanced glycolysis activation, the 
competitive interaction between cancer and immune 
cells could significantly reduce glucose availability to 
immune cells, thus hampering their antitumor 
immune functions [5, 6]. 

The status of immune cells in TME is a predictive 
biomarker for the antitumor efficacy of immune 
checkpoint inhibitors (ICI). The density of tumor- 
infiltrating lymphocytes is associated with good 
response to ICI and dynamically increased according 
to the ICI followed by tumor regression [7, 8]. As 
activated immune cells including tumor-infiltrating 
CD8+ T-lymphocytes inhibit metabolic activity of 
cancer cells [9], the relative metabolic activity in 
cancer and immune cells can reflect the anti-tumor 
immune functionality. In this regard, evaluating the 
respective metabolic activity of immune cells and 
cancer cells may be a feasible biomarker to assess 
immune cell functionality in TME [10]. In spite of the 
fact that the metabolic interaction in TME is a crucial 
factor involved in the anti-tumor immune 
functionality, such a biomarker that takes into account 
the metabolism of cancer and immune cells has not 
yet been discovered. 

The high glucose consumption of malignant 
tumors requires increased glucose uptake mediated 
by facilitative glucose transporters (GLUT). The 
overexpression of GLUT, particularly GLUT1 and/or 
GLUT3 in tumors is commonly found across various 
cancer types [11-13]. The overexpression of GLUT has 
been clinically applied and is now widely used for 
tumor imaging via Fluorodeoxyglucose (FDG) 
positron emission tomography (PET) [14, 15]. While 
previous conventional studies estimate the GLUT1 
and GLUT3 of tumors regardless of the heterogeneous 
cellular subpopulation of tumor tissue, here we 
scrutinize the expression of GLUT1 and GLUT3 in 
TME using single-cell RNA-sequencing (scRNA-seq) 
as well as tumor tissue RNA-sequencing (RNA-seq) 
data from lung cancer patients. FDG PET paired with 
the tumor RNA-seq of lung cancer patients allows 
evaluating in vivo functionality of glucose uptake 
associated with the immune status of TME as well as 
different GLUTs. By assessing the differential GLUT 
expression in cancer and immune cells, we 
investigated whether GLUT expression levels can be 
used as a biomarker to uncover immune functionality 
in TME using melanoma cohorts who underwent 

immunotherapy. 

Methods 
RNA-seq data paired with FDG PET of the 
study population 

We evaluated RNA-seq profiles of 101 lung 
squamous cell carcinoma (LUSC) patients who 
underwent surgical resection between 2011 and 2013 
[16]. Among them, 63 patients with preoperative FDG 
PET imaging which was taken in our institution and 
with tumor volume larger than 5.0 cm3 were included 
for the analysis of the association between FDG 
uptake and gene expression values. The details of 
RNA-seq of LUSC patients from our institution were 
described in previous study [16]. The demographic 
and clinical characteristics of the study population are 
summarized in Table S1. The acquisition method of 
FDG PET data and the processing method of RNA-seq 
of LUSC patients to estimate glycolysis enrichment 
score are described in Supplementary Methods. The 
study protocol was reviewed by the institutional 
review board and approved as a minimal-risk 
retrospective study (approval no. H-1312-117-545) 
that did not require individual consent according to 
the institutional guidelines for consent waiver. 

We also used mRNA transcriptome data of 
LUSC from The Cancer Genome Atlas projects 
(TCGA) and concordant FDG PET image from The 
Cancer Imaging Archive (TCIA) for validation 
purpose [17]. Processing of TCGA and TCIA data for 
pairs of RNA-seq and FDG PET are described in 
Supplementary Methods. 

Estimating immune enrichment score 
To evaluate the heterogeneous cellular landscape 

of TME, cell type enrichment scores were evaluated. A 
gene-signature based method for inferring 64 cell 
types from tissue transcriptome profiles, the xCell tool 
(http://xcell.ucsf.edu/), was used [18]. xCell tool also 
reports an immune cell enrichment score, Immune-
Score, for each sample by summing estimated cell 
type enrichment scores of B-cells, CD4+ T-cells, CD8+ 
T-cells, dendritic cells, eosinophils, macrophages, 
monocytes, mast cells, neutrophils, and NK cells. Each 
immune cell enrichment score as well as Immune-
Score, the summed score of immune cells of the 
aforementioned cells, were estimated from transcripts 
of each study cohort. 

