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Abstract

Estimation of the production index of oil and gas from the reservoir into the well during
Under-Balanced Drilling (UBD) is studied. This paper compares a Lyapunov-based adap-
tive observer and a joint unscented Kalman filter (UKF) based on a low order lumped (LOL)
model and the joint UKF based on the distributed drift-flux model by using real-time mea-
surements of the choke and the bottom-hole pressures. Using the OLGA simulator, it is
found that all adaptive observers are capable of identifying the production constants of gas
and liquid from the reservoir into the well, with some differences in performance. The results
show that the LOL model is sufficient for the purpose of reservoir characterization during
UBD operations. Robustness of the adaptive observers is investigated in case of uncertainties
and errors in the reservoir and well parameters of the models.

Keywords: Lyapunov-based Adaptive Observer, OLGA simulator, Low-order lumped
model, Under-balanced drilling, UKF, Drift-flux model

1. Introduction

Since the number of depleted formations and cost of field exploration and development
has increased, for the past two decades there has been increasing interest in new technology
and automation of the drilling process which can improve drilling efficiency and increase oil
recovery. UBD is a technology that enables drilling with the downhole pressure lower than
the pore pressure of the formation. UBD has several advantages compared to conventional
drilling in increasing the ultimate recovery from the reservoir, reducing the non-productive
time (NPT), minimizing the risk of lost circulation, increasing the rate of penetration (ROP),
reducing drilling-fluid costs through the use of cheaper, lighter fluid systems, and reducing
drilling problems such as hole cleaning and differential sticking [1, 2].
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Real-time updates of reservoir properties may improve efficiency of the overall well con-
struction by more accurate reservoir characterization while drilling, ultimately enabling
increased oil recovery by better well completion. Reservoir characterization during UBD
has been investigated by several researchers[3, 4, 5, 6, 7], focusing mainly on the estimation
of the reservoir pore pressure and reservoir permeability by using the assumption that the
total flow rate from the reservoir is known [5]. Kneissl proposed an algorithm to estimate
both reservoir pore pressure and reservoir permeability during UBD while performing an
excitation of the bottom-hole pressure [4]. However, the variations of fluid flow behavior in
the downhole and the annuls section might introduce significant uncertainties to estimation
of the reservoir pore pressure. Vefring et al. [5, 6] compared and evaluated the performance
of the ensemble Kalman filter and an off-line nonlinear least squares technique utilizing the
Levenberg-Marquardt optimization algorithm to estimate reservoir pore pressure and reser-
voir permeability during UBD while performing an excitation of the bottom-hole pressure.
The result shows that excitation of the bottom-hole pressure might improve the estimation
of the reservoir pore pressure and reservoir permeability [5, 6]. Gao Li et al. presented
an algorithm for characterizing reservoir pore pressure and reservoir permeability during
UBD of horizontal wells [7]. Since the total flow rate from the reservoir has a negative
linear correlation with the bottom hole pressure, reservoir pore pressure can be identified
by the crossing of the horizontal axis and the best-fit regression line between the total flow
rate from the reservoir and the bottom hole pressure while performing an excitation of the
bottom-hole pressure by changing the choke valve opening or pump rates.

