
 1

Concepts in Software Engineering

14:332:452

Restaurant Automation Project
Report 3 – System Design

04/27/07

Project Advisor

Prof. Marsic

TA: Jian Zhang

Group # 8 Project Members

Chris Eng

Sagar Mansukhani

Prakriti Gautam

Hitesh Ved

Nikethan Yerabaka

Srihitha Yerabaka

 2

Individual Contributions

All team members contributed equally.

 3

 Table of Contents

3. Summary of Changes……..……………………………………………………….........1

4. Customer Statement of Requirements……………………………………………….....2

5. Glossary of Terms…………….………………………………………………………...4

6. Functional Requirements Specification…..………………………………………….....5

7. Nonfunctional Requirements………………………………………………………….45

8. Domain Analysis……………..………………………………………………………..47

9. Interaction Diagrams…………………………………………………………………..53

10. Class Diagram and Interface Specifiaction………………………………………......55

11. System Architecture and System Design…………………………………………….55

12. Algorithms and Data Structures…………………………………………………...…66

13. User Interface Design and Implementation………………………………………….44

14. History of Work & Current Status of Implementation………………………………99

15. Conclusion and Future Work……………………………………………………….101

16. References…………………………………………………………………………..101

 4

3. Summary of Changes

- Addition of new Use Cases in the Functional Requirements Section

o Elaborated on existing Use Cases

- Corrections of Nonfunctional Requirements

- Domain Analysis has been corrected to include the new Use Cases

- Interaction Diagrams have been updated and fixed. The new Use Cases have

been diagramed.

- Addition of Design Patterns to existing Interaction Diagrams

- Class Diagrams updated to reflect all the new Classes

- Database Schema has been changed for the System Architecture and System

Design section

- Classes have been mapped to their appropriate Subsystems

- User Interface pictures have been updated with current version

- Explanation of User Interface has been expanded upon and reasoning for certain

choices has been made clearer

 5

4. Customer Statement of Requirements

Aim:

The aim of this project is to develop a software system that would eliminate the need of
traditional pen/paper approach for privately- owned restaurants. The project is focused on
making the restaurant fully automated such that it is easier to co-ordinate various work
activities that go on inside a typical restaurant. The main features of the project include:

• Organizing a database for a medium sized restaurant

• Coordinating work activities of the various actors – Host, Waiter, Cook, Busboy

and Manager

• Increase efficiency by minimizing time between an order is placed and the billing

• Increase profits by reducing operating costs and increasing revenues by

increasing efficiency

• Archiving information of the workers and hours worked

Problems with the primitive system:

The traditional pen paper approach has the following drawbacks:

• Keeping track of empty tables requires either keeping a “dry erase” diagram of
tables or the host constantly keeps track of the status of the tables if it is a small
restaurant

• The waiter jots the order on paper and has to transfer redundant information to the

terminal system. This takes some time and reduces efficiency in peak hours of
patron service, also there may not be enough terminals available in the restaurant
as there are number of tables which would require particular waiters to wait until
the others are done entering their orders into the systems

• The cooks could not notify the waiter that the food was ready

• Keeping billing and other statistical information was an issue of concern

 6

Software Solution:

We propose a software solution to the above problems which would allow the restaurant
management to be easier and offer more coordination for the everyday work. A touch
screen will be used by the staff to log in and complete the desired task.

The supported employee roles are: Host, Waiter, Cook, Busboy and Manager. The
various employees have user accounts and login using their passwords they need to
remember except the cook. Logging in and out will be exploited as triggering events to
update and organize the data.

When a person enters the restaurant the host will greet the customer and log in to see the
tables that are free. The host can also show the floor status to the customer for their
preference (e.g. if the customer prefers a free table near the window etc.). After being
seated the assigned waiter for that particular table takes over from the host and takes the
order from the customer on a PDA. The order is seen by the cooks in the kitchen who can
right away start preparing the order. After the customer is done eating they are billed and
the order is archived in the database for calculation of the restaurant revenues for that
day/month/year. This also allows preparing easy statistics regarding high patron service
hours etc. The Busboy who checks the table status can then take care of the dirty table
and after he is done cleaning can mark them as ready to use in the system.

The manager has administrative power over employee profiles. They can do the
following:

1. The ability to create and modify profiles

2. Track employee activities

3. Authorize restricted waiter activities.

We will take into account the number of clicks that are necessary to accomplish the
individual tasks and try to minimize the number of clicks for efficient deployment of our
system.