The histogram of ImmuneScore was drawn, and 
it showed two peaks. Thus, LUSC were divided into 
two clusters, immune-poor, and immune-rich 
clusters. To determine the threshold to define clusters, 
kernel density estimation was applied to the 
histogram of ImmuneScore using R function ‘density’. 
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The point of local minima was used as the threshold 
for the clusters. 

FDG PET analysis 
To obtain PET imaging parameters, semi- 

automated quantitative analyses were performed 
using volume-of-interests (VOI). A spherical VOI was 
drawn to include the primary tumor lesion. 
Metabolically active tumor was segmented by an 
adaptive threshold according to tumor and 
background intensities [19]. To consider different 
machine and reconstruction parameters, standardized 
uptake value (SUV) of the tumor was corrected by 
normal liver uptake. A manually drawn spherical 
volume-of-interest on the right liver was used as a 
reference liver SUV. The maximum SUV values of the 
tumor were divided by mean SUV of liver 
(tumor-to-liver ratio, TLRmax). Metabolic tumor 
volume of each lesion was calculated by the tumor 
segmentation on FDG PET. PET data with metabolic 
tumor volume less than 5 cm3 were excluded for 
further analyses due to underestimation of TLRmax 
for small sized tumors. The semi-automated 
quantitative analysis was performed on LifeX 
software (https://www.lifexsoft.org/, version 4.0) 
[20]. 

scRNA-seq data preparation and clustering 
 We obtained a read count matrix for the droplet- 

based scRNA-seq data of 5 lung cancer patients [21]. 
The authors provided filtered cells by removing cells 
all that had either fewer than 201 unique molecular 
identifiers, over 6,000 or below 101 expressed genes, 
or over 10% unique molecular identifiers derived 
from the mitochondrial genome. The read counts of 
52,698 cells were downloaded from the authors’ 
online resource (https://gbiomed.kuleuven.be/ 
scRNAseq-NSCLC). The data were scaled by log- 
normalization after the read counts divided by total 
number of transcripts and multiplied by 10,000. 
Highly variable 2150 genes were selected using 
FindVariableGenes function of Seurat (version 2.3.4) 
[22]. Data were then scaled to z-scores with regressing 
out of total cellular read counts and mitochondrial 
read counts. Cell types were determined by the 
graph-based clustering approach implemented in 
FindClusters function. Before the clustering, 
dimension reduction was performed by principal 
component analysis and 50 dimensions were used for 
the clustering. The conservative resolution was set to 
0.3 and the parameter eps was set to 0.5. To identify 
the marker genes of the clusters, FindMarkers function 
of Seurat package was used and 10 high-ranked 
marker genes according to the fold-change were 
identified. The scRNA-seq data were embedded by 

two-dimensional projection, t-distributed stochastic 
neighborhood embedding (t-SNE). The method for 
glucose metabolism profiles of single cell data is 
described in Supplementary Methods. 

Immunotherapy response prediction using 
glucose transporter profiles 

 RNA-seq data of melanoma specimens from 
patients treated with anti-PD1 therapy (pembro-
lizumb or nivolumab) were downloaded from the 
Gene Expression Omnibus (accession number 
GSE91061) [23]. The data included gene expression 
profiles of 51 baseline tumors and 58 on-treatment 
tumors. Biopsy samples were obtained before the 
anti-PD1 therapy (1-7 days before the first dose) and 
repeated on cycle 1, day 29 (between days 23-29) after 
starting the treatment. The read counts were scaled by 
log normalization and GLUT-ratio, the ratio of GLUT3 
to GLUT1, was calculated for all samples. Immune-
Score of the melanoma samples was also estimated by 
xCell as LUSC samples. The association between 
ImmuneScore and GLUT-ratio was analyzed and we 
tested whether GLUT-ratio was different between 
anti-PD1 responders and nonresponders. Patients 
were divided into two groups according to the 
response criteria, responders and nonresponders, 
defined by the irRECIST criteria [24]. Nonresponders 
included patients with progressive disease (PD) and 
stable disease (SD) after the anti-PD1 therapy. 
Responders included patients who showed complete 
or partial response (CR/PR) after the treatment. 
Another RNA-seq data of melanoma tissues for 
anti-CTLA4 therapy were additionally downloaded 
from the Gene Expression Omnibus (accession 
number GSE115821) [25]. 42 baseline gene expression 
data with scaled by z-score were obtained and 
GLUT-ratio was also obtained. Of note, gene 
expression values of anti-CTLA4 data were 
represented by z-scores, GLUT-ratio was differently 
defined for this cohort compared with other cohorts in 
this study: z-score of GLUT3 – z-score of GLUT1 
expression. The GLUT-ratio of baseline melanoma 
was associated with ImmuneScore, anti-CTLA4 
response and progression-free survival. 

