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Research Statement:
Combinatorial Methods in Algebra and Geometry

Jacob P. Matherne

My research is at the intersection of algebra, geometry, and combinatorics. My dissertation work under
Pramod Achar involved studying singularities of certain topological spaces via perverse sheaves. Concur-
rently, I began working with Greg Muller on cluster algebras, a subject that has an easier point of entry
due to its computable examples, but which has deep connections throughout mathematics and physics.

This early blend of almost diametrically-opposed styles of math shaped my research direction. My
work gravitated toward interpreting complicated topological or algebraic questions as combinatorial ones.
Sometimes the information flows the other way as well. Recently, I am most excited about the following
projects: my collaborators and I are developing an “intersection cohomology” theory for matroids,
allowing for powerful algebro-geometric tools to be used for solving classical combinatorial problems about
matroids (Section , are proving that various polynomials in algebraic combinatorics satisfy log-
concavity properties both in a continuous and discrete way (Section , and are discerning that certain
moduli spaces of connections on P! that arise in the geometric Langlands program are (non)empty, the
so-called Deligne-Simpson problem (Section .

Some of my research problems lend themselves to explicit computations which allow undergraduates
and beginning graduate students to make early contributions to solving problems in various areas of
mathematics. Moreover, experiments can often be done using computer software like Macaulay2, GAP,
or SageMath. My research statement is divided into five broad sections: matroids (Section 1), Lorentzian
polynomials in algebraic combinatorics (Section 2), cluster algebras (Section 3), representation theory of
finite-dimensional algebras (Section 4), and geometric representation theory and the Langlands program
(Section 5)E]

Section (joint with Tom Braden (UMass), June Huh (Stanford), Nicholas Proudfoot (Oregon), and
Botong Wang (Wisconsin)) We aim to introduce topological techniques into the field of matroid theory.
As applications, we have proven the non-negativity of Kazhdan—Lusztig polynomials of matroids, as well as
Dowling and Wilson’s 1974 “Top-Heavy Conjecture” on the lattice of flats of a matroid.

Section 2| (joint with June Huh (Stanford), Karola Mészdros (Cornell), and Avery St. Dizier (Cornell)) We
prove that (normalized) Schur polynomials are strongly log-concave; as an application, we prove Okounkov’s
conjecture in the special case of Kostka numbers.

Section (joint with Chris Fraser (University of Minnesota) and Maitreyee Kulkarni (HIM)) We study
postroid cells in partial flag varieties (known in physics as the one-loop Grassmannian). In particular, we
develop an analog (called momentum-twistor diagrams in physics) of Postnikov’s plabic graphs in a disk to
serve as a combinatorial model for postroids in partial flag varieties.

Section (joint with Greg Muller (Oklahoma)) We develop an algebro-geometric algorithm which gives a
presentation for upper cluster algebras in terms of generators and relations. This algorithm is computable
in finite-time, and I have implemented it into Sage with my collaborators.

Section (joint with Alexander Garver (LaCIM), Kiyoshi Igusa (Brandeis), and Jonah Ostroff (Wash-
ington)) We introduce a combinatorial model for exceptional sequences of type A quiver representations.

Section (joint with Pramod Achar (Louisiana State) and Maitreyee Kulkarni (HIM)) We introduce a
combinatorial model for computing the Fourier-Sato transform on type A quiver representation varieties.

1 Each of the broad sections can be read independently, so the reader is invited to pick his or her favorite subject and go
directly to that page.
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Section (joint with Maitreyee Kulkarni (HIM), Neal Livesay, Bach Nguyen (Xavier University), and
Daniel Sage (Louisiana State) We solve the Deligne-Simpson problem to determine when the moduli space
of Coxeter connections on P! is (non)empty in type A. We are working to extend this to other classical Lie

types.

Section [5.2] This was my dissertation work which gives a geometric, functorial relationship between repre-
sentations of an algebraic group and representations of the corresponding Weyl group at the level of mixed,
derived categories of sheaves on the affine Grassmannian and nilpotent cone of the Langlands dual group.

Contents
1 Matroidsl. . . . . . . o e e 2
[2 Lorentzian polynomials in algebraic combinatorics and representation theory] . . . .. .. .. 6
[3 Cluster Algebras| . . . . . . . . . e 9
{4 Representation theory of quivers and finite-dimensional algebras| . . . . . ... ... ... .. 10
[5 Geometric representation theory and the geometric Langlands program| . . .. ... ... .. 12

1 Matroids

Definition 1.0.1. A matroid M on finite ground set F is a collection of subsets of F, called flats, such that
e The intersection of any two flats is a flat, and

e For any flat F', any element in F \ F' is contained in exactly one flat that is minimal among the flats
strictly containing F'.

The set L(M) of all flats forms a graded lattice called the lattice of flats of M.

Remark 1.0.2. Throughout, it will be convenient to assume that M is a loopless matroid; that is, () is a flat
of M. This is harmless since removing loops gives an isomorphic lattice of flats.

We point to [OxI11] for an excellent resource on matroids. One source of examples of matroids is those
arising from hyperplane arrangements—here the ground set is the finite set of hyperplanes, the flats are all
subspaces gotten by intersecting hyperplanes, and the rank of a flat is its codimension.