 7

5. Glossary Of Terms Used

• Manager - Manages inventory, payroll, employee list and charts and

statistics for the restaurant

• Host - Assigns and seats people who come to the restaurant

• Waiter – Takes the order from the customer onto a PDA and delivers the
order to the customer

• Cook - Reads the order placed from a terminal in the kitchen and cooks

food accordingly. Also the cook informs the waiter when the order is
ready.

• Busboy – Keeps track of the dirty tables and updates status when he/she is

done cleaning

• Add/Edit Employee – Button on the Management page to add or edit the
information of an employee at the restaurant such as employee
identification number, their password, employee type and their wages.

• Manage Inventory – Button on the Management page of all the items

required for food preparation in the restaurant

• Manage Payroll – Button on the Management page to manage the payrolls
of the various employees in the restaurant

• Reports Screen – statistical data analysis of the traffic flow in the

restaurant

• Grid – GUI layout of the tables in the restaurant

• Efficiency analysis – Performance measure of all waiters in the restaurant

 8

6. Functional Requirements Specification

Stakeholders

The following are the stakeholders in the application. They have a vested interest of
some sort in the way that the application works. It is important to them that the
application is easy to use.

• Owner of the restaurant
• Employees (Manager, Host, Waiters, Busboy, and Cook)
• Programmers

 9

Actors and Goals

The table lists all the actors, their various goals and the related use cases.

Actor Goal Type Use Case

Manager Create employee account Initiating createAccount (UC-1)

Manager Edit employee account Initiating editAccount (UC-2)

Manager Delete employee account Initiating deleteAccount (UC-3)

Manager Add new items to menu Initiating AddToMenu (UC-4)

Manager Delete item from menu Initiating DeletefromMenu (UC-5)

Manager Manage Payroll Initiating Paycheck (UC-6)

Manager Graphical Analysis Initiating Graphs (UC-7)

Host Seat customers and assign waiters
to tables

Initiating SeatCustomer (UC-8)

Cook Prepare and cook the order Initiating PreparingOrder (UC-9)

Busboy Clean and prep tables Participating clean(UC-10)

Waiter Take orders Initiating Order (UC-11)

Waiter Deliver order to table Participating Deliver (UC-12)

Waiter Collect payment from customer Initiating PayBill (UC-13)

All
employees

Login Participating Login(UC-14)

 10

Manager Managing Inventory Initiating addInventory(UC-15)

UpdateInventory(UC-16)

 11

Use Cases

Casual Description

These are the various use cases that are contained within the program. A quick
description of all the use cases follows below.

1. createAccount (UC – 1): Allows the manager to create new accounts for

employees.
2. editAccount (UC -2): Allows the manager to edit existing accounts in the

database.
3. deleteAccount(UC-3) : Allows the manager to delete existing accounts from the

database for employees who are leaving the restaurant.
4. AddtoMenu(UC – 4): Allows the manager to add new items to the menu list for

the restaurant.
5. DeletefromMenu(UC- 5): Allows the manager to delete items from the menu.

When the manager wishes to discontinue an item in the restaurant he can delete
that item from the list.

6. Paycheck(UC – 6): Allows the manager to prepare paychecks for the individual
employees working in his restaurant based on the number of hours they worked
during the week.

7. GraphicalAnalysis(UC- 7): Allows the manager accesses the database to create
performance reports such as employee efficiency.

8. SeatCustomer (UC-8) - The Host selects a table for the customers and assigns a
waiter to them.

9. PreparingOrder (UC-9) – The cook prepares the order after the waiter gives it to
him and after the food is prepared, the cook changes the status of the order to
ready, indicating to the waiter that it can be delivered. Also, each time a food item
is prepared the inventory is updated directly. The system will know the names and
quantity of the items used and will update the inventory.

10. clean (UC-10) – The Busboy cleans dirty tables and after they are clean, he
changes the table to status to ready so that the host can assign it to new customers.

11. Order (UC-11) – The waiter takes the order from customers and gives it to the
cook.

12. Deliver(UC-12) – After the waiter gets a ready signal from the cook indicating
that the food is ready, he gets it from the kitchen and delivers it to the table.

13. PayBill(UC-13) – After the customers are finished with the food, the waiter gives
them the bill and collects payment.

14. Login (UC – 14) – Shows how each employee logs in to the system and is taken
to their respective homepage.

15. addInventory(UC-15) – The manager adds new items to the inventory.
16. UpdateInventory(UC-16) – The manager updates or deletes items from the

inventory. If the quantity is specified as 0, the item is deleted. If the quantity is
specified as a number other than 0, it is updated.