Statistical analysis 
All statistical analyses were performed using the 

R software package, version 3.4.3 (http://www.R- 
project.org). The correlation between variables was 
evaluated by the Pearson’s correlation analysis. 
GLUTs and glycolysis enrichment scores of 
immune-rich and immune-poor clusters were 
compared using the independent t-test. The 
comparison of grade of immunohistochemistry was 
performed by Kruskal-Wallis test. Comparison of the 
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GLUT-ratio of responders and nonresponders was 
performed by the Mann-Whitney test. When the three 
response groups were applied (PD, SD, and PR/CR), 
the comparison of GLUTratio was performed by 
Kruskal-Wallis test. Survival analyses were 
performed using Cox proportional hazards 
regression. We divided the patients into two groups 
by the mean value of the GLUT-ratio (high and low 
GLUT-ratio), and performed survival analysis with 
the Kaplan-Meier method and the log-rank test. 

Results 
Cancer cells and immune cells in TME express 
different GLUTs 

We found a negative correlation between GLUT1 
expression and ImmuneScore of LUSC (r = -0.70, p < 
0.001; Figure 1A). This finding was reproduced in the 
Cancer Genome Atlas (TCGA) data of LUSC (r = -0.44, 
p < 0.001; Figure 1B). Considering the metabolic 
competition based on aerobic glycolysis of immune 
cells and cancer cells in TME [2, 3, 6], we also 
examined the relationship between the ImmuneScore 
and glycolysis enrichment score. They also showed 
significant negative correlations (r = -0.60, p < 0.001 in 
our study cohort; r = -0.36, p < 0.001 in TCGA cohort 
Figure 1C, D). In contrast, GLUT3 showed a positive 
correlation with the ImmuneScore in both cohorts (r = 
0.39, p < 0.001 and r = 0.26, p < 0.001; Figure 1E, F). We 
further investigated the specific types of immune cells 
being associated with GLUTs and glycolysis 
enrichment score. The Pearson’s correlation 
coefficients were calculated for the enrichment score 
of each immune cell subtype and glucose metabolic 
profiles (Figure 1G). Most immune cell subtypes 
including macrophages and CD8+ T-cells were 
negatively correlated with GLUT1 and glycolysis 
enrichment score, while positively correlated with 
GLUT3. 

We then hypothesized that cancer cells and 
immune cells in TME would be dependent on 
different GLUTs, GLUT1 and GLUT3, respectively. 
Immunohistochemistry of LUSC showed that GLUT3 
expression was mainly found on CD3 positive cells, 
while GLUT1 showed different expression patterns. 
GLUT3 expression was not found on cancer cell 
portions in all samples (Figure S1A, B). Additionally, 
LUSC with low CD3 expression showed no GLUT3 
expression (Figure S1C). CD3 expression was found 
on tumor margin only or stroma in central tumors and 
tumor margin. The spatial expression pattern of 
GLUT3 corresponded to CD3 expression patterns 
(Figure S1D). To corroborate this association, 
scRNA-seq data of non-small cell lung cancer were 
utilized [21]. Using cell-type specific marker genes, 