Ezample 1.0.3. The linear subspace V := (21 + 22 + x3 = 0) in CP={1.2:3} defines a hyperplane arrangement
A (hence a matroid) after intersecting it with the coordinate hyperplanes. We illustrate A together with
L(M) below. Note that the partial order of £(M) is given by reverse inclusion of subspaces.

Hy := (z1 =0) Hy := (22 = 0) Hy N Hyn H; = {0}
< > Hj = (.’13320) L \HZ/ Hs
14
14

Definition 1.0.4. A matroid M is realizable over a field k if there is a k-vector space and a hyperplane

arrangement inside it whose associated matroid is M. A matroid M is realizable if it is realizable over some
field.

For each flat F' € L(M), there are two new matroids:
o MT is a certain matroid on F' called the localization of M at F, and

e Mp is a certain matroid on E \ F' called the contraction of M at F.
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The figure below shows an example (here M is the matroid on F = {1,2,3,4} realized by the hyperplane
arrangement of four generic planes in C® whose intersection is the origin) of these two constructions in terms
of the lattice of flats L(M).
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1.1 Two problems in matroid theory
1.1.1 The “Top-Heavy Conjecture”

Denote by L£F(M) the collection of flats of rank k in £(M). These are just the flats k levels up from the
bottom of L£(M) (starting with the bottom flat at rank 0).

Conjecture 1.1.1 (“Top-Heavy Conjecture”, Dowling—Wilson 1974 [DW74, DWT5]). Let M be a rank d
matroid. For any k < d/2, we have
#LE(M) < #L97F(M).

Despite being simple to state and understand, the Top-Heavy Conjecture remained unsolved for forty-
three years. In 2017, June Huh and Botong Wang proved the conjecture in the case of realizable matroids.

Theorem 1.1.2 (Huh-Wang 2017 [HW17]). Let M be a realizable matroid of rank d. For any k < d/2, we
have

HLE(M) < #L47F(M).

The proof of this theorem uses the topology of a certain singular projective variety Y (see Section m
for the definition of Y) defined from a hyperplane arrangement 4. When the matroid is not realizable, all
geometric techniques are missing; however, one can emulate the topology in a purely combinatorial setting.
We will explain some of the ingredients of the proof of following theorem in Section

Theorem 1.1.3 (Braden-Huh-M.-Proudfoot-Wang [BHM™'20b]). Dowling and Wilson’s Top-Heavy Con-
jecture (Congecture holds for all matroids.

In the next section, we explain another result which can be formulated for all matroids, and whose proof
in the non-realizable setting relies on using geometric inspiration to inform a combinatorial argument, when
no geometry exists.

1.1.2 Kazhdan—Lusztig polynomials of matroids

In [EPWI6], Elias, Proudfoot, and Wakefield associated to each matroid M a polynomial Py, (t) called the
KL polynomial of M. These polynomials share many analogies with the classical KL polynomials [KI.79]
for Coxeter groups, but exhibit some interesting differences (see the table at the end of this section). Both
types of polynomials have a purely combinatorial definition—while KL polynomials for Coxeter groups are
defined in terms of more elementary polynomials called R-polynomials, every matroid has a characteristic
polynomial s (¢) which plays this role. In the classical setting, Polo showed that every polynomial with
non-negative coefficients and constant term 1 occurs as a KL polynomial [Pol99] for some symmetric group
GS,,. In stark contrast, it is conjectured that the Pys(t) are real-rooted [GPY16].

When the Coxeter group is a finite Weyl group, there is a geometric interpretation of the classical KL
polynomials. They are the dimensions of intersection cohomology stalks of Schubert varieties, which implies
non-negativity of their coefficients. In a similar way, when M is realizable, Elias, Proudfoot, and Wakefield
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identified Py (t) with the dimensions of intersection cohomology stalks of a certain singular projective variety
Y. (We call Y the Schubert variety of a hyperplane arrangement—see Section for the definition of Y.)E|

Theorem 1.1.4 (Elias—Proudfoot—Wakefield [EPW16]). If M is a realizable matroid, then

Py(t) =t dimIH{,  (Y).
i>0

In this way, the Py/(t) have non-negative coefficients when M is realizable. The question of non-negativity
of the KL polynomials for arbitrary Coxeter groups was conjectured in [KL79], but remained unsolved for
thirty-five years. In 2014, Elias and Williamson settled this question in the affirmative by using sophisticated
diagrammatic combinatorics [EW17,[EW16] to give an algebraic proof of the decomposition theorem [BBD82]
via the Hodge-theoretic properties of Soergel bimodules [EW14]. Braden, Huh, Proudfoot, Wang, and I
have proven the analogous conjecture for all matroids. We will explain some of the ideas of the proof in

Section [[LT.4l

Theorem 1.1.5 (Braden-Huh-M.-Proudfoot-Wang [BHM™20b|). For an arbitrary matroid M, the coeffi-
cients of the KL polynomial Pp(t) are nonnegative.

Despite the simplicity of this statement, just as in the classical setting, it has deep connections relating
topology, combinatorics, and representation theory. Proving Theorem [1.1.5| requires producing a working
Hodge theory purely combinatorially, when no geometry exists. A recent example of work in the same vein
is that of Adiprasito, Huh, and Katz [AHK18]. They proved, using deep Hodge-theoretic arguments, that
the coefficients of the characteristic polynomial xs(¢) of an arbitrary matroid form a log-concave sequence;
thereby settling a long-standing conjecture of Rota, Heron, and Welsh [Rot71l, [Her72, [Wel76].