 12

Fully-Dressed Description

Use Case UC-1 createAccount

Primary Actor Manager

Actor's Goal Add a new employee to the database

Stakeholders Employee

Preconditions There is a new employee to be added
and is not already in the database.

Postconditions The employee has been added to the
database.

Main Success Scenario

> 1. Manager selects the interface to enter in a new employee and enters in the
employee SSN, Wage, password, employee type, first name, last name.

< 2. Validates the fields. System checks if the data entered is correct, complete,
and not already in the system.

< 3. Employee is entered into the system and informed of his ID and password.

 13

Use Case UC-2 editAccount

Primary Actor Manager

Actor's Goal Edit existing employee account in the
database

Stakeholders Employee

Preconditions An employee entry exists in the
database for the particular employee
whose information needs to be updated

Post conditions The relevant employee information is
updated

Main Success Scenario

> 1. Manager selects the interface to edit the existing employee account in the
database which might require changing any of the following fields: SSN, Wage,
password, employee type, first name, and last name.

2. Validate the fields.

3. Employee information gets updated.

 14

Use Case UC-3 deleteAccount

Primary Actor Manager

Actor's Goal Delete employee from the database

Stakeholders Employee

Preconditions The employee account already exists

Post conditions The employee has been deleted from
the database.

Main Success Scenario

> 1. Manager selects the interface to delete the employee information of an
existing worker.

> 2. Manager selects employee from drop down menu.

3. Delete employee from the system.

 15

Use Case UC-4 AddtoMenu

Primary Actor Manager

Actor's Goal Add new items to the menu database

Stakeholders

Preconditions Menu database already exists.

Post conditions New items are added to the existing
menu.

Main Success Scenario

> 1. Manager selects the interface to enter in new item information into the menu
database.

 2. Validates data.

 3. Item added to database.

 16

Use Case UC-5 DeletefromMenu

Primary Actor Manager

Actor's Goal Delete items from the menu

Stakeholders

Preconditions The food item already exists in the
menu.

Post conditions The food item is deleted from the
menu.

Main Success Scenario

> 1. Manager selects the interface to delete the food item.

> 2. Manager selects food item from drop down menu.

 3. Food item is then deleted from the system.

 17

Use Case UC-6 Paycheck

Primary Actor Manager

Actor's Goal Prepare weekly paychecks for the
employees

Stakeholders Employee

Preconditions The employee information already
exists in the system

Postconditions The pay is calculated

Main Success Scenario

> 1. Manager selects interface.

< 2. System returns employee hours, hourly wage, and total salary.

3. Manager creates paycheck.

 18

Use Case UC-7 GraphicalAnalysis

Primary Actor Manager

Actor's Goal Graph the performance charts

Stakeholders Employee

Preconditions Employee and Item information is
collected

Post conditions Graph generated

Main Success Scenario

> 1. Manager selects interface to view performance.

> 2. Manger requests the daily/monthly/yearly performance of employees, sales
reports and the popularity of food items.

3. System generates graphs.

< 4. Returns performance graphs to manager.

 19

Use Case UC-8 SeatCustomer

Primary Actor Host

Actor's Goal Seat a customer at a clean empty table
and assign a waiter to that table

Stakeholders Employee

Preconditions There is a new customer who hasn’t
been seated yet. A waiter hasn’t been
assigned to that table yet.

Postconditions Customer is seated and a waiter is
assigned to the table.

Main Success Scenario

> 1. Host selects the view table interface, and selects a table.

> 2. Host assigns waiter to table.

3. System changes table status to occupied.

 20

Use Case UC-9 PreparingOrder

Primary Actor Cook

Actor's Goal Prepare food for the order and notify
the waiter when it is ready

Stakeholders Waiter

Preconditions An order has been made by a customer
and the waiter has brought it to the
cook.

Postconditions The waiter is notified when the food is
ready to be delivered to the table. Also
each time a fooditem is prepared, the
corresponding inventory items are
decreased by the pre-specified
quantity.

Main Success Scenario

> 1. The cook selects one of the pending orders from the database and clicks on
item to cook.

2. System changes the status of the item to ‘ready’

< 3. The waiter is then notified by the system that the order is ready.

 21

Use Case UC-10 clean

Primary Actor Busboy

Actor's Goal Clean dirty table.

Stakeholders Host

Preconditions There is a dirty table

Postconditions The table status has to be changed
from dirty to clean.