names of clusters were determined (Figure S2). t-SNE 
plots color-coded for GLUTs highlighted different 
expression patterns of GLUT1 and GLUT3 (Figure 2A, 
B). GLUT1 was mostly expressed in cancer cell 
clusters, while GLUT3 was mainly expressed in 
myeloid cells, T-cells, and endothelial cells (Figure 
2C). All cells were plotted by the two features, GLUT1 
and GLUT3 expression level, which explained that 
cells selectively expressed either GLUT1 or GLUT3, 
and only few cells expressed both GLUTs (Figure 2D). 
The GLUT1+GLUT3- cells were 7.3% of all cells and 
mainly included the cancer cell clusters. The 
GLUT1-GLUT3+ cells were 23.4% of all cells and more 
than half of these cells were myeloid and T-cells 
(Figure 2D). The glycolysis enrichment score of each 
cell was calculated and cancer cells showed relatively 
higher glycolysis activity than other cells in TME 
(Figure S3). The expression levels of GLUTs were 
compared for subsets of the cells, cancer and immune 
cells. GLUT1 and glycolysis enrichment score were 
significantly higher in cancer cells and GLUT3 was 
significantly higher in immune cells (Figure S3). In 
addition, most cells in TME expressed very low levels 
of other GLUTs compared with GLUT1 and GLUT3 
(Figure S4). A myeloid subset of TME, the most 
frequent GLUT1-GLUT3+ cells, showed a 
heterogeneous GLUT3 expression. The myeloid cells 
with high GLUT3 was associated with high glycolysis 
and low oxidative phosphorylation (Figure S5). 

Glucose uptake of LUSC is influenced by both 
GLUT1 of cancer cells and GLUT3 of immune 
cells 

 The cell-type enrichment scores estimated from 
tissue RNA-seq data of LUSC were plotted with 
TLRmax measured on FDG PET as well as expression 
profiles related to glucose metabolism (Figure 3A). 
The association between TLRmax and ImmuneScore 
was complicated according to immune-related 
clusters of LUSC (Figure 3B). LUSC samples were 
divided into the two clusters, immune-rich and 
immune-poor types, according to the histogram of 
ImmuneScore (Figure 3C). TLRmax was differently 
correlated with ImmuneScore for these two clusters. 
In the immune-poor cluster, TLRmax was negatively 
correlated with ImmuneScore (r = -0.28, p = 0.04). On 
the contrary, TLRmax was prone to be positively 
correlated with ImmuneScore in the immune-rich 
cluster (r = 0.58, p = 0.10; Figure 3D). As another 
dataset, the TLRmax measured from the TCIA data 
showed a trend to the negative correlation with 
ImmuneScore (r = -0.23, p = 0.31). Considering that 
ImmuneScore of the TCGA samples which had 
matched FDG PET data in TCIA was relatively lower 
than the overall range, these samples were included in 
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the immune-poor cluster (Figure S6). 
We then investigated whether the different 

GLUTs would be associated the FDG uptake 
according to the clusters. For the immune-poor 
cluster, GLUT1 was positively correlated with 
TLRmax, while GLUT3 was not (r = 0.27, p = 0.04 and 
r = -0.11, p = n.s., respectively; Figure 4A, B). On the 
contrary, GLUT1 was prone to be negatively 
correlated with TLRmax for the immune-rich cluster 
(r = -0.43, p = 0.24; Figure 4C). GLUT3 was strongly 
positively correlated with TLRmax for the 
immune-rich cluster (r = 0.78, p = 0.01; Figure 4D). 
Tumors of immune-poor cluster showed significantly 

higher GLUT1 than those of immune-rich cluster, 
while GLUT3 expression was significantly higher in 
immune-rich cluster than immune-poor cluster. The 
glycolysis activity was significantly higher for the 
immune-poor cluster. However, TLRmax was not 
significantly different for these two clusters (Figure 
S7). According to the results, we presented the 
suggested overall association between tumor 
metabolism and immune cell enrichment in Figure 4E, 
which showed the glucose uptake of the tumor could 
be affected by a sum of GLUT1 of cancer cells and 
GLUT3 of the immune cells within TME. 