We include here, for convenience, a table summarizing the above discussion, and more.

KL theory for Coxeter groups KL theory for matroids
Coxeter group W matroid M
Weyl group W realizable matroid M
Bruhat poset lattice of flats L(M)
R-polynomial characteristic polynomial x (%)
Hecke algebra ?
Polo real-rooted
Schubert variety Schubert variety Y of a hyperplane arrangement
Nonneg. of KL polys of W (Elias—Williamson [EW14]) | Nonneg. of KL polys of M (Theorem

1.1.3 The realizable case

Because the topology of the realizable case informs our strategy for proving Theorems and in the
general case, I will briefly explain the proof of the “Top-Heavy Conjecture” and the non-negativity of the
KL polynomials for realizable matroids (Theorems and above).

Suppose that we have a hyperplane arrangement A in a C-vector space V such that the intersection of
the hyperplanes in the origin. Consider the maps

Ve Pva= A= ] P,

HeA HeA HeA

and define Y to be the closure of V' inside []. 4 P!. We call Y the Schubert variety of the hyperplane
arrangement A because it plays an analogous role in the KL theory of matroids that a Schubert variety in

2 Note that in an open neighborhood of the most singular point (00, ...,00), the projective variety Y is isomorphic to a
well-studied affine conical variety called the reciprocal plane. (We point to [PS06, [ABI6] for more information on reciprocal
planes.)
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the flag variety plays in the KL theory of Coxeter groups. One of the most important analogies is that Y
admits a stratification by affine spacesﬂ [PXY18, Lemmas 7.5 and 7.6]:

Y= J[ Yr with Yp=C™*F (1)
FeL(M)

Thus we obtain the following result.
Proposition 1.1.6. The odd-degree cohomology of Y vanishes, and dim H2*(Y) = #.L*(M).

Thus, the proof of the “Top-Heavy Conjecture” in the realizable case reduces to producing an injective
map H2*(Y) — H24=k)(Y). If Y were smooth, the Hard Lefschetz Theorem would provide such an injection.
But the non-smoothness of Y requires moving to intersection cohomology.

Proof of Theorem[1.1.9 [AWT7]. Let L € H*(Y') be the class of an ample line bundle. Since Y is a singular
projective variety, the Hard Lefschetz Theorem asserts that there is an isomorphism L?2F: IH? Y) —
IH2@=)(Y). The natural map H*(Y) — IH®*(Y) making IH*(Y) a module over H*(Y) is an injection,
since Y has a stratification by affine spaces [BE09]. Therefore, the map L?2* restricts to an injection
L2k | ok (V) : H2R(Y') s H2(@=F)(Y"). The proof follows from Proposition m O

1.1.4 The general case

The proofs of Theorems and inform our approach for arbitrary matroids (even though no geometry
exists here).

Semi-wonderful geometry There is a resolution of singularities 7 : Y — Y, where the variety Y is given by
blowing up Y at the point stratum Y}, then blowing up the proper transforms of all one-dimensional strata
Yr (tk F' = 1), and so OIEI It has a stratification indexed by chains of flats in the lattice L(M) ending at
the maximal flat E (for example, the variety Y of Example m has eight strata).

Theorem 1.1.7 (Huh-Wang [HWT7] for H* (M), Braden—Huh-M.-Proudfoot—Wang [BHM™20a] for CH®(M)).
Let M be an arbitrary matroid. There exist graded rings CH®*(M) and H*(M) with explicit presentations in
terms of L(M) such that when M is a realizable matroid, there are isomorphisms of graded rings

CH*(M)=H>*(Y) and H*(M)=H>*(Y).
Moreover, there is a natural inclusion H®* (M) — CH®*(M) which makes CH*(M) and algebra over H®(M).

Remark 1.1.8. In [FY04] the Chow ring of a matroid is introduced, and it is the main object of study in

[AHKIg|. This ring has a similar presentation to CH®*(M), and geometrically it is the cohomology H*(Y)

of de Concini and Procesi’s full wonderful model Y (which is the fiber of =: Y — Y over the most singular
point Yy of Y'). We prefer working with CH®* (M) because 7: Y — Y is a stratified map.

Combinatorial intersection cohomology of matroids There is a canonical isomorphism CHd(M ) = C, and
a perfect pairing, we call the Poincaré pairing,

CH*(M) ® CH*(M) - CHY(M) =~ C
for any 0 < k < d.

Definition 1.1.9. The intersection cohomology TH*(M) of a matroid M is the unique indecomposable
summand of CH®(M) as an H®*(M)-module which contains CH%(M) = C.

3 The closure Yz of a stratum Y is isomorphic to a Schubert variety with underlying matroid the localization M ¥, and a
normal slice to Y at a point in Y is isomorphic to a Schubert variety with underlying matroid the contraction Mp.