In this paper, it is assumed that reservoir pore pressure is known by identification using
Li’s method [7] or other algorithms. The main focus is to estimate both production constants
of gas and liquid during UBD operations, simultaneously. Due to the complexity of the multi-
phase flow dynamics of a UBD well coupled with a reservoir, the modeling, estimation and
control of UBD operations is still considered an emerging and challenging topic in drilling
automation. Nygaard et al. compared and evaluated the performance of the extended
Kalman filter, the ensemble Kalman filter and the unscented Kalman filter based on a low
order model to estimate the states and the production index (PI) in UBD operation [8].
Lorentzen et al. designed an ensemble Kalman filter based on a drift-flux model to tune the
uncertain parameters of a two-phase flow model in the UBD operation [9]. In Nygaard et al.
[10], a finite horizon nonlinear model predictive control in combination with an unscented
Kalman filter was designed for controlling the bottom-hole pressure based on a low order
model developed in [11], and the unscented Kalman filter (UKF) was used to estimate the
states, and the friction and choke coefficients. A Nonlinear Moving Horizon Observer based
on a low-order lumped model (LOL) was designed for estimating the total mass of gas and
liquid in the annulus and geological properties of the reservoir during UBD operation for
pipe connection procedure in [12]. Aarsnes et al. introduced a simplified drift-flux model and
estimation of the distributed multiphase dynamics during UBD operation. This model used
a specific empirical slip law without flow-regime predictions [13]. The estimation algorithm
separates slowly varying parameters and potentially more quickly changing parameters such
as the PI. Fast changing parameters are estimated online simultaneously with the states of
the model, but other parameters are calibrated infrequently and offline. Nikoofard et al.
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designed an UKF for estimation of unmeasured states, production and slip parameters of
simplified drift-flux model using real time measurements of the bottom-hole pressure and
liquid and gas rate at the outlet [14]. Di Meglio et al. designed an adaptive observer based
on a backstepping approach for a linear first-order hyperbolic system of Partial Differential
Equations (PDEs) by using only boundary measurements with application to UBD [15].
It is shown that this method has exponential convergence for the distributed state and
the parameter estimation. This adaptive observer is applied to estimate distributed states
and unknown boundary parameters of the well during UBD operations. Nikoofard et al.
designed Lyapunov-based adaptive observer, a recursive least squares estimator and a UKF
based on a LOL model to estimate states and parameters during UBD operations. For this
estimation the total mass of gas and liquid was used as measurements. These values were
calculated from pressure measurements using the LOL model [16]. In [16], the performance
of the adaptive estimators was compared and evaluated for pipe connection procedure using
a simple simulation model. In [17] the extended version of adaptive observer used in [16]
was directly using real-time measurements of the choke and the bottom-hole pressures to
estimate states and parameters. The performance of the adaptive observers was compared
and evaluated for typical drilling case to estimate only production constant of gas using a
simulated scenario with drift-flux model. In the present paper, the adaptive observers from
[17] is compared and evaluated for an UBD case study to estimate both production constants
of gas and liquid using some simulated scenarios with the OLGA simulator. The OLGA
dynamic multiphase flow simulator is a high fidelity simulation tool which has become the
de facto industry standard in oil and gas production, see [18]. These adaptive observers
were tested by two challenging scenarios:

1. Changing for production constant of gas.

2. Pipe connection.

The performance of the estimation algorithms to detect and track the change in production
parameters is investigated in a more realistic setting.

Lyapunov based adaptive observers and the Kalman filter are widely used for the esti-
mation of state and parameters. A Lyapunov based adaptive observer is generally designed
as Luenberger type observer for the state combined with an appropriate adaptive law to
estimate the unknown parameters [19]. The unscented Kalman filter (UKF) has been shown
to typically have a better performance than other Kalman filter techniques for nonlinear
system [20, 21].

The purpose of the paper is to evaluate the LOL model for reservoir characterization
in UBD employing an adaptive observer that uses the bottom hole and choke pressure
measurements from a simulated scenario with the OLGA simulator. This paper presents
the design of a Lyapunov-based adaptive observer and an UKF based on LOL model, and an
UKF based on a simplified drift-flux model, to estimate the states and geological properties
of the reservoir (production parameters) during UBD operation. The performance of the
adaptive observers based on LOL model is evaluated against UKF based on a simplified
drift-flux model by using measurements from the OLGA simulator. The adaptive observers
are compared with each other in terms of rate of convergence and accuracy. Robustness of
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the adaptive observers is investigated in case of errors in the reservoir and well parameters
of the models.

This paper consists of the following sections: Section 2 describes the basic concept of the
UBD process. The modeling section 3 presents a LOL and simplified drift-flux model based
on mass and momentum balances for UBD operation and the reservoir model. Section 4
explains the Lyapunov-based adaptive observer and joint UKF methods for simultaneously
estimating the states and model parameters from real-time measurements. Section 5, at the
end the conclusion of the paper is presented.

2. Under balanced drilling

In drilling operations, the drilling fluid is pumped down the drill string and through the
drill bit into the well (see Figure 1). The annulus is sealed with a rotating control device
(RCD), and the drilling fluid exits through a controlled choke valve, allowing for faster and
more precise control of the annular pressure. The drilling fluid carries cuttings from the drill
bit to the surface.

Figure 1: Schematic of an UBD system

In conventional (over-balanced) drilling, or managed pressure drilling (MPD), the pres-
sure in the well is kept greater than the pressure of the reservoir to prevent influx from
entering the well [22]. In UBD operations, on the other hand the pressure of the well is kept
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below the pressure of the reservoir, allowing formation fluid flow into the well during the
drilling operation.

Nitrogen unit, Rotating control devices (RCD), Chemical injection equipment, Surface
separation equipment, choke and manifold system, geologic sampler, emergency shut-down
system and Non-return valve (NRV) are the main surface equipments involved in normal
UBD operations [23]. The pump flow rate, choke valve and density of the drilling fluid
(mud) are the various inputs used to adjust the pressure in the well-bore. The choke valve is
the most common input used to regulate the pressure in the annulus during MPD and UBD
operations. Furthermore, real time knowledge of states and parameters of a dynamic model
for the multi phase flow in the well is very useful in controllers, fault detection systems and
safety applications in the well during petroleum exploration and production drilling. Some
states of a dynamic model of multi phase flow in the well can not be measured directly or
have a delay or low measurement frequency, and some parameters may be varied only during
drilling. So, states and parameters of the dynamic model of multi phase flow in the well
must be estimated.

