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My research is, broadly, applied mathematics. This includes utilizing a mix of complex analysis in
one variable, differential geometry, and functional analysis used for the purpose of obtaining explicit
formulae for the reconstruction of integral ray transforms on Riemannian manifolds. I’m also quite
interested in problems of mathematical physics and in the implementation of algorithms.
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1 Past Work: The Method of Complexification

1.1 Short Background on AtRT

In several tomographic situations in engineering one encounters the inverse problem of having accessed
data consisting of line integrals Iθf of an unknown function f over a broad class of lines with the goal
of using this data to reconstruct f or “inverting Iθ”. For example, in the arena of medical imaging,
this arises in positron emission tomography (PET), single photon emission computerized tomography
(SPECT), and (originally) CT-scan tomography [9]. In other applications the line integral Iθf is
taken not over lines, but rather over a class of one-dimensional curves in either Euclidean space or
more generally, a Riemannian manifold. In geophysics for instance, the problem can arise as the
linearization of the problem of determining geophysical properties of the inner Earth based on travel-
time measurements made at the surface [23].

Generally, explicit inversion formulae over curves other than lines tend to restrict focus to situ-
ations/manifolds with a strong amount of symmetry [10, 11, 12, 3, 21] and typically do not include
the effects of absorption encountered during propagation. A recent exception to this statement can
be found in [14, 15].

Quite often the physics dictates that the signal suffers absorption along its trajectory and is thereby
attenuated. The resulting data is then called, not surprisingly, the attenuated ray transform
(AtRT), and is often denoted Iaf . This arose first in SPECT and has recently been discussed in
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relation to EIT, in the form of the Calderón problem for inverse conductivity in anisotropic media in
[6, 4]. Early results on the AtRT were presented first in [8], and then in [22, 16, 13, 19].

1.2 Some New Ground

In [18] I obtained a rather general prescription

f(z) =
1

4π

∫ 2π

0
P (λi, θ)X

⊥
θ H(Iθf)(s(ze−iθ), eiθ)dθ (1)

for an explicit filtered backprojection formula in the reconstruction of a smooth enough function f(z)
given its integral Iθf over a class of curves in the unit disc D+ ⊂ C, parameterized by angles θ. The
method used to obtain (1) generalized the technique appearing in [19, 2] and is known as the method of
complexification. Formula (1), once obtained, was used to give a holomorphic integrating factor
method to get a similar, though more complicated, formula for the AtRT on the same class of curves,
namely

Theorem 1.1 If Xλ is a vector field of type H, u(z, λi) = 0 and f ∈ C∞0 (D+), then

f(z) =
1

4π

∫ 2π

0
P (λi, θ)X

⊥
θ (e−(Dθa)(z)HaIa,θf)(s(ze−iθ), θ))dθ

gives an exact reconstruction formula for the density f based on the data Ia,θf of attenuated ray
transforms of f over the integral curves of Xθ.

The technique used to obtain (1) rests on the complexification of a certain class of differential
operators in R2, known as type H. The complexification takes the form of introducing a complex
parameter in place of the angles eiθ. This allowed me to recast the inversion problem in terms of
complex analysis in the unit disc. The terms λi appearing above are the zeroes of a complexified
coefficient of the original vector field Xθ, over whose integral curves Iθf are the traces of f .

2 Current Research

2.1 H-Ness and its Limitations

While formula 1 is quite general, its derivation required stringent conditions on the original vector field
defining the transport, namely that it be of type H. I am currently improving upon this limitation
by addressing the following

Conjecture 2.1 The condition known as type H can be reduced to just one condition on the uncom-
plexified coefficient µ(z, z̄) of ∂

∂z in Xθ.

To that end, I reduced H-ness and identified a wide class of polynomials Γ(D+) for which the following
proposition is valid

Proposition 2.2 If µ(z, z̄) =
∑

p+q=r apqz
pz̄q ∈ Γ(D+) and if for z 6= 0 and cr(z, z̄)

.
=
∑

p,qq−p=r apqz
pz̄q

we have
log |ck(z)| < log |cl(z)|

then the first two conditions of H-ness are met for a rescaled field λ∗(
1
wXθ).

Using classical results on Beltrami equations (c.f. [20], Thm. 3.2) there is then a wide class of
real-analytic functions, Hk,l(D+), which are then scalable in the sense that while Xθ may fail H-ness,
it can easily be reformulated to meet it. More precisely one has
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Theorem 2.3 If µ ∈ Hk,l(D+), λ∗
µ
w

∣∣
λi(z)

= 0, X⊥θ
.
= ieiθ∗ (− µ(z)

w(z)
∂
∂z + µ̄(z)

w(z)
∂
∂z̄ ) and f ∈ C∞0 (D+) then

f(z) =
w(z)

4π

∫ 2π

0
P (λi, θ)X

⊥
θ H(Ĩθf)(s(ze−iθ), eiθ)dθ

gives an exact reconstruction formula for the density f based on the data Ĩθf of ray transforms of f
over the integral curves of eiθ∗ (µ∂ + µ̄∂̄).

I am currently working on constructing dense truncating approximants within Hk,l(D+) to the original
vector field coefficients to allow me to extend formula (1) to an even more general setting. This utilizes
a combination of harmonic analysis, complex analysis of one variable, and some geometric function
theory.