4 The reader familiar with the Weyl group setting (the left column of the table at the end of Section should interpret
this as an analog of a Bott—Samelson (BS) resolution of a Schubert variety in the flag variety; however, our resolution is
canonical—it does not depend on any choices, whereas a BS resolution depends on a choice of reduced word.
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Theorem 1.1.10 (Braden—Huh-M.-Proudfoot-Wang [BHM™20b|). The intersection cohomology TH® (M)
of a matroid M satisfies Poincaré duality with respect to the Poincaré pairing on CH®*(M).

Theorem gives a (Bjorner-Ekedahl-type) inclusion H* (M) < IH®(M); indeed, CHY(M) c TH®(M)
and by Poincaré duality of TH*(M), we know CH"(M) C IH*(M). Thus Lone(ay € IH*(M), and since
IH®*(M) is an H*(M)-module, the claim follows. What remains to emulate the proof of Theorem is
Hard Lefschetz for TH®* (M).

Theorem 1.1.11 (Braden-Huh-M.-Proudfoot-Wang [BHM™20b|). The intersection cohomology TH®(M)
of a matroid M satisfies the Hard Lefschetz Theorem; that is, there exists a class L € HY (M) such that for
every k < d/2, the map L2 . TH* (M) — TH*(M) is an isomorphism.

Theorems [1.1.10| and [1.1.11| together give a proof of the “Top-Heavy Conjecture” (Theorem for all
matroids using the same argument as in the realizable case.

To prove Theorem we interpret the coefficients of the KL polynomials of matroids as graded
dimensions of the primitive part of TH®*(M). (This is similar to the interpretation given in Theorem m
for realizable matroids.)

Theorem 1.1.12 (Braden-Huh-M.-Proudfoot-Wang [BHM™20b|). For an arbitrary matroid M, we have
Pyr(t) =350t dim(IH (M) /H (M) - TH'~ 1 (M)).

Remark 1.1.13. The proofs of Theorems [1.1.10} [I.1.11] and [I.1.12] require a complicated induction in the
style of [EW14l [AHKIS]|. In the course of the proofs, we prove the entire Kahler package (Poincaré duality,
Hard Lefschetz, and the Hodge-Riemann bilinear relations) for IH®*(M) as well as for various intermediate
objects we must define along the way.

2 Lorentzian polynomials in algebraic combinatorics and representation theory

2.1 (Normalized) Schur polynomials are Lorentzian
2.1.1 Motivation from representation theory

Let A be the integral weight lattice of sl,,(C). For each A € A, the irreducible representation V() of highest
weight A decomposes into finite-dimensional weight spaces

V) =DV,

The dimensions of the weight spaces V()), are called weight multiplicities. We show that if A € A is a
dominant weight, then the sequence of weight multiplicities we encounter is log-concave, as we walk along
any root direction in the weight diagram of V().

Theorem 2.1.1 (Huh-M.-Mészdros—St. Dizier [HMMS19]). For A, € A with A dominant, we have
(dim V(X)) > dim V(A) ype;—e, im V(A) u—e, 4e,

for any i,j € [n].

We note that Theorem already fails for sp,(C) for the irreducible representation of highest weight
2ws. In the case that A € A is an antidominant weight, then the irreducible representation V() is the Verma
module M ()); we prove that all Verma modules M (X) for A € A enjoy the same log-concavity property.

Proposition 2.1.2 (Huh-M.—Mészéros—St. Dizier [HMMS19]). For any A, u € A, we have
(ditn M(A))? = ditn M(N) e, e, dim M(A) e,

for any i,j € [n].
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Proof sketch. It is known that weight multiplicities of Verma modules are evaluations of Kostant’s partition
function:

dim M (), = p(p — A),

which is the number of ways of writing ;1 — A as a sum of negative roots. In turn, Kostant partition function
evaluations are mixed volumes of Minkowski sums of polytopes [BV0S], so the Alexandrov—Fenchel inequality
for mixed volumes finishes the proof. O

We conjecture that this surprising log-concavity phenomenon holds not only for dominant (Theorem|2.1.1])
and antidominant weights (Proposition [2.1.2)), but also for all integral weights.

Conjecture 2.1.3 (Huh-M.-Mészaros—St. Dizier [HMMSI9]). For A, u € A, we have
(dimV(A),)? = dim V(A) ype;—e, dim V(A) u—e, 4e,
for any i,j € [n].

2.1.2 Schur polynomials

Our proof of Theorem goes via Schur polynomials. Schur polynomials were first studied as ratios of
alternates by Cauchy in 1815. They are the characters of irreducible polynomial representations of GL,,(C).
We point to [Ful97] for a history of Schur polynomials.

Definition 2.1.4. The Schur polynomial (in n variables) of a partition A is

Sk(l‘l, N ,xn) = Z aj“u(T)7 l"u‘(T) = ajlfl(T) . .Jjﬁn(T)7

TESSYT(N)
where the sum is over all semi-standard Young tableaux of shape A.

Grouping terms with the same p gives

8)\(371,...,.7,‘”) = ZK)\M.I“,
7

where K, is the Kostka number.

Ezample 2.1.5. When \ = (2, 1), we have the two semi-standard Young tableaux

1]1] 1]2]
2 2

— —

so the corresponding Schur polynomial is s(2,1)(21,22) = 239 + 1123
The normalization operator is given by
Th ph L gplin
W
Continuous Theorem 1 (Huh-M.-Mészdros—St. Dizier [HMMS19]). For any partition A\, we have

M
N(sx(a1,.. 2n) = Y K,\Mﬁ
I

is either identically 0 or log(N(sy)) is a concave function on RZ.