3. Modeling

Due to the existence of multiphase flow (i.e. oil, gas, water, drilling fluid and cuttings) in
the system, the modeling of the system is challenging. Multiphase flow can be modeled by a
distributed model or a simplified LOL model. A distributed model is capable of describing
the gas-liquid behavior along the annulus in the well. The simplified LOL model is based
on some simplifying assumptions, and considers only the gas-liquid behavior at the drill bit
and the choke system. The LOL model used in this paper is very similar to the two-phase
flow model found in [11, 24]. In the simplified drift-flux model and the LOL model, the
drilling fluid, oil, water, and rock cuttings are lumped into the liquid phase. Both models
neglect the effects of cutting transport as one of their assumption.

3.1. Simplified drift-flux model

There are two common methods for modeling distributed multiphase flow in UBD oper-
ations. The most general and detailed method is called a two-fluid model. This method uses
four partial differential equations (PDE’s) for conservation of mass and momentum in each
phase. The two-fluid model is difficult to solve both analytically or numerically, because the
source terms reflecting interphase drag are stiff and this can lead to significant problems in
the numerical computation [25]. Due to the complexity of the two-fluid model, the drift-flux
model is derived by merging the momentum equations of both phases (gas/liquid) into one
equation. Therefore, difficult phase interaction terms cancel out, and the missing informa-
tion in the mixture momentum equation must be replaced by a slip equation which gives
a relation between the flow velocities of the phases. The mechanistic models use different
relations between the phase slip velocities and pressure loss terms for different flow patterns
[9, 26]. These models need to predict flow patterns at each time step. In this paper, a
simplified drift-flux model (DFM) is used. The simple DFM uses a specific empirical slip
law, without flow-regime predictions, but which allows for transition between single and
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two phase flows. The isothermal simple DFM formulation of the conservation of mass and
momentum balance are given by [27]

∂m

∂t
+
∂mvl
∂x

= 0, (1)

∂n

∂t
+
∂nvg
∂x

= 0, (2)

∂(mvl + nvg)

∂t
+
∂(P +mv2l + nv2g)

∂x
= −(m+ n)g cos ∆θ − 2f(m+ n)vm|vm|

D
. (3)

where the mass variables are defined as follows

m = αlρl, n = αgρg

where k = l, g denoting iquid and gas, respectively, ρk is the phase density, and αk is the
volume fraction satisfying

αl + αg = 1. (4)

Further vk denotes the velocities, and P the pressure. All of these variables are functions
of time and space. We denote t ≥ 0 the time variable, and x ∈ [0, L] the space variable,
corresponding to a curvilinear abscissa with x = 0 corresponding to the bottom hole and
x = L to the outlet choke position. In the momentum equation (3), the term (m+n)g cos ∆θ
represents the gravitational source term, g is the gravitational constant and ∆θ is the mean
angle between gravity and the positive flow direction of the well, while −2f(m+n)vm|vm|

D
ac-

counts for frictional losses. The closure relations, boundary conditions and discretization
schemes for this model can be found in [27].

3.2. LOL model

The so-called low-order lumped (LOL) model is perhaps the simplest method for model-
ing multiphase flow in UBD. A LOL model is suitable for conventional model-based control
design methods and can be used for prediction and estimation in an observer and controller
algorithms. The most important simplifying assumptions of the LOL model are listed as
below:[11, 28]

• Ideal gas behavior

• Simplified choke model for gas, mud and liquid leaving the annulus

• No mass transfer between gas and liquid

• Isothermal condition and constant system temperature

• Constant liquid density with respect to pressure and temperature

• Uniform flow pattern along the whole drill string and annulus
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The simplified LOL model equations for mass of gas and liquid in the annulus are derived
from mass and momentum balances as follows [16]

ṁg = wg,d + wg,res(mg,ml)−
mg

mg +ml

wout(mg,ml) (5)

ṁl = wl,d + wl,res(mg,ml)−
ml

mg +ml

wout(mg,ml) (6)

where mg and ml are the total mass of gas and liquid, respectively. The liquid phase is
assumed incompressible, and ρl is the liquid mass density. The gas phase is compressible
and occupies the volume left free by the liquid phase. wg,d and wl,d are the mass flow rates
of gas and liquid from the drill string, and wg,res and wl,res are the mass flow rates of gas
and liquid from the reservoir. The total mass outflow rate is

wout = KcZ

√
mg +ml

Va

√
pc − pc0 (7)

where Kc is the choke constant, and Z is the control signal to the choke opening, taking its
values on the interval (0, 1]. The total volume of the annulus is denoted by Va, and pc0 is
the constant downstream choke pressure (atmospheric). The choke pressure is denoted by
pc, and derived from ideal gas equation

pc =
RT

Mgas

mg

Va − ml

ρl

(8)

where R is the gas constant, T is the average temperature of the gas, and Mgas is the
molecular weight of the gas. The bottom-hole pressure is given by the following equation

pbh = pc +
(mg +ml)g cos(∆θ)

A
+ ∆pf (9)

where A is the cross sectional area of the annulus, ∆pf is the friction pressure loss in the
well

∆pf = Kf (wg,d + wl,d)
2 (10)

and Kf is the friction factor.

