U.S. DEPARTMENT OF OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

A Resilient and Trustworthy Cloud and Outsourcing Security Framework for Power Grid Applications Argonne National Laboratory (ANL)

Feng Qiu

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018

Summary: A Resilient and Trustworthy Cloud and Outsourcing Security Framework for Power Grid Applications

Objective

- Background: Cloud computing provides powerful computational capacity, scalability, and high cost-effectiveness
- Challenges: Confidentiality of grid data; vulnerabilities in data transmission and cloud data storage; time criticality
- **Opportunity:** Build a trustworthy and secured cloud computing framework for power grid applications to facilitate cloud computing in power industry
- **Benefits:** Provide highly secured encryption framework for power system computing (on cloud or other outsourcing scenarios)

Schedule

- Started in August 2016, ends August 2021
- Key deliverables and dates met
 - Design of an attack-resilient framework, Y1 Q2
 - Deployment of SCED & SCUC on cloud, Y2 Q4
- Capabilities to be transitioned to energy sector
 - Attack-resilient framework for power system applications on cloud computing and other outsourced platforms
 - Privacy-preserving methodologies and software packages for a set of power system applications

Total Value of Award: \$1,500,000

Funds Expended to Date: %40

Performer: Argonne National Lab

University at Buffalo, Partners: Illinois Institute of Technology

2

Advancing the State of the Art (SOA)

Cloud Computing

- Powerful: Amazon EC2 96 vCPUs 345 GB memory
- Scalable: Hundreds or even thousands of instances simultaneously
- Cost-effective: \$0.0016/hr (spot pricing)
- Nearly half of all companies claim 31% to 60% of their IT systems are cloud-based
- Global Smart Grid as a Service market expected to grow from \$1.3 billion in 2016 to \$6 billion in 2025 ["Smart Grid as a Service," *Navigant Research*, 2016]

Weak Cloud Security

- Shared Security Responsibility Model
 - Secure only certain layers of infrastructure and software
 - Customer is ultimately responsible for how data are accessed/used
- Data breaches on cloud
 - AWS, Microsoft, Apple, Yahoo . . .
 - Malware injection, side channel, wrapping, Spectre, and Meltdown (shared memory)

• Commonly Used Cloud Cybersecurity Methods

- Communication encryption, data encryption
- Cloud computing is completely vulnerable to insider attacks
- Not suitable for power system computing

• Privacy-Preserving (PP) Methodologies

- "Fake" problems solved on cloud; real data always on local
- Data confidentiality is preserved even if data breach occurs
- Ensuring correctness, optimality, and performance of solution

3

Advancing the State of the Art (SOA) (cont.)

• A Holistic Security Framework for Cloud Computing

- Infrastructure security
- Data confidentiality (privacy-preserving)
- Application-specific encryption for higher security: Security-constrained economic dispatch (SCED), security-constrained unit commitment (SCUC), stochastic unit commitment (UC), etc.

• Benefits to Cyber Resilience of Energy Delivery Systems

- Establish cybersecurity framework/methodologies for power system cloud computing
- Pave the way (cybersecurity) to facilitate cloud computing application in power industry

Challenges to Success

Infrastructure Security

- High confidentiality of power grid data and insufficient cloud security
- Module-based cybersecurity system design for data transmission and storage

Data Integrity

- Power system computations completely vulnerable on cloud (leaking and manipulation)
- Set of encryption and validation methodologies ensure data confidentiality, accuracy, and consistency in computing

Time Criticality

- Applications must be completed in a timely manner to ensure continuous operation; time cost of encryption
- Highly efficient and effective privacy-preserving methods

Progress to Date

Major Accomplishments

- Diverse Industry Advisory Board
 - Xiaochuan Luo, ISO-NE; Jianzhong Tong, PJM
 - Alex Rudkevich, Newton Energy Group; Tobias Whitney, EPRI (Cyber Security for the Electric Sector)
- Important Milestones Accomplished (progress on track)
 - Design of an attack-resilient framework that comprehensively captures all common cyber and physical properties across power grid monitoring, protection, and control applications
 - Model of attacks against cloud-based power grid applications
 - Deployment of SCED and SCUC on GovCloud (AWS)
 - Initial results on privacy-preserving methods on SCED and SCUC
- Publications
 - M. R. Sarker, J. Wang, Z. Li and K. Ren, "Security and Cloud Outsourcing Framework for Economic Dispatch," *IEEE Transactions on Smart Grid*, vol. 9, no. 6, pp. 5810–5819, 2018.
 - "A Resilient and Trustworthy Cloud and Outsourcing Security Framework for Power Grid Applications," ANL/ESD-18/14, Lemont, IL, Argonne National Laboratory.
 - "Cyberattacks Against Cloud-based Power System Applications," ANL/ESD-18/16, Lemont, IL, Argonne National Laboratory.
 - "Privacy-preserving Transformations for Security Constrained Unit Commitment" (in preparation).