Discrete Theorem 1 (Huh-M.-Mészaros—St. Dizier [HMMS19]). For any partition A and pu € N, we
have
Kiu > K)\:N"Fei_ej KX,M—EH-EJ'

for any i,j € [n].
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The Discrete Theorem implies Theorem |2.1.1| weight multiplicities because
dimV(A\), = Kxp-

Littlewood-Richardson coefficients c, are given by
V() @ V(k) ~ @V ()H.

Motivated from statistical mechanics, Okounkov made the following conjecture in 2003; that is, that in
the space of all triples of partitions of the same size, the logarithm of the associated Littlewood—Richardson
coefficient is a concave function.

Conjecture 2.1.6 (Okounkov [Oko03]). The discrete function
(A, k,v) — log X .

is a concave function.

A counterexample to Conjecture was found by Chindris, Derksen, and Weyman [CDWQ7]. However,
using our Discrete Theorem [I} we immediately obtain a special case of Okounkov’s Conjecture since Kostka
numbers are examples of Littlewood—Richardson coefficients.

2.1.3 Lorentzian polynomials

The key ingredient to in the proof of Theorem is to show that (normalized) Schur polynomials are
Lorentzian. Lorentzian polynomials are a class of polynomials introduced by Bréndén and Huh in 2019
which link discrete convex analysis, various log-concavity properties in combinatorics, volume polynomials
in algebraic geometry, and stable polynomials in optimization theory [BH20].

Definition 2.1.7 (Brandén—Huh [BH20]). A degree d homogeneous polynomial h(z1,...,z,) is Lorentzian
if

e all coefficients of h are nonnegative,
e supp(h) has the exchange property, and

: 1o} 9
e the quadratic form o .

(h) has at most one positive eigenvalue for all iy,...,iq_2 € [n].

Ezample 2.1.8. The Schur polynomial s (5 o) (21, 72) = 2242129 +13 is not Lorentzian because the eigenvalues
of its associated quadratic form are 3/2 and 1/2, but the normalized Schur polynomial N (s oy(z1,22)) =

2 2
%1 + x129 + 3;—2 is Lorentzian because its associated quadratic form has eigenvalues 0 and 1.
Theorem 2.1.9 (Brandén-Huh [BH20]). If f =", %52 is a Lorentzian polynomial, then
o f is either identically O or log(f) is concave on RZ,, and
® 2 > Catei—e;Ca—este; Jor all o and for all i,j € [n].

This immediately implies both Continuous Theorem [1| and Discrete Theorem (I} which in turn implies
Theorem 2111

We note that we were unable to prove that normalized Schur polynomials are Lorentzian using a purely
combinatorial argument. Instead, we showed that any normalized Schur polynomial is an example of a
volume polynomial in algebraic geometry (and volume polynomials are known to be Lorentzian via [BH20]).

We conjecture that a host of polynomials occurring in algebraic combinatorics are Lorentzian polynomials.
In the table below, we summarize our computer experiments in this direction.
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Polynomial Tested for

Schubert:

N(Gu(a1,. .. 2n)) n<8

Skew Schur: A with < 12 boxes and

N(sy/u(®1,...,2,)) < 6 parts

Schur P: strict A with A\; <12

N(P\(z1,...,z,)) and < 4 parts

honiog. Grothendieck: n<7

NG, (r1,.. . Ty, 2))

Key: compositions u with

N(ky(z1,...,20)) < 12 boxes and < 6
parts

Lastly, we note that, together with Alejandro Morales and Jesse Selover, we conjectured that chromatic
symmetric functions of Hessenberg graphs of Dyck paths are Lorentzian polynomials. We have some prelim-
inary progress in this direction.

3 Cluster Algebras

3.1 A combinatorial model for positroids in partial flag varieties

Positroid cells are strata in a particularly well-behaved stratification of the (positive part of the) Grassman-
nian. In 2006, Alexander Postnikov developed a combinatorial model for these positroid cells which has led
to a surge of study by a number of mathematicians. These positroid cells (and their associated combina-
torial diagrams) have been linked to cluster algebras, representation theory, and string theory. Continuing
work we started at IAS during discussions with Thomas Lam, Chris Fraser, Maitreyee Kulkarni, and I have
studied positroid cells for partial flag varieties; moreover, motivated from physics, we have constructed a
combinatorial diagram (called a momentum-twistor diagram in physics) in this more general setting.
A key tool in our results is the existence of a map

¢: FI(1,3;n) := {C C C* C C"} — Gr(4,2n).

In fact, this map lands in the cyclic shift p fixed point subvariety Gr(4,2n)?" of Gr(4,2n). We expect this
map to send positroid cells into positroid varieties (the closures of postroid cells). Understanding the map
¢ has allowed us to associate a bounded affine permutation to each positroid cell in F1(1,3;n). We are
currently concentrating our efforts into describing the poset of strata of positroid cells for Fl(1,3;n), and
plan to continue by extending our results to arbitrary partial flag varieties as the project progresses.