 

 
Figure 1. Correlation of immune cell enrichment score with glucose transporters and glycolysis enrichment score. The overall immune enrichment score 
(ImmuneScore) was estimated from the RNA-sequencing data, glycolysis enrichment score was estimated by single sample gene set enrichment analysis from RNA-sequencing 
data of human lung squamous cell carcinoma. (A, B) The expression level of glucose transporter 1 (GLUT1) showed significant negative correlation with ImmuneScore in our 
study cohort (r = -0.70, p < 0.001) (A) as well as TCGA cohort (r = -0.44, p < 0.001) (B). (C, D) The association between glycolysis enrichment score and ImmuneScore was 
similar to that of GLUT1 (r = -0.60, p < 0.001 in our study cohort; r = -0.36, p < 0.001 in TCGA cohort). (E, F) On the contrary, the expression level of GLUT3 showed significant 
positive correlation (r = 0.39, p < 0.001) in our study cohort (E) and in TCGA cohort (r = 0.26, p < 0.001) (F). (G) The enrichment score of each immune cell subtype of tumor 
microenvironment (TME) showed that most immune cell subtypes showed a significant negative correlation with GLUT1 expression level and glycolysis enrichment score. 
However, the enrichment scores of most cell subtypes in TME showed a significant positive correlation with GLUT3 expression. 
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Figure 2. Single cell RNA-sequencing analysis reveals that GLUT1 and GLUT3 are mainly expressed in cancer cells and immune cells, respectively. (A) 
t-distributed stochastic neighbor embedding (t-SNE) of the 52,698 single cells are demonstrated with each cell color-coded for the associated 21 cell type clusters. (B) The 
expression of GLUT1 and GLUT3 were depicted on t-SNE plot. GLUT1 is mostly expressed in cancer cell-related clusters, while GLUT3 is mostly expressed in myeloid and 
T-cell clusters. (C) The expression level of GLUT1 and GLUT3 according to the cell type clusters are demonstrated in boxplots. GLUT1 showed high expression level in 
cancer-related clusters, while other clusters showed negligible expression of GLUT1. Conversely, GLUT3 showed high expression in mostly myeloid cell, epithelial cell, fibroblast 
cell clusters, while cancer-related clusters showed negligible expression of GLUT3. (D) Scatterplot of all 52,698 cells according to the normalized expression level of GLUT1 
(x-axis) and GLUT3 (y-axis). Each cell type cluster is overlaid in different colors. The red line depicts the cut off value of normalized single-cell RNA sequencing data. Cells that 
highly express GLUT3 (23.4%) mainly include myeloid and T-cells express GLUT3, while cells with highly express GLUT1 (7.3%) mainly include cancer cells. There are a very small 
proportion of cells (1.8%) which expressed both GLUT1 and GLUT3. 
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Figure 3. The association of functional glucose uptake with immune cell enrichment in human lung squamous cell carcinoma. (A) A heatmap depicting 
immune cell enrichment score of 63 lung squamous cell carcinoma patients. The samples were aligned by ImmuneScore (left to right). The maximum tumor uptake-to-liver ratio 
(TLRmax) which was measured by 18F-Fluorodeoxyglucose positron emission tomography (FDG PET), glycolysis score, GLUT1 and GLUT3 expression level and clusters based 
on ImmuneScore are shown as for each sample (above the heatmap). (B) Scatterplot showing the association of ImmuneScore and TLRmax. The color indicates two distinct 
clusters based on ImmuneScore, and the size of each spot indicates the tumor volume (cm3). (C) The distribution of ImmuneScore in the study samples. The samples were divided 
into two distinct group, immune-rich and immune-poor group. The threshold for the clustering based on the histogram was determined by a kernel density estimation. The 
threshold was 0.558. (D) The correlation between ImmuneScore and TLRmax were depicted separately according to the immune-rich and -poor group. TLRmax showed a 
negative correlation with ImmuneScore (r = -0.28, p = 0.04) in immune-poor group. On the contrary, TLRmax showed trend of positive correlation with ImmuneScore in 
immune-rich group (r = 0.58, p = 0.10).  