Collaboration/Technology Transfer

Plans to Transfer Technology/Knowledge to End User

- Reduce Technology Adaption Difficulty
 - Modular design for flexible implementation and deployment
 - Thorough test on publicly accessible clouds
- Stick to Industrial Needs
 - Select widely used power system applications to develop cloud security enhancement
 - Emphasize practicality and scalability (large-scale systems will be thoroughly tested)
 - Industry advisory board with various potential customers
- End-users Include but not Limited to:
 - System Operators: Directly implement on cloud services
 - Software as a service (SaaS): Entity can host and maintain the technology framework for a usage/service fee
- Testing and Demonstrate Plan
 - Demonstration to industry with realistic instances (PJM, etc.)

7

Next Steps for this Project

Approach for the Next Year or to the End of Project

- Sparse Transformation for SCUC
 - Sparse transformation for integer programming
 - Selectively secure certain data (e.g., topology) to achieve higher performance
- Distributed Cyber Security Framework
 - Enhanced security by distributing data and computations on multiple machines
 - Enhanced computational performance by parallel computing
- Security Enhancement for Stochastic UC on Cloud
 - One of the applications that can benefit most from cloud computing
 - Utilizing a large pool of computers on cloud
- Implementation and Test for Industrial Adaption
 - Scalability and technology transferability

Infrastructure Security Framework

System Framework of Resilient and Trustworthy Cloud and Outsourcing Framework

- Identity and Access Management
- Confidentiality evaluator
- Communication security and authentication
- Virtual firewall
- CSP components
- Data audit protocols
- Result verification schemes

Transformation-Based Privacy-Preserving

Desired Security Definition

- Assumption: Attackers know the model but not the data
- The number of values in this domain is infinite, or the number of values in this domain is so large that a brute-force attack is computationally infeasible.
- The range of the domain (the difference between the upper and lower bounds) is acceptable for the application.

Transformations

Multiplying from left/right, scaling and perturbation, shifting

Privacy-Preserving SCED

PPSCED–An Illustration (Heat maps indicate the no-zero coefficient density)

Comparing AWS Cloud with In-house HPC (ANL Blues)

Privacy-Preserving Transformation for SCUC

Performance vs. Security

 SCUC: Computational performance of integer programming is very sensitive to constraint matrix density

A Shuffling and Scaling Method

minimize

subject to

$\sum_{t \in T} \sum_{g \in G} \left[c_g^U y_{gt} + c_g^D z_{gt} + c_g^{\min} x_{gt} + \sum_{k \in K} c_g^k p_{gt}^k \right]$	minimize
$p_{gt} = P_{gt}^{\min} x_{gt} + \sum_{k \in K} p_{gt}^k$	subject to
$p_{gt}^k \leq P_{gt}^k x_{gt}$	
$p_{gt} \le p_{g,t-1} + R_{gt}^U$	
$p_{gt} \ge p_{g,t-1} - R_{gt}^D$	
$\sum_{g \in G} p_{gt} = D_t$	
$x_{gt} - x_{g,t-1} = y_{gt} - z_{gt}$	
$-F_l - \sum_{b \in B} \delta_b^l d_{bt} \le \sum_{b \in B} \sum_{g \in G_b} \delta_b^l p_{gt} \le F_l + \sum_{b \in B} \delta_b^l$	
$p \ge 0$	

x_g	t, y_{gt}, z_{gt}	∈	{0,	1	}

Instances	Instance	Nz Before	Nz After
SCUC(no	case188	46,976	6,410,880
contingency)	case300	73,966	13,524,000

$$\sum_{t \in T} \sum_{g \in G} \left[\gamma c_g^U y_{gt} + \gamma c_g^D z_{gt} + \gamma c_g^{\min} x_{gt} + \sum_{k \in K} \gamma c_g^k D_t p_{gt}^k \right]$$
$$p_{gt} = \frac{P_{gt}^{\min}}{D_t} x_{gt} + \sum_{k \in K} p_{gt}^k \qquad \forall t, g$$

$$p_{gt}^k \le \frac{P_{gt}^k}{D_t} x_{gt} \qquad \forall t, g, k$$

$$p_{gt} \le \frac{D_{t-1}}{D_t} p_{g,t-1} + \frac{R_g^U}{D_t} \qquad \forall g, t$$