3.2 Computing upper cluster algebras

Cluster algebras are commutative unital domains generated by distinguished elements called cluster
variables which are defined by a combinatorial process called mutation. Many notable spaces are equipped
with cluster structures where certain regular functions play the role of cluster variables. For example, the
coordinate ring of the space of m X n matrices is naturally a cluster algebra, and each matrix minor is a
cluster variable. In this way, identities among matrix minors are a special case of the theory.

Cluster algebras are generally defined in terms of an infinite generating set; however, the most important
cluster algebras may be finitely-generated. For this reason, computing generating sets of cluster algebras and
the relations between those generators is an interesting problem. The cluster algebra A is the combinatorially
defined object, but from a geometric perspective, there is a more natural algebra to consider: the upper
cluster algebra U, which was introduced in [BEZ05]. It is defined as an infinite intersection of Laurent
polynomial rings, which makes ¢/ difficult to work with in general, as it is hard to write down any (even
infinite) generating set. Despite this hurdle, all known examples of upper cluster algebras enjoy many nice
properties, such as normality and being log Calabi—Yau. Studying U geometrically often gives information
about the more intrinsic algebra A, since A C U by the Laurent phenomenon [FZ02].
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One obstacle in the theory of cluster algebras has been an almost complete lack of examples in situations
where A # U. In a recent paper [MMI15], G. Muller (University of Michigan) and I exploited the algebraic
geometry of U to obtain an algorithm for producing a presentation of & (when A is “totally coprime”—a
mild technical condition) in terms of generators and relations.

Theorem 3.2.1 (M.—Muller 2015 [MM15]). If A is a totally coprime cluster algebra, then a finite-time
algorithm for presenting U exists whenever U is finitely generated.

We used this technique to give presentations of several interesting upper cluster algebras where A # U.
Also, together with Mills, Muller, and Williams, I implemented the algorithm in the computer algebra system
Sage (see https://trac.sagemath.org/ticket/18800).

Fig. 1. Important cluster algebras for which our algorithm gave a presentation of /.

Theorem has been used by several other mathematicians in their research—I. Canakci, K. Lee,
and R. Schiffler used our work to prove that A = U for the dreaded torus (the last quiver in Figure 1)
[CLS14], and more recently, M. Gross, P. Hacking, S. Keel, and M. Kontsevich used our computations to
make conjectures about the cluster variety for the once-punctured torus (the first quiver in Figure 1 with
a = 2) [GHKK14].

4 Representation theory of quivers and finite-dimensional algebras

4.1 Exceptional sequences and linear extensions

An exceptional sequence (V7,...,V,,) of quiver representations is a sequence of representations obeying
certain strong homological constraints. Exceptional sequences were introduced in [GR87] to study exceptional
vector bundles on P2. Since then, they have been shown to have many useful applications to several areas of
mathematics. For example, they have applications in combinatorics because (complete) exceptional sequences
are in bijection with maximal chains in the lattice of noncrossing partitions [IT09, [HK13|]. Furthermore, they
have been shown to be intimately connected to acyclic cluster algebras as their dimension vectors appear as
rows of c-matrices [ST13].

Even though they are pervasive throughout mathematics, very little work has been done to give a concrete
description of exceptional sequences. Previously, A. Garver (University of Minnesota) and I extended work
of T. Araya [Aral3] by classifying exceptional sequences of representations of the linearly-ordered quiver of
type A using noncrossing edge-labeled trees in a disk with boundary vertices [GM15].

To extend this classification to type A quivers with any orientation, Igusa, Garver, Ostroff, and I used
a more general combinatorial model called a strand diagram. We defined a bijective map ®, which takes
an indecomposable representation to its corresponding strand. It turns out that all of the homological
information in the definition of an exceptional sequence is stored in a noncrossing diagram of strands.

Theorem 4.1.1 (Garver—Igusa—M.—Ostroff 2015 [GIMO15]). Let @ be a type A quiver and let U and V' be
two distinct indecomposable representations of Q.
a) The strands ®(U) and (V) intersect nontrivially if and only if neither (U, V') nor (V,U)
are exceptional pairs.
b) The strand ®(U) is clockwise from ®(V) if and only if (U,V) is an exceptional pair and
(V,U) is not an exceptional pair.
¢) The strands ®(U) and ®(V) do not intersect at any of their endpoints and they do not
intersect nontrivially if and only if (U, V) and (V,U) are both exceptional pairs.
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Fig. 2: The indecomposable representations of the type As quiver 1 < 2 and their corresponding strands.

Theorem has many immediate consequences. B. Keller proved that any two green-to-red sequences
(sequences that are like MGS’s except that mutation at red vertices is allowed) applied to  with princi-
pal coefficients produce isomorphic ice quivers [Kell3]. His proof hinges on deep representation-theoretic
and geometric methods, but the statement itself is purely combinatorial. During the FPSAC’13 confer-
ence, B. Keller asked for a combinatorial proof—our theorem solves this problem. Another application of
Theorem is that it allowed us to classify all c-matrices for type A cluster algebras in a completely
combinatorial way using strand diagrams.

A complete exceptional collection is an unordered list of quiver representations which can be ordered
to make a complete exceptional sequence. We have shown that the number of complete exceptional sequences
arising from a given complete exceptional collection is equal to the number of linear extensions of a certain
poset arising from the corresponding strand diagram. Counting the number of linear extensions of posets is
a notoriously difficult problem in combinatorics; however, the class of posets arising from strand diagrams
are very nice.