 

The ratio of GLUT3 and GLUT1, a surrogate 
of the reciprocal glucose metabolic activity 
between cancer and immune cells, predicts 
immunotherapy response 

We expect that the relative metabolic activity of 
immune cells to cancer cells can be measured by a 
simple surrogate marker, the ratio of GLUT3 to 
GLUT1, GLUT-ratio. For melanoma patients who 
underwent anti-PD1 therapy [23], the GLUT-ratio was 
positively correlated with ImmuneScore for both 
pre-treatment and on-treatment data (r = 0.23, p = 0.10 
and r = 0.28, p = 0.03; Figure 5A, B). The GLUT-ratio of 
responders tended to be higher than nonresponders 
before the treatment (p = 0.08; Figure 5C). The 

GLUT-ratio of responders was significantly higher 
than those of nonresponders in the on-treatment data 
(p = 0.02; Figure 5D). When the patients were divided 
into three groups according to the response, PR/CR, 
SD, and PD, the GLUTratio showed a trend of 
difference according to the response group (Figure 
S8). Notably, the difference of GLUTratio measured 
by on-treatment data of the three groups showed a 
borderline significance (p = 0.057, Kruskal-Wallis 
rank-sum test). A waterfall plot visualizes the 
association between the response and pre-treatment 
GLUT-ratio as well as the change of GLUT-ratio 
during anti-PD1 treatment (Figure 5E). The increase of 
GLUT-ratio was negatively correlated with pre-
treatment GLUT-ratio, which suggested that the rise 
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of GLUT-ratio after anti-PD1 was more prominent in 
tumors with low pre-treatment GLUT-ratio (r = -0.50, 
p = 0.0003; Figure 5F). Furthermore, the rise of 
GLUT-ratio after anti-PD1 in low GLUT ratio tumors 
was found in patients with SD and CR/PR, while it 
was not in patients with PD (r = -0.77 for SD; r = -0.70 
for PR/CR; r = -0.01 for PD; Figure 5G). 

To corroborate the predictive value of GLUT- 
ratio for immunotherapy response, we investigated 
the GLUT-ratio in another melanoma data treated 
with anti-CTLA4 [25]. The GLUT-ratio was also 
significantly positively correlated with ImmuneScore 
(r = 0.37, p = 0.02; Figure S9A). A trend of higher 
GLUT-ratio calculated by baseline RNA-seq in tumors 
of CR/PR than those of PD or SD (p = 0.14; Figure 
S9B). Furthermore, the GLUT-ratio was associated 
with progression-free survival. The higher GLUT- 
ratio was significantly associated with a favorable 
outcome, which suggests clinically good response to 
anti-CTLA4 (Cox model, hazard ratio = 0.73, 95% 
confidence interval 0.55-0.98, p = 0.04; Figure S9C, D). 

Discussion 
 In spite of the importance of the metabolic 

interaction in tumor immunity as well as progression, 

metabolic characteristics of cancer and immune cells 
have received poor attention as a clinically feasible 
biomarker to understand tumor immune 
functionality. We found that glucose uptake of cancer 
cells and immune cells in TME were mainly 
associated with different GLUTs, GLUT1 and GLUT3, 
respectively. These findings were confirmed by the 
results of scRNA-seq as well as the correlation of 
GLUTs with ImmuneScore in LUSC tumors. The 
function of glucose uptake could be assessed by 
noninvasive imaging, FDG PET, which showed that 
uptake was correlated with different GLUTs 
according to the immune-related subtypes in this 
study. Though other proteins related to glycolysis, 
including hexokinase II, also affect FDG uptake, the 
finding that GLUTs were differently enriched in TME 
is new considering GLUTs are the main molecule 
associated with FDG uptake. It suggests that, in viable 
human tumors, glucose uptake by GLUT1 in cancer 
cells is relatively suppressed when GLUT3 mediated 
glucose uptake by immune cells is increased in 
immune-rich tumors. This competitive glucose 
metabolism was supported by previous studies in 
head and neck cancers [26, 27], which showed 
decreased glucose and FDG uptake according to CD8 

 