Main Success Scenario

> 1. The Busboy looks at the table layout screen and clicks on table to clean.

2. System changes table status to ready.

 22

Use Case UC-11 Order

Primary Actor Waiter

Actor's Goal Place the order in the queue for the
cook to prepare.

Stakeholders Cook

Preconditions There is an order to be placed

Postconditions The order is placed in the queue to be
prepared

Main Success Scenario

> 1. Waiter chooses table and clicks the “Place Order” button

< 2. System changes to the order page and displays only items that are in stock

> 3. Waiter inputs the various items and quantity for the order and clicks the
“Place Order” button

4. System stores items into the database.

Alternate Scenario: If the customers choose to order more
food.

Exceptions: The order should not be
closed(Bill hasn’t been paid yet)

> 1. If the customer wants to add more food and the bill hasn’t been paid yet, the
waiter will still have access to the order page for that table and he will be able to
make the necessary additions.

However, if the bill has been paid already, the new items will be associated with a
different order ID.

 23

Use Case UC-12 Deliver

Primary Actor Waiter

Actor's Goal Deliver the food prepared by the cook
to the customers.

Stakeholders Manager

Preconditions The cook has already prepared the
food and it is ready for delivery.

Postconditions The order is deleted from the cooks list
of orders to do.

Main Success Scenario

< 1. The waiter gets an indication from the system that an item is ready.

> 2. Waiter clicks on item to deliver.

3. System updates status of item.

 24

Use Case UC-13 PayBill

Primary Actor Waiter

Actor's Goal Place the order in the queue for the
cook to prepare.

Stakeholders Manager

Preconditions The customers have ordered food and
have finished eating it

Postconditions The money has to be paid before the
customers leave the restaurant and the
table status has to be changed to dirty
by the waiter.

Main Success Scenario

< 1. System generates check.

> 2. Waiter processes payment and notifies system.

< 3. System changes table status to dirty.

 25

Use Case UC-14 login

Primary Actor Employees

Actor's Goal Login to the system to access pages
required to their job.

Stakeholders Employees

Preconditions The person is an employee of the
restaurant and already has a login
account.

Postconditions The employee is taken to his
homepage depending on his job.

Main Success Scenario

> 1. Employee enters login name, password and employee type.

< 2. System verifies the login information provided and if it is correct, the person
is redirected to his homepage from where he will be able to access all pages
required for his job. If the information is wrong, the system outputs a “Wrong
Login” message and takes the user back to the main login page.

 26

Use Case UC-15 addInventory

Primary Actor Manager

Actor's Goal Add items from inventory

Stakeholders cook

Preconditions Only the manager of the restaurant can
make changes to the inventory. The
itemID has to be unique.

Postconditions The item is added and the system is
updated.

Main Success Scenario

> 1. Manager selects add new item to inventory interface. Adds information of
new product.

< 2. System validates fields and checks for duplicate entry. Adds information to
database and notifies manager.

 27

Use Case UC-16 Update/DeleteInventory

Primary Actor Manager

Actor's Goal Delete and update items from
inventory

Stakeholders cook

Preconditions Only the manager of the restaurant can
make changes to the inventory.

Postconditions If an item from the inventory is
deleted, all items from the menu which
cannot be prepared without that item
should also be deleted.

Main Success Scenario

Main Success Scenario

> 1. Manager selects inventory management interface.

> 2. Selects item to be updated/deleted from a drop-down menu.

< 3. System validates fields and updates database.

 28

Use Case Diagram

 29

UC-1 createAccount

 30

UC-2 editAccount

*

*

*

*

Manager
System

selectfunction("Edit Employee","ID")

Returns Employee's Information

Changes Information

Verifies validity of fields

Updates Information

 31

UC-3 deleteAccount

 32

UC-4 AddtoMenu

*

*

*

*

Select Function("Add Item")

Requests Item Information

Enters Item Information

Verifies validity and completion of fields

Checks if Item already not in System

Top Package::Manager System

Updates database

 33

UC-5 DeletefromMenu

System

 34

UC-6 Paycheck

 35

UC-7 Graphical Analysis

 36

UC-8 SeatCustomer

 37

UC-9 PreparingOrder

*

*

*

*

Select Function("GetPendingItems")

Sends Pending Items

Cook

System

Select Function("ChangeStatus","Ready")

Updates Table Status

 38

UC-10 clean

*

*

*

*

Select Function("GetTableLayout")