Theorem 4.1.2 (Garver—Igusa—M.—Ostroff 2015 [GIMO15]). The class of posets arising from strand dia-
grams are exactly the posets P that satisfy the following properties.

e cach x € P has at most two covers and covers at most two elements,
e the underlying graph of the Hasse diagram of P has no cycles,
e the Hasse diagram of P is connected.

In particular, zig-zag posets are contained in this class, and their linear extensions are counted by a
determinant formula. Together with Alejandro Morales, I have been working towards a formula for the
number of linear extensions of all posets in this class (see Section ?? for progress in counting linear extensions
of a related class of posets).

Problem 4.1.3 (M.-Morales). Count the number of complete exceptional sequences arising from a given
complete exceptional collection by developing a method for counting the number of linear extensions of posets
arising from strand diagrams.

4.2 Computing the Fourier—Sato transform combinatorially

In this section, I will describe a problem involving perverse sheaves on certain quiver varieties and discuss
possible applications to representation theory of quantum loop algebras U, (Lg) and cluster algebras.
The Fourier—Sato transform is a geometric version of the Fourier transform for functions from analysis. If
V is a complex vector space, then the Fourier—Sato transform is a certain functor T which gives an equivalence
of categories between derived categories of conical sheaves
T:D> (V) — DL

con con

(V*)a

where V* is the dual vector space. The functor T has been used in various forms to much success for
more than thirty years—it was used by Laumon in the mid-1980s to significantly shorten Deligne’s proof of
the Weil conjectures (see [KWOI] for a nice treatment), it gives an alternative construction of the Springer
correspondence [HK84l [Bry86], and it plays a central role in the theory of character sheaves [Lus87, Mir(04].
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Despite its usefulness, in practice T is difficult to compute explicitly. In fact, it has only been explicitly
computed in few settings—some examples include the nilpotent cone N of a semisimple Lie algebra g [AMT5H]
and various stratified spaces of n x n matrices [BG99].

P. Achar, M. Kulkarni, and I have developed a method for computing T combinatorially. Let @ be the
type A, quiver ¢ — ¢ — ... — o. Fix a dimension vector w, and consider the space of representations of Q
with this dimension vector. This is an affine space Ey, which carries an action of a group Gy, a product of
general linear groups. This action gives a stratification of Fy, into Gy-orbits, and we have the Fourier—Sato
transform

T : D, (Ew) = D . (Ew)

where w* is the reverse of w. In this setting, T is t-exact for the perverse t-structure, and it sends (simple)
perverse sheaves to (simple) perverse sheaves.

To each Gy-orbit, we associate a triangular array of nonnegative integers satisfying certain conditions
arising from dominant weights for GL,,. These triangular arrays completely determine the Gy, -orbits.

Theorem 4.2.1 (Achar-Kulkarni-M. 2016). There is a bijection between Gy -orbits in Ey, and a certain
set Py, of triangular arrays of nonnegative integers.

The combinatorial set Py, carries a wealth of information about the geometry and representation theory
of Ew—the dimension of Gy-orbits and the partial order on them, as well as whether a representation is
injective or projective, can be read off the diagram. Most notably, it allows for a combinatorial computation
of T.

Theorem 4.2.2 (Achar—Kulkarni-M. 2018 [AKMIS]). There exists a combinatorial algorithm T : Py —
Py, that computes T for every simple perverse sheaf; i.e., such that T(IC(Oy)) = IC(Ox(y)), where IC(O5)
is the simple perverse sheaf supported on the closure Oy of the Gy -orbit Oy given by A € Py,.

Corollary 4.2.3 (Achar-Kulkarni-M. 2018 [AKMI18]). The map T and its inverse T' both give new algo-
rithms for computing the Knight—Zelevinsky multisegment duality (defined in [KZ90]).

We give a few examples of T below for the A3 quiver with dimension vector w = (3,3,3). Note that
the first example is the combinatorial version of the geometric fact that T takes the unique zero-dimensional
orbit to the unique dense orbit.

) BB )b

Recently, Nakajima used the Fourier-Sato transform on his graded quiver varieties to prove a character
formula for representations of quantum loop algebras U, (Lg), as well as to give a monoidal categorification
of certain cluster algebras [Nakll]. In his proof, he computes the Fourier—Sato transform of only a single
object. Theorem allows for the computation of T for every object, at least for the quiver Q.

Problem 4.2.4. Get information about representations of Us(Lg) by using T, our combinatorial description
of T. What does our explicit computation of T say about the cluster algebras involved?

This problem is particularly interesting to me as cluster algebras have been another important research
interest of mine—I have results about their structure theory (see Section and their relationship with
quiver representations (see Section . Solving this problem would blend geometric representation theory,
quivers, and cluster algebras (several of my research interests).