3.3. Reservoir flow

The mass flow from the reservoir into the well for each phase is modeled by a linear
relation

wg,res =

{
Kg(pres − pbh), if pres > pbh

0, otherwise.
(11)

wl,res =

{
Kl(pres − pbh), if pres > pbh

0, otherwise.
(12)
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where pres is the known pore pressure in the reservoir, and Kg and Kl are the produc-
tion constants of gas and liquid from the reservoir into the well, respectively. Reservoir
parameters could be evaluated by seismic data and other geological data from core sample
analysis. Still, local variations of reservoir parameters such as the production constants of
gas and liquid may be revealed only during drilling. So, it is valuable to estimate the partial
variations of some of the reservoir parameters while drilling is performed ([8]).

4. Estimation Algorithm

In this section, first a Lyapunov-based adaptive observer to estimate states and param-
eters in UBD operation for the LOL model is derived. Then, the joint unscented Kalman
filter is presented for both the distributed and LOL models. The measurements and inputs
of models are summarized in Table 1. We assume the pore pressure pres is known, and
the production constant of gas (Kg) and liquid (Kl) from the reservoir into the well are
unknown and must be estimated. We will later mention why pres can be assumed known
by considering offline estimation and study the sensitivity to errors in pres. Kg and Kl are
named by θ1 and θ2, respectively, for notational purposes.

Table 1: Measurements and Inputs

Variables Measurement/Input
Choke pressure (pc) Measurement
Bottom-hole pressure (pbh) Measurement
Drill string mass flow rate of gas (wg,d) Input
Drill string mass flow rate of liquid (wl,d) Input
Choke opening (Z) Input

The friction factor (kf ) and choke constant (kc) of the model are assumed known. These
parameters could be estimated offline by using separation flow rates and topside data. Other
parameters that are used in this paper such as density, temperature and well volume can
typically come from well data.

4.1. Lyapunov-based adaptive observer

A full-order state observer for the system (5)-(6) is

˙̂mg = wg,d + ŵg,res(θ̂1)−
m̂g

m̂g + m̂l

ŵout(m̂g, m̂l) + k1(pbh − p̂bh) (13)

˙̂ml = wl,d + ŵl,res(θ̂2)−
m̂l

m̂g + m̂l

ŵout(m̂g, m̂l) + k2(pbh − p̂bh) (14)

where

ŵg,res = θ̂1(pres − pbh) (15)

ŵl,res = θ̂2(pres − pbh) (16)
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ŵout = KcZ

√
m̂g + m̂l

Va

√
pc − pc0 (17)

p̂bh = pc +
(m̂g + m̂l)g cos(∆θ)

A
+ ∆pf (18)

Note that the observer gains are chosen equal (k1 = k2) since it is based on Lyapunov
theorem. However, in practice it might be possible to choose different gains based on tuning
since Lyapunov theorem is conservative. k1

A
= l1, has to be chosen sufficiently large positive.

m̂g and m̂l are estimates of states mg and ml. Define the state estimation errors e1 = mg−m̂g

and e2 = ml− m̂l, and let θ̂1 and θ̂2 be estimates of parameters θ1 = Kg and θ2 = Kl. Next,
we define parameter estimation laws

˙̂
θ1 = q1(pres − pbh)e1 (19)

˙̂
θ2 = q2(pres − pbh)e2 (20)

where the gains q1 and q2 are positive tuning parameters that specify trade-offs in the
observer design. Choosing larger gains results in faster convergence but large overshoot
and undershoot in estimation, or sometimes instability. Choosing smaller gains results in
slower convergence and small overshoot and undershoot, or sometimes without any overshoot
in estimation. Since the total mass of gas and liquid in the well could not be measured
directly, they are computed by solving a series of nonlinear algebraic equations (8)-(9) using
measurements of the choke and the bottom-hole pressures.

mc
l =

1

1− pcMgas

RTρl

(
(pbh − pc −∆pf )A

g cos(∆θ)
− pcMgasVa

RT

)
(21)

mc
g =

pcMgas(Va −
mc

l

ρl
)