2.2 Some Fan-Beam Work

In examining related work by Pestov and Uhlmann, I noticed a remarkable similarity to my own result
(1). The problem they considered in [14] concerns geodesic transport in the unit sphere bundle on a
2-dimensional, simple Riemannian manifold M. The transport BVP is

(ξi
∂

∂xi
− Γijkξ

jξk
∂

∂ξi
)u(x, ξ) = −f(x), (x, ξ) ∈ Ω(M) (2)

u|∂−Ω(M) = 0 (3)

with Γijk the local components of the Christoffel symbol defining parallel transport. Then the ray
transform data addressed in [14] is

If(x, ξ)
.
= uf (x, ξ)

∣∣∣
∂+Ω(M)

(4)

which is of fan-beam type. The main result the authors present relevant to my work is

Theorem 2.4 Let (M, g) be a 2-dimensional simple manifold. Then

f +W 2f =
1

4π
δ⊥I

∗
1α
∗ H(I0f)−

∣∣
∂+Ω(M)

(5)

or a certain operator W

I became interested in this variation of the problem when I noticed the similarity of the Fredholm
term W appearing in (5) since a very similar operator made an appearance in the derivation of (1).
Though their result was derived via microlocal analysis, I noticed that it could be formally obtained
by using a different variation on the method of complexification. Namely by producing, ex nihilo, local
holomorphic functions via the fiberwise Cauchy transform C : C∞(∂D+) → H(D+) one can recover
their result. I applied this formal technique to predict the conjectural result

Conjecture 2.5

f +W 2f =
1

2
(X⊥α∗{(e−

Ia
2 HaIaf |∂+Ω(M)})0 (6)

to hold for the attenuated ray transform. In the interim, in [15], Uhlmann and Salo used a method
almost identical to my conjectural formal calculations to produce an algorithm to invert the attenuated
ray transform under similar circumstances. It stops short of producing (6) since the W operator now
needed appears to no longer be compact. I am working on justifying the formal calculations needed to
arrive at (6) and classifying the conditions on its validity. This requires a mix of geometry, complex
analysis, and classical functional analysis.
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3 A Glimpse Ahead

There are several areas I am strongly interested in pursuing postdoctoral research in. They extend
upon my previous work as well as delve into new domains.

3.1 Numerical Implementation and Scientific Computation

The role of computation in the practice of both applied mathematics generally and ray transforms
particularly can hardly be overstated. Traditional methods have used projection-slice type theorems
in combination with the FFT to give high-order, efficient reconstructions in Euclidean settings, c.f.
[17]. In [1] an algebraically exact pseudopolar FFT is introduced which resolves the Radon data in
O(NlogN) steps with N = n2 pixels and skirts traditional problems associated with interpolating
non-Cartesian gridpoints. These ideas are elaborated and extended upon in [25] for curvilinear ridge
detection.

Regardless of the details of condition H and its sufficiency in producing formula (1) it is beneficial
to understand its applicability in practice. This requires

• Efficient code to implement (1) numerically under ideal (type H) circumstances as a calibration

• Stability checks for the case of noisy data (Iθf)(s(ze−iθ), θ) + ε(s(ze−iθ), θ), for small Gaussian
perturbation ε

• Checks on necessity, not sufficiency, of condition H for (1) to hold through broad numerical
examples

The first of the above is not so easy to accomplish. First of all, in practical examples Xθ may be the
local projection onto the base of a geodesic foliation of our domain. This would require solving many
systems of the form

θ̇i = −Γijkθ
jθk

which are generally quite numerically stiff. This being overcome, the challenge of an efficient, adaptive
way to implement the necessary filtered integrations over a broad class of geometries is one that I am
very eager to solve since this would definitively answer the pragmatic quandary that a formula like
(1) necessarily presents.

3.2 Some Questions of Fields

In [7], Finch and Uhlmann looked at a problem concerning a Schrödinger-type equation in the presence
of an external gauge field. The inverse problem they considered was that of recovering the matrix-
valued unitary Yang-Mills connections on the bundle based on knowledge of the Dirichlet-to-Neumann
map ΛA, modulo the allowable gauge transformations induced by U(m). Knowing ΛA allows one to
reformulate the problem as one of matrix transport

θ · ∇C =
∑

AiθiC(x, θ), C(x, θ) = Id on x · θ < −R

where the equivalent problem asks whether knowledge of far-field C(x, θ) is sufficient to recover the
connection modulo the allowable bundle transformations. The answer they give is in the affirmative
provided one has stringent bounds placed on the Lie-group valued curvature form. They succeed by
fixing the gauge, using an energy bound and applying some clever algebra. A related problem was
attacked by Sharafudtinov in [24] where the goal was recovering a connection, up to automorphisms
of the gauge group, based on known parallel transport measurements made at the boundary. Again,
the affirmative answer depends on the associated curvature.

Since both of these problems use transport and beam transforms in answering an intrinsically
geometrical question they are quite fascinating to me. I would like, in the future, to spend time working
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on generalizing the method of complexification to situations like the above, which would require
introduction of several complex parameters and analysis in the associated polydisc. An interesting
single variable complexification technique on C3 was used in [26] and may turn out to be useful in this
endeavor.

3.3 Spectral Graph Theory

Lastly, I should mention that I have an interest in pursuing spectral graph theory [5] as a discrete
inverse problem. I was exposed to this subject, as a prospective graduate student, by Dan Spielman
http://www-math.mit.edu/~spielman/eigs/ and have become increasingly interested in exploring
computational graph theory and cluster analysis. Since Wigner’s law on the density of states combines
mathematical physics with graph invariants, spectral graph theory is a useful combination of two highly
interesting areas of mathematics that I would like to explore. In the future, I would like to incorporate
discrete networks, their invariants, and sound algorithms into my research in inverse theory.
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