Sends Table Layout

Busboy

System

Select Function("ChangeStatus","Ready")

Updates Table Status

 39

UC-11 order

 40

UC-12 deliver

*

*

*

*

Notices Ready Item

Updates Item Status

Waiter System

SelectFunction("Delivered")

Waiter Delievers Food

 41

UC-13 payBill

*

*

*

*

Returns Check

Waiter

System

SelectFunction("GenerateCheck")

Process Paymet

SelectFunction("TranscationComplete")

Change Status To Dirty

 42

UC-14 login

 43

UC-15 addInventory

 44

UC-16 UpdateInventory

 45

7. Nonfunctional Requirements

Usability:
The system’s user interface will be very simple and self-explanatory. The manager and
the cook will interact with the system through touch-screen LCDs. They are very easy to
adapt to and use. The users just have to touch the option they want. The waiters will
interact with PDAs. They will each be able to access the tables that they are responsible
for. The menus for the restaurant will show up as drop-down menus on the PDAs. The
waiters only have to select the item that the customer ordered from the drop-down list.

Reliability:
The system is guaranteed to be reliable. All inputs to the system will be selections from
options that the system will show on the screen. Since the system will only provide valid
options, there is absolutely no possibility that invalid inputs can be entered. Each user
will have a unique username and password. This removes the risk of unauthorized access
to the system. Also, users can only access parts of the system that they require for their
job. For example, a waiter cannot access the inventory management or the payroll feature
of the system. Those parts among a few others can only be accessed by the manager. All
these constraints will ensure the reliability of the system.

Performance:
The system will be used by many employees of the restaurant at the same time and can
handle it without any errors. However, for this to happen, the server at the restaurant
should be able to handle all the traffic without creating any problems. The restaurant
should also have a high speed wireless connection for the system to perform its best. The
waiters will be using PDAs and will only be able to connect to the system with a wireless
connection. Since some tasks like placing and cooking and an order are sequential, the
waiter has to update the system with the order first before the cook will see it. In order to
for this to happen efficiently, the internet connection needs to be fast so that changes are
reflected on the website instantly without any delay.

Supportability:
The system will support changes that the restaurant might need to make in future. The
manager will have the ability to modify items from the menu. He will also be able to add
or delete users to the system for layoffs, retirements or new hires.

Implementation Requirements:
We plan to utilize PHP for the front-end and MySQL as our database in the back-end.
The server should have the ability to run both PHP and MySQL.

Interface Requirements:
The system requires both the manager and the cook to have touch-screen LCDs and all
the waiters to have a PDA each. The Restaurant should also have a highspeed wireless
connection for the PDAs to be connected to the system.

 46

Operations Requirements:
The restaurant manager will be the sole administrator of the system. He/she can modify
the database and add or delete users from the system. The manager can also compile
reports to analyze the restaurant performance in general or to see the best selling item or
to compare different waiters.

Legal Requirements:
We will give each of our clients a license to use the software.

 47

8. Domain Analysis

Domain Model

 48

System Operations Contract

Name: createAccount
Responsibilities: Creates new employee profile and adds it

to the database.
Type: System

Exceptions: If all the required fields are not complete,
the employee information is not added to

database.
Preconditions: The employee being added does not exist

in the database.
Postconditions: New employee has been added to the

database.

Name: editAccount
Responsibilities: Edits an already existing account

Type: System
Exceptions: The required fields are not complete or

valid and the information cannot be
updated.

Preconditions: Employee information exists in the
database.

Postconditions: Employee information is updated and
stored in the database.

Name: deleteAccount

Responsibilities: Delete an employee account from the
database.

Type: System
Exceptions: Employee information does not already

exist in the database.
Preconditions: Employee information exists in the

database.
Postconditions: Employee information is removed from the

database.

Name: AddtoMenu
Responsibilities: Adds a new item into the menu that the

waiter selects from.
Type: System

Exceptions: None
Preconditions: Item does not exist in the menu.
Postconditions: Item is added into the menu and the

database with the price.

 49

Name: DeletefromMenu

Responsibilities: Deletes an existing item from the menu.
Type: System

Exceptions: None
Preconditions: Item exists in the menu.
Postconditions: Item information is removed form the

menu and database.

Name: Paycheck
Responsibilities: Weekly paychecks are prepared, and the

information is also stored into the database.
Type: System

Exceptions: None
Preconditions: The employee information exists in the

system; the number of hours are available.
Postconditions: Information is calculated, returned, and

stored into the database.