RT
(22)

The adaptation laws (19)-(20) can be implemented by using e1 = mc
g−m̂g and e2 = mc

l−m̂l.
The error dynamics can be written as follows

ė1 =(θ1 − θ̂1)(pres − pbh)− (
mg

mg +ml

wout −
m̂g

m̂g + m̂l

ŵout)− l1g cos(∆θ)(e1 + e2) (23)

ė2 =(θ2 − θ̂2)(pres − pbh)− (
ml

mg +ml

wout −
m̂l

m̂g + m̂l

ŵout)− l1g cos(∆θ)(e1 + e2) (24)

Let θ̃1 = θ1− θ̂1, θ̃2 = θ2− θ̂2, and the Lyapunov function candidate for the adaptive observer
design be defined as

V (e, θ̃) =
1

2
(e21 + e22 + q−11 θ̃21 + q−12 θ̃22) (25)

It is easy to check that V (e, θ̃) is positive definite, and we continue to analyze if it can be
made decrescent. From (23) and (24), the time derivative of V (e, θ̃) along the trajectory of
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the error dynamics is

V̇ (e, θ̃) =− l1g cos(∆θ)(e1 + e2)
2 − e21wout

mg +ml

+ θ̃1 [(pres − pbh)e1 + q−11
˙̃θ1]

+ θ̃2 [(pres − pbh)e2 + q−12
˙̃θ2]−

m̂le2(wout − ˆwout)

m̂g + m̂l

− e22wout
mg +ml

− m̂ge1(wout − ˆwout)

m̂g + m̂l

+
m̂le2(e1 + e2)wout

(mg +ml)(m̂g + m̂l)
+

m̂ge1(e1 + e2)wout
(mg +ml)(m̂g + m̂l)

(26)

The detail calculations of the derivative of the Lyapunov function is presented in [17] :

=⇒ V̇ (e, θ̃) <− l1g cos(∆θ)(e21 + e22)−
wout( e

2
1 + e22)

mg +ml +
√
mg +ml

√
m̂g + m̂l

− e1e2( 2l1g cos(∆θ)−
wout(

√
m̂g+m̂l√
mg+ml

)

mg +ml +
√
mg +ml

√
m̂g + m̂l

) (27)

By choosing l1 sufficiently large, then

0 ≤
(

2l1g cos(∆θ)−
wout(

√
m̂g+m̂l√
mg+ml

)

mg +ml +
√
mg +ml

√
m̂g + m̂l

)
< 2l1g cos(∆θ) (28)

The lower bound of l1 is

2l1g cos(∆θ)− (
wout

mg +ml

)

( √
m̂g + m̂l

√
mg +ml +

√
m̂g + m̂l

)
≥ 0( √

m̂g + m̂l
√
mg +ml +

√
m̂g + m̂l

)
< 1 , (

wout
mg +ml

) < γ (29)

=⇒ l1 >
γ

2g cos(∆θ)
(30)

In real drilling problem we usually have (γ � 1), therefore the lower bound of l1 is small,
and this gives

V̇ (e, θ̃) < −l1g cos(∆θ)(e21 + e22) + 2l1g cos(∆θ)|e1||e2|

− wout( e
2
1 + e22)

mg +ml +
√
mg +ml

√
m̂g + m̂l

(31)

By using Young’s inequality 2|e1||e2| ≤ e21 + e22,

V̇ (e, θ̃) < − wout( e
2
1 + e22)

mg +ml +
√
mg +ml

√
m̂g + m̂l

≤ 0 (32)
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which implies that all signals e1, e2, θ̃1, θ̃2 are bounded. From (23),(24) and e1, e2, θ̃1, θ̃2 ∈
L∞, ė1, ė2 are bounded. It follows by using Barbalat’s lemma that e1, e2 converge to zero.
Since there are no couplings between the parameter estimates based on equations (19)-(20),
the convergence of the two parameter estimates can be analyzed independently as scalars.
The adaptation laws can be written as follows:

˙̂
θi = qiφei i = 1, 2

φ = (pres − pbh) (scalar) (33)

Based on the persistency excitation theorem, limt→∞ θ̂ = θ∗ if and only if there exists some
α, T > 0 such that, for any t > 0 , the following inequality is satisfied ([19]):∫ t+T

t

φ(τ)φT (τ) dτ ≥ α > 0, ∀t ≥ t0 (34)

So, the persistency excitation theorem can be applied independently as scalar for each pa-
rameter estimate as follow:∫ t+T

t

φ(τ)φT (τ) dτ =

∫ t+T

t

(pres(τ)− pbh(τ))2 dτ ≥ α > 0, ∀t ≥ t0 (35)

Thus according to theorem 4.9 in [29], the adaptive observer system is globally asymptot-
ically stable if the persistency excitation condition is satisfied. A necessary and sufficient
condition is that there must be flow from the reservoir to satisfy persistence exciting condi-
tion, since it is equivalent with pres 6= pbh.