$$p_{gt} \ge \frac{D_{t-1}}{D_t} p_{g,t-1} - \frac{R_g^D}{D_t} \qquad \forall g, t$$

$$\sum_{g \in G} p_{gt} = 1 \qquad \qquad \forall t$$

 $x_{gt} - x_{g,t-1} = y_{gt} - z_{gt} \qquad \forall g, t$

$$-\frac{\alpha_l F_l}{D_t} - \sum_{b \in B} \frac{\alpha_l \sigma_b^2 a_{bt}}{D_t} \le \sum_{b \in B} \sum_{g \in G_b} \alpha_l \delta_b^l \rho_{gt} \le \frac{\alpha_l F_l}{D_t} + \sum_{b \in B} \frac{\alpha_l \sigma_b^2 a_{bt}}{D_t} \qquad \forall l, t$$

$$p \ge 0$$

 $x_{gt}, y_{gt}, z_{gt} \in \{0, 1\}$

- Let γ > 0 be a secret number
- Let α_l > 0 be a secret number, for every transmision line l
- Let $p_{gt} \leftarrow D_t \bar{p}_{gt}$

• Let
$$p_{gt}^k \leftarrow D_t \bar{p}_g^k$$

 $\forall g, t$

Privacy-Preserving Transformation for SCUC

Security

- Partially secured (absolute values protected but not relative values)
 - Start-up, shutdown, production costs, generation capacities, ramping rates, demands
- Perfectly secured
 - Network topology (PTDF matrix) and thermal limits
- Implementation
 - Julia 0.6.4, JuMP 0.18.4, CPLEX 12.8.0
 - GovCloud, SSH

Performance

solution time comparison

Constraint Matrix after PP Transformation

	instance	host	t-key	t-enc	t-solve	t-comm	t-total	obj
	Case1951	1xlarge	0.08	1.32	131.82	1.32	134.54	52660765
		2xlarge	0.07	1.26	171.42	1.29	174.04	52644059
		4xlarge	0.08	1.33	128.02	1.32	130.74	52676234
		notebook	0.08	1.09	147.73	1.78	150.69	52676234
	Case2848	1xlarge	0.36	1.44	352.91	1.36	356.06	53631900
		2xlarge	0.36	1.37	320.33	1.35	323.41	53634704
		4xlarge	0.37	1.45	325.05	1.3	328.16	53634044
		notebook	0.39	1.14	282.3	2.21	286.03	53630267
	Case3375	1xlarge	0.12	2.75	592.33	1.97	597.17	46532888
		2xlarge	0.11	2.71	483.33	1.9	488.04	46531362
		4xlarge	0.12	2.77	511.61	1.85	516.35	46525589
		notebook	0.13	2.13	660.2	2.93	665.38	46525413
			EN	ERG	AND EMER	CURITY, ENE	RGY SECU	RITY,

Distributed Security Enhancement Framework

Advantages of distributed security framework

- Scalability by parallel computing
- Stronger security framework

Distributed security workflow

- partition the grid application into a set of smaller sub-problems and a master problem
- Encrypt each sub-problem (with PP) and send to a cloud server; master problem with critical information kept on local
- 3) Solve each encrypted sub-problem and pass back solution
- 4) Solve master problem and send updates to sub-problems
- 5) Iterate until convergence criteria met

Security features

- Hard to track: each time use different partitions, solved on different servers
- Hard to recover valuable information: distributed information; encrypted independently
- Security at multiple levels

Encrypted

Sub-Problem

Distributed Security Enhancement Framework

Challenges

- Decomposable structure and sparsity
- Computational performance: convergence, solution time, parallel implementation

Novel decompositions for network constraints

- Reformulations of network constraints that have been used for decades in power engineering
- Sparse and decomposable structure
- Strong computational performance
- Working on distributed computing with security enhancement

Instance:

 Simplified version of Polish test system: 3375 buses, 596 units, 4076 branches and 9 zones

Results:

- 64% reduction in non-zeros
- 2.4x faster running time

Matrix	Reduced MIP nz	Running Time		
Original Form.	2,924,357	430 s		
Decomposable	1,029,175	178 s		
	U.S. DEPARTMENT OF ENERGY OFFICE OF CYBERSECUE	RITY, ENERGY SECURITY,		

Thank you !

Feng Qiu, PhD Principle Computational Scientist Energy Systems Division Argonne National Laboratory 9700 S. Cass Ave, Lemont, IL 60439 <u>fqiu@anl.gov</u>