 
Figure 4. The pattern of association between TLRmax and glucose transporters were different according to the subgroups based on ImmuneScore. (A) In 
the immune-poor group, GLUT1 expression showed a positive correlation with TLRmax (r = 0.27, p = 0.04). (B) However, TLRmax showed no correlation with GLUT3 
expression in the immune-poor group (r = -0.11, p = n.s.). (C) In immune-rich group, GLUT1 showed a trend of negative correlation with TLRmax, though it did not reach a 
statistical significance (r = -0.43, p = 0.24). (D) GLUT3 showed a significant positive correlation with TLRmax (r = 0.78, p = 0.01). (E) We propose the association of glucose 
uptake with immune profiles in TME based on the reciprocal change of glucose metabolism between cancer and immune cells. A schematic diagram shows the overall glucose 
uptake of tumors mediated by different GLUTs of cancer and immune cells within TME in accordance with the ImmuneScore. 
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T-cell infiltration in TME. Furthermore, among 
myeloid cells, high GLUT3 myeloid cells were 
associated with high glycolysis and low oxidative 
phosphorylation, which suggested anti-tumor 
population of macrophages [28]. It suggested high 
GLUT3 in immune cells in TME could reflect the 
enriched anti-tumor immune population. Considering 
the suppressed aerobic glycolysis in cancer cells by 
activated effector immune cells in TME, biomarkers 

which could represent respective glucose metabolism 
in cancer and immune cells are expected to reflect 
anti-tumor immunity status. 

We assessed the usefulness of the GLUT-ratio to 
evaluate differential glycolysis activation in cancer 
and cancer-infiltrating immune cells. The idea was 
started from our findings that tumors with highly 
expressed GLUT3 have enriched immune cell 
infiltration in TME, reflecting metabolically active 

 

 
Figure 5. The ratio of GLUT3 to GLUT1 as a surrogate marker for evaluating metabolic functionality of immune cells in melanoma patients treated with 
immunotherapy. From the RNA-sequencing data from melanoma patients who underwent anti-PD-1 treatment, we examined the GLUT-ratio, the ratio of GLUT3 to GLUT1, 
whether it could predict treatment response. (A, B) The GLUT-ratio showed a positive correlation with ImmuneScore in pre-treatment (r = 0.23, p = 0.10) as well as 
on-treatment (r = 0.28, p = 0.03) melanoma tissues. (C, D) The GLUT-ratio of nonresponders (stable disease and progressive disease) and responders (complete or partial 
remission) was compared. (C) There was a trend of higher GLUT-ratio in responders compared with nonresponders in pre-treatment phase (p = 0.08). (D) This trend was more 
prominent in the on-treatment phase. The GLUT-ratio of responders and nonresponders was significantly different in on-treatment phase (p = 0.02). (E) The relationship 
between anti-PD-1 treatment response according to RECIST criteria and pre-treatment GLUT-ratio, %change of GLUT-ratio after the immunotherapy treatment was presented. 
(F) A scatter plot depicts a relationship between GLUT-ratio from pre-treatment tissue and the % change of GLUT-ratio after the anti-PD-1 treatment. Overall, there was a 
significant negative correlation between %change and baseline value of the GLUT-ratio (r = -0.50, p = 0.0003), which suggests GLUT-ratio is increased after the treatment in 
tumors with low pretreatment GLUT-ratio. (G) According to each response criteria, the patients with SD or PR/CR showed a negative correlation, however, the patients with 
PD did not show any correlation between two parameters, pretreatment and %change of GLUT-ratio (r = -0.77 for SD; r = -0.70 for PR/CR; r = -0.01 for PD). Specifically, there 
was very few patients who showed GLUT-ratio increment among low GLUT-ratio in patients with PD. (irRECIST = immune-related response evaluation criteria in solid tumors; 
CR = complete remission; PR = partial remission; SD = stable disease; PD = progressive disease). 
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effector immune cells. Immune cells also use GLUT1 
as a glucose transporter, according to previous studies 
[29, 30]. However, our findings suggest that GLUT3 
could be a main transporter of immune cells in TME 
of LUSC, at least. Since the enriched CD8+ T-cells in 
TME and cytolytic activity are associated with good 
response to ICI by estimating cellular anti-tumor 
activity [31], the GLUT-ratio can reflect the active 
status of tumor immunity as immune effector 
function requires enhanced aerobic glycolysis [5]. 
Notably, the difference of GLUT-ratio between 
tumors with responders and non-responders to 
anti-PD1 was more prominent in the GLUT-ratio 
measured by on-treatment data. Of note, as shown in 
the waterfall plot (Figure 5E), some tumors with 
relatively low pre-treatment GLUT-ratio showed 
PR/CR or SD, however, GLUT-ratio of these tumors 
was increased after the treatment. It suggested that 
GLUT-ratio is possibly used as a dynamic biomarker 
to evaluate anti-tumor functionality at the early phase 
of ICI treatment. Activated immune cells which 
expresses high GLUT3 may be increased after the 
anti-PD1 treatment, and eventually, promote 
antitumor immunity. Increased GLUT3 related to 
increased activation of immune cells during ICI 
treatment supports a potential mechanism of pseudo-
progression, in which increased size of some tumors 
eventually regressed may reflect increased immune 
cells within the TME [32]. In particular, a few tumors 
with good response to ICIs showed an increase in 
FDG uptake at interim response assessment 
compared with baseline FDG uptake of the tumor [33, 
34]. These findings have been clinically believed to be 
caused by increased immune cells, and the GLUT- 
ratio is expected to clarify the course of tumor after 
ICIs. In terms of these clinical imaging findings 
according to ICIs, the GLUT-ratio can be used as a 
surrogate marker that monitors the changes of 
functional immunity during ICIs. Even though FDG 
uptake cannot directly provide immune profiles of 
TME, it may play a role in tumor characterization if 
the FDG uptake pattern is interpreted 
comprehensively with pathology. Furthermore, the 
differently enriched GLUTs in cancer and immune 
cells could be a new imaging target for noninvasive 
assessment of immune profiles [35]. A target molecule 
selectively binding to a GLUT subtype [36] could be 
used to develop a novel PET imaging method for 
selective GLUT imaging. 