4.2. Joint Unscented Kalman Filter

The Kalman filter using linearization to estimate both the state and parameter vectors of
the system is usually known as an augmented Kalman filter. The UKF technique has been
developed to work with non-linear systems without using a Jacobian-based linearization of
the model ([30, 31]). The UKF estimates the mean and covariance matrix of the estimation
error with a minimal set of sample points (called sigma points) around the mean by using a
deterministic sampling approach known as the unscented transform. The nonlinear model
is applied to propagate uncertainty of sigma points instead of using a linearization of the
model. So, this method does not need to calculate the explicit Jacobian or Hessian. More
details can be found in ([31, 20]).

The augmented state vector is defined by xa = [X, θ] where X is the state of the model.
The discrete time state-space equations for the the augmented state vector at time instant
k is written as: [

Xk

θk

]
=

[
f(Xk−1, θk−1)

θk−1

]
+ qk = fa(Xk−1, θk−1) + qk (36)

where qk ∼ N(0, Qk) is the zero mean Gaussian process noise (model error). Here, we apply
the UKF to both the LOL and DFM. When using the DFM, the number of states that must
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be estimated by the joint UKF is equal to three times of the number of spatial discretization
cells in the DFM. The discrete measurements of the system can be modeled as follows:

yk = h(Xk) + rk (37)

h(Xk) = [pc, pbh]
T (38)

where rk ∼ N(0, Rk) is the zero mean Gaussian measurement noise.

5. Simulation Results

The parameter values for the simulated well and reservoir are summarized in Table 2,
and used in the OLGA simulator. The measurements have been synthetically generated by
using the OLGA dynamic multiphase flow simulator. The OLGA simulator uses the same
model for the mass flow from the reservoir into the well as in equations (11)-(12).

Table 2: Parameter Values for Well and Reservoir

Name DFM Unit
Reservoir pressure (pres) 279 bar
Collapse pressure (pcoll) 155 bar
Well total length (Ltot) 2530 m
Drill string outer diameter (Dd) 0.1206 m
Annulus inner diameter (Da) 0.1524 m
Liquid flow rate (wl,d) 13.33 kg/s
Gas flow rate (wg,d) 0 kg/s
Liquid density (ρL) 1000 kg/m3

Production constant of liquid (KL) 0.1 kg/s/bar
Production constant of liquid (Kg) 0.05 kg/s/bar
Gas average temperature (T ) 285.15 K
Average angle (∆θ) 0 rad
Choke constant (Kc) 0.0057 m2

A discretization of the time and space variables is required for using numerical methods.
The PDE of the drift-flux model are discretized by using a finite volumes method for the joint
UKF based on DFM. where 6 cells were used for the spatial discretization. A measurement
sampling period of 10 seconds were used and the model was run with time steps of 10
seconds. The parameter values for the nonlinear adaptive observer and UKF for both models
are summarized in Table 3.

The initial values for the estimated and real parameters are as follows:

Kg = 0.05, Kl = 0.1, K̂g = 0.07, K̂l = 0.13
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Table 3: Parameter Values for Model and Estimators

Parameter Value Parameter Value
q1 2.5× 10−13 k1 4× 10−9

q2 5× 10−14 L 4
κLOL 0 κDFM 0
αLOL 0.00001 αDFM 0.00001
βLOL 2 βDFM 2

The case study that is used in this paper considers UBD operation of a vertical well drilled
into an oil and gas reservoir. Two scenarios are simulated. In first scenario, first drilling in
a steady-state condition is initiated with the choke opening of 12 %. After 1 hour, there is
a linear decrease in the choke opening from 12 % to 8 % for 1 hour. After 4 hours, there
is a linear increase in the choke opening from 8 % to 12 % for 1 hour. After 7 hours, there
is a linear and sharp increase in the production constant of gas from 0.05 kg/s/bar to 0.07
kg/s/bar (change of reservoir height). Choke opening in this simulation is illustrated in
Figure 2.
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Figure 2: Choke opening

The parameter covariance matrix of UKF used for both models and scenarios is

Q = diag[8 ∗ 10−9, 2 ∗ 10−8]
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Choosing the process noise covariance matrix in the UKF (Qk) specify trade-offs in the
UKF design. Choosing larger process noise in the UKF (Qk) leads to faster track of data
and convergence but typically more uncertainty in the estimation. Choosing smaller process
noise in the UKF (Qk) leads to slower track of data and convergence but typically less
uncertainty in the estimation. The choke and the bottom-hole pressure measurements are
corrupted by zero mean additive white noise with the following covariance matrix