5 Geometric representation theory and the geometric Langlands program

5.1 Moduli spaces of Coxeter connections on P!

Recently Kamgarpour and Sage investigated rigidity for a class of connections on P! that they call “Coxeter
connections” [KS20]. This class of connections is particularly interesting from the perspective of the geometric
Langlands program, as they should be examples of “cuspidal” Langlands parameters.
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Together with Maitreyee Kulkarni, Neal Livesay, Bach Nguyen, and Daniel Sage, we have recently solved
the Deligne—Simpson problem for the moduli space of framed Coxeter connections on P! in type A. (Deligne—
Simpson problems are concerned with determining whether a given moduli space is (non)empty.) Surpris-
ingly, these results were obtained using only elementary linear algebra and various ad-hoc methods. More
surprisingly, one key ingredient of our proof is the seemingly unrelated paper [KL95]. We are currently
working to generalize [KL95] to other classical Lie types beyond type A, and we expect the resolution of the
Deligne—Simpson problem in these settings to follow immediately afterward.

A tangential direction we are workng in is to develop a more technical approach, rather than working in
an ad-hoc way. In particular, Crawley-Boevey solved the additive Deligne-Simpson problem for connections
with regular singularities on P! in 2003 by relating the moduli space of such connections to a certain quiver
variety [CB03]. (This problem was very influential at the time; in fact, Crawley—Boevey was invited to
the ICM to speak about this work.) Recently, Boalch [Boal2] and Hiroe—Yamakawa [HY14] have extended
Crawley—Boevey’s approach to a class of connections with irregular singularities. It would be desirable to
solve the Deligne-Simpson problem for Coxeter connection on P! by relating the moduli space of such objects
to a quiver variety.

These results were initiated during an AIM (American Institute of Mathematics) SQuaRE workshop,
where we all collaborated together for one week in San Jose, California during the month of February. We
will continue to meet at AIM for the next two years.

5.2 Derived geometric Satake equivalence, Springer correspondence, and small
representations

Let G be a semisimple complex algebraic group and T' be a maximal torus. The Weyl group W acts on the
zero weight space V7T of any representation V of G, giving a functor ®g : Rep(G) — Rep(W).

Achar, Henderson, and Riche recently constructed a geometric lift of this functor [AHI3, [AHRI15]. Its
construction begins with a result of Lusztig [Lus81] that for GL,(C) the nilpotent cone N (the variety of
nilpotent n X n matrices) can be embedded in the affine Grassmannian Grgy,, (c), an infinite-dimensional
analog of the Grassmannian of k planes in n space. To generalize this result to other groups, one needs
to restrict to a certain finite-dimensional closed subvariety Gr®™ of Gr. There is a certain open subvariety
M C Gr*™ and a finite map 7 : M — N, which can be viewed as a generalization of Lusztig’s embedding
for other groups. The map 7 gives rise to a functor W : PGIVG(D)(GI‘G) — Pervs(N).

To explain in what sense ¥ is a geometric lift of ®¢, we invoke two major theorems in geometric
representation theory: the geometric Satake equivalence and the Springer correspondence.

(a) There is an equivalence of categories S : Perve o)(Grg) — Rep(G), where Perveg o)(Grg) is the

category of G()-equivariant perverse sheaves on the affine Grassmannian Grg = G(8)/G(9), G is
the Langlands dual group, 8 = C((t)), and O = C[[¢]] [Lus83} [Gin95, MV07].

(b) There is a functor S : Pervs(N) — Rep(W), where Perv (N) is the category of G-equivariant perverse
sheaves on the nilpotent cone N C § [Spr76}, Lus81l, [BMSI].

Theorem 5.2.1 (JAHI3|[AHRIS]). The functor s is a geometric lift of ®g; i.e., there exists a commutative
diagram:

Perve o) (Grg") S, Rep(G)sm

l\yé e

Pervys(N) ———— Rep(W)

Parallel to this development, derived versions of (a) and (b) were developed—Bezrukavnikov and Finkel-

berg gave an equivalence derS : D (m“)‘(Gr(;) — DPCoh®*Cm (g*) [BEQS], and Rider established the equiv-

alence derS : Dgrg;’;(J\fG) — DPCoh™*®m (h*) [Rid13]. Here, g* and h* are both affine varieties, so the
categories on the fight—hand side are graded modules over their coordinate rings. The word “mix” refers to a
geometric analog of grading. My dissertation work involved producing a derived analog of ®¢ and showing
that its derived lift is U .
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Theorem 5.2.2 (M. 2016 [Matl6]). There exists a commutative diagram of derived categories:

b,mix smy derS®™ ok
Do (Grg') =2 DPCoh“ ™ (g*)gm

\IIGJ/ lder@g

DY i Ne) g DYCoR” O )

The solution to this problem involves two major steps.

1. Establish the result for all groups G of semisimple rank 1.

2. Show that each of the functors involved commutes with restriction to such a group.

Over fields F of positive characteristic, representation theory is much more difficult—for example, the
categories involved are not semisimple in general. In his thesis, Mautner proved that for G = GL,,(F) the
category Pervg(N) is equivalent to the category of finitely-generated modules for a certain Schur algebra
[Maul0]. Very recently, tremendous progress has been made toward producing analogs of Springer theory
in positive characteristic [AHJRI6, [AHJRI4, [AHJRI5]. It is motivating to consider a positive character-
istic version of Theorem for its possible applications to positive characteristic Springer theory and
representations of Schur algebras.

Problem 5.2.3. Develop an analog of Theorem [5.2.3 for sheaves in positive characteristic.
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