One limitation of our study is that we 
preliminarily investigated the predictive value of the 
GLUT-ratio for ICIs in small cohorts limited to 
melanoma patients. In terms of the anti-tumor activity 
of tumors, other biomarkers reflect various 
mechanisms of tumor immune functions such as the 

immunogenicity, immune resistance as well as 
effector immune cells [37]. Thus, additional methods 
to integrate biomarkers with different mechanisms 
are necessary to understand immune status of tumors 
and develop accurate predictive models for ICIs [37]. 
Regarding RNA-seq data, we used multiple datasets 
without integration. Different experimental protocols 
and preprocessing methods could affect the results. 
Nonetheless, the correlation of GLUTs and 
ImmuneScore was consistently found. Even though 
we suggested the close relationship between the 
GLUT-ratio and immune enrichment in two types of 
cancers (LUSC and melanoma), we need to validate 
our hypothesis of the reciprocal glucose metabolism 
of cancer and immune cells via different GLUTs in 
other cancer types. A limitation of spatial 
heterogeneity should be noted. ImmuneScore 
evaluated by RNA-seq data represented immune 
enrichment of a small proportion of a tumor, while 
FDG uptake patterns on PET image represented 
tumor metabolism at the macro-scale. It implied that 
heterogeneity of ImmuneScore affects the results of 
correlation due to spatially different tumor sites of 
TLRmax and RNA-seq analysis. To clarify the 
correlation and to solve these issues, spatially co- 
registered correlative analysis between FDG uptake 
and transcriptome analyses will be needed. 
Furthermore, as the association between GLUTs and 
ImmuneScore was evaluated in LUSC, the predictive 
value in lung cancer patients should be further 
validated as future work. 

Our integrative approach of multiscale data 
including bulk and scRNA-seq and clinical functional 
imaging has the potential to comprehensively 
understand tumor immune status and dynamic 
interactions in TME. Our results would be of great 
interest to clinically understand metabolic features of 
tumors related to immune functionality, which 
highlights the role of immune cells of TME in 
interpreting FDG uptake. Moreover, our findings may 
be applied to develop another biomarker reflecting 
metabolic profiles of tumors to predict and monitor 
patients who would undergo immunotherapy. We 
expect that our suggested biomarker based on the 
metabolism of TME will be utilized to understand 
complicated mechanisms of immune-metabolism 
interaction associated with immunotherapy. 
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