R =

[
0.9 ∗ 0.42 0

0 0.9 ∗ 0.22

]
(bar2)

In order to estimation the reservoir pressure offline, consider Li’s method. Figure 3 shows the
best-fit regression line between the three points of estimation based on two characteristics
of the well, total gas flow rate from the reservoir and the bottom hole pressure. The time
of testing points are chosen 1.5, 3 and 6 hours. The offline estimation of reservoir pressure
is 278.8, calculated by using Li’s method. This estimation is very close to the actual value
of 279 bar obtained from OLGA simulator. The total flow rate from the reservoir can be
estimated by the Lyapunov-based adaptive observer in section 4 by changing adaptation
laws for estimation of the total gas flow rate from the reservoir instead of the production
constants.
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Figure 3: Estimation of total gas flow rate from the reservoir versus the bottom hole pressure and the best-fit
regression line.

The estimation of the production constants of gas and liquid from the reservoir into
the well are shown in Figures 4 and 5, respectively. The estimates of all algorithms are
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converging quite fast, about 0.5 hour. UKF based on LOL model produces less accurate
results than the other methods for estimation of the production constant of gas from the
reservoir into the well during transient time. The results is shown that reasonable perfor-
mance of the estimation algorithms to detect and track changing at production constant of
gas. The Lyapunov-based adaptive observer has better performance than the other methods
for estimation of the production constants of gas and liquid from the reservoir into the well
when the production constant of gas is increased from 0.05 kg/s/bar to 0.07 kg/s/bar. In
DFM, it is expected that estimation of the slip parameters can improve accuracy of the
production parameters estimation [14]. Therefore, errors in slip parameters might cause a
bias in the estimation of the production parameters with UKF based on DFM when the
reservoir parameters change.
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Figure 4: Actual value and estimated production constant of gas

The measured and estimated bottom-hole pressure and choke pressure at the wellhead
are illustrated in Figures 6 and 7, respectively. The only error measurement that was injected
to the nonlinear Lyapunov-based adaptive observer is bottom hole pressure. Since the choke
pressure in LOL model during transient time has an error, estimation of choke pressure
with the nonlinear Lyapunov-based adaptive observer has a bias during transient time and
estimation of bottom hole pressure with UKF has a bias during transient time. Since the
LOL model is a much simpler model than the distributed model, it has some mismatch with
OLGA simulator. So, this mismatch influences the estimation of parameters and states. The
measurement covariance of the UKF determines the priority of measurements for the UKF.
The Lyapunov adaptive observer tries to reduce errors of states and parameters by injecting
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Figure 5: Actual value and estimated production constant of liquid

the error between estimation and measurement of bottom hole pressure (the last terms in
Equations (13) and (14)). The bottom hole pressure and the choke pressure are correlated
with each other with the mass and momentum balances. So, the error between estimation
and measurement of choke pressure is indirectly affected by the Lyapunov adaptive observer.
But, the error between estimation and measurement of bottom hole pressure is affected
directly by the Lyapunov adaptive observer. Simulation time of the adaptive observers
based on LOL model executes at least 100 times faster than joint UKF based on DFM.

In this paper, performance of the adaptive observers is evaluated through the root mean
square error (RMSE) metric for the parameters Kg and Kl . The RMSE metric for the
Lyapunov-based adaptive observer and UKF for both models during the whole estimation
period and after initial transient (t ≥ 0.5hour) are summarized in Table 4.

Table 4: RMSE metric

Method
Whole estimation period After initial transient
Kg Kl Kg Kl

Lyapunov-based adaptive observer 1.4× 10−3 4.0× 10−3 1.1× 10−3 3.3× 10−3

UKF based on LOL model 3.6× 10−3 5.0× 10−3 3.4× 10−3 4.5× 10−3

UKF based on DFM 3.5× 10−3 6.8× 10−3 3.3× 10−3 5.2× 10−3
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Figure 6: Measured and estimated bottom-hole pressure
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Figure 7: Measured and estimated choke pressure
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According to the RMSE metric Table 4, the Lyapunov-based adaptive observer has better
performance than the other methods for estimation of the production constants of gas and
liquid from the reservoir into the well. Robustness of the adaptive observers is tested in
case of errors in the reservoir pore pressure and liquid density. The RMSE metric for the
adaptive observers in case of 1% error on the reservoir pore pressure, and 10% error on the
liquid density, are summarized in Table 5 and 6, respectively.

Table 5: RMSE metric in case of error in the reservoir pressure value

Method Kg Kl pres true pres model
Lyapunov-based adaptive observer 4× 10−3 8× 10−3 279 282
UKF based on LOL model 5.7× 10−3 9× 10−3 279 282
UKF based on DFM 5.9× 10−3 9.9× 10−3 279 282

Table 6: RMSE metric in case of error in the liquid density value

Method Kg Kl ρL true ρL model
Lyapunov-based adaptive observer 2.6× 10−3 5.2× 10−3 1000 1100
UKF based on LOL model 3.4× 10−3 6.4× 10−3 1000 1100
UKF based on DFM 3.6× 10−3 6.9× 10−3 1000 1100

Since the reservoir pore pressure has a direct effect on the mass flow rates from the
reservoir into the well, small inaccuracies in the reservoir pore pressure have a significant
effect on the estimation of production constants. Therefor these methods are very sensitive
to errors in the reservoir pore pressure value. Based on Table 4 and 6,the adaptive observers
based on LOL model are more sensitive to errors in the liquid density value than UKF based
on DFM.

The second scenario in this case study is as follows, first the drilling in a steady-state
condition is initiated with the choke opening of 10 %, then at t = 1 hour and 35 min the
main pump is shut off to perform a connection procedure, and the choke is closed to 6 %.
The rotation of the drill string and the circulation of fluids are stopped for 15 mins. Next
after making the first pipe connection at t = 1 hour and 50 min the main pump and rotation
of the drill string are restarted. After 1 hour and 45 min (i.e. 3 hour and 35 min), the choke
is closed to 5 %, and the second pipe connection procedure is started, and is completed
after 15 mins. Then the choke is opened to 10 % at t= 3 hours and 50 min. The measured
bottom-hole pressure (pbh), choke pressure (pc), choke opening (Z), and mass flow rate of
liquid from the drill string (wl,d) is illustrated in Figure 8.

The parameter values for the nonlinear adaptive observer and UKF for both models for
pipe connection scenario are the same as in the previous scenario. The initial values for the
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Figure 8: Measured bottom-hole pressure, choke pressure, choke opening, and mass flow rate of liquid from
the drill string for pipe connection scenario

estimated and real parameters are as follows:

Kg = 0.07, Kl = 0.1, K̂g = 0.091, K̂l = 0.13

The estimation of the production constants of gas and liquid from the reservoir into the well
are shown in Figures 9 and 10, respectively. These parameters are identified with reasonable
accuracy by all estimators. In estimation of production constant of liquid from the reservoir
into the well, the Lyapunov-based adaptive observer has better performance than the other
methods. Since the model is significantly less accurate during the pipe connection, we need
to prevent that the PI estimates drift away. Hence, the gains value (q1 and q2) for the
Lyapunov-based adaptive observer and the parameter covariance of UKF for both models
are 1000 times smaller than the nominal value during the pipe connection. For the same
reason, the measurement covariance of UKF for both models are 1000 times larger than the
nominal value during the pipe connection.

The measured and estimated bottom-hole pressure and choke pressure at the wellhead
for pipe connection scenario are illustrated in Figures 11 and 12, respectively. This results
show that the adaptive observers have errors in the estimation of the bottom hole and choke
pressure during pipe connection because the model is less accurate during pipe connection.
Since the bottom hole and choke pressure are measured, errors of the bottom hole and
choke pressure are not the main concern in this situation, since the purpose is estimation
of production parameters. Nygaard et al. studied that some parameters of the model such
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Figure 9: Actual value and estimated production constant of gas for pipe connection scenario
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Figure 10: Actual value and estimated production constant of liquid for pipe connection scenario
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as friction factor varies during pipe connection [10]. Since we assumed these parameters are
constant, this introduces some errors to the model during pipe connection.
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Figure 11: Measured and estimated bottom-hole pressure for pipe connection scenario

6. Conclusion

A simplified DFM and a LOL model describing a multiphase (gas-liquid) flow in the well
during UBD has been used. This paper presents the Lyapunov-based adaptive observer and
joint UKF based on LOL model for reservoir characterization during UBD operations. Fur-
thermore, it describes a joint UKF to estimate parameters and states for the simplified DFM
by using real-time measurements of the choke and the bottom-hole pressures from OLGA
simulator. The results show that all estimators are capable of identifying the production
constants of gas and liquid from the reservoir into the well. All adaptive observers have
a quite fast convergence rate, about 0.5 hour. Simulation results demonstrated reasonable
performance of the estimation algorithms to detect and track a changing gas production
coefficient using a simulated scenario with OLGA. The nonlinear Lyapunov-based adaptive
observer has better accuracy than the other methods for estimation of the production con-
stants of gas and liquid from the reservoir into the well. The adaptive observers based on
the LOL model are computationally simpler than joint UKF based on DFM. However, the
adaptive observers based on LOL model are more sensitive to errors in the reservoir and
well parameters of the model than joint UKF based on DFM.
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Figure 12: Measured and estimated choke pressure for pipe connection scenario
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