Name: GraphicalAnalysis
Responsibilities: Performance charts are displayed and

stored.
Type: System

Exceptions: Information required to compute the graph
is not available and no graph can be

displayed.
Preconditions: Information regarding the graph is

available and stored in the database.
Postconditions: Graph is displayed, and stored in database.

Name: SeatCustomer

Responsibilities: Table status is changed and waiter is
assigned

Type: System
Exceptions: Table is already full and new customer

cannot be seated there.
Preconditions: The customer has not already been seated

and the table is empty.
Postconditions: Customer is seated, waiter is assigned.

Name: PreparingOrder

Responsibilities: Change the status of items, and notify
waiter when ready.

Type: System
Exceptions: None

 50

Preconditions: Order has been made.
Postconditions: Waiter is notified as soon as food status is

changed.

 51

Name: clean
Responsibilities: Table status has been changed to clean

Type: System
Exceptions: None

Preconditions: Table is dirty
Postconditions: Table status is changed to clean

Name: Order

Responsibilities: Order is placed and chef is notified
Type: System

Exceptions: None
Preconditions: Items are selected by the waiter.
Postconditions: Order is placed in a queue and chef is

notified.

Name: Deliver
Responsibilities: Item status is changed by chef and waiter

is notified that food is ready.
Type: System

Exceptions: None
Preconditions: Food is waiting to be prepared by the chef
Postconditions: Food is ready, chef changed status, and

waiter is notified.

Name: PayBill
Responsibilities: Bill is prepared, and table status is changed

to dirty
Type: System

Exceptions: None
Preconditions: Table order has been completed, all items

have been delivered.
Postconditions: Payment is accepted, and table status is

changed.

Name: Login
Responsibilities: Allow the user to enter his personal GUI

interface
Type: System

Exceptions: Incorrect login information results in a
failure to enter the system.

Preconditions: Login information is available.
Postconditions: User is either logged in or rejected entry

based on their login information.

 52

Name: addInventory

Responsibilities: To add inventory into the database.
Type: System

Exceptions: If item already exists, it cannot be added as
a new item.

Preconditions: New item information such as name and
quantity is available.

Postconditions: Item is added into the inventory and stored
in the database.

Name: Update/DeleteInventory

Responsibilities: Updates or deletes the item based on user
input

Type: System
Exceptions: If item does not exist in the database, it

cannot be removed or updated.
Preconditions: Item exists in the database already.
Postconditions: If quanity input is 0, item is removed.

If quanity input is an integer, the quantity is
updated appropriately.

 53

9. INTERACTION DIAGRAMS

Note: Descriptions for each diagram are present on the page after the interaction diagram.
Please refer to it.

UC1 createAccount

:empaccountController

:empInfo

infoChecker

:empDatabase

:Validator

createAccount(info)

EID:=create(info)

ifExists(EID)

loop

alt

isValid(EID)

Valid

alt

else

else

prompt choose another EID

store employee info

Valid == true

addEmployee(EID)

doesnotExist
== true

doesnotExist

nextEmployee

compare()

enterValidformat

createAccount

EID

 54

Description of Interaction Diagram 1

1. Interaction Diagram 1: UC1

(i) The manager has to create an account for a new Employee.
(ii) Manager enters employee information such as Employee Social Security

Number, last name, first name then passes the information to the
empaccountController.

(iii) empaccountController makes an instance of employee account called
EA

(iv) empaccountController makes a call ifExists () passing it to the
InfoChecker to see whether the employee already exists in the
EmployeeDatabase.

(v) InfoChecker then makes a call to EmployeeDatabase to retrieve
information of the employees in the database one by one and compares it
with the information provided for the new employee.

(vi) If the compare results in a false for every employee in the database then
the InfoChecker sends a doesNotExist message back to
empaccountController.

(vii) Next the empaccountController checks whether the information is fed in
the correct format by sending an isValid () signal to the Validator.

(viii) If the Validator returns a true value then the employee is added to the
database else the manager is prompted to enter the information in the
correct format.

 55

UC2 – editAccount

 56

2. Interaction Diagram : UC2 editAccount

(i) The manager can edit and update the accounts of the existing employees in the
employeeDatabase.

(ii) Manager enters employee information such as employee’s SSN and passes it
to the empaccountController.

(iii) accountController then makes an isValid () call to the Validator to check
whether the information was entered in the correct format.

(iv) If the employee information was entered in the correct format the Validator
returns a Valid () = true message to the empaccountController.

(v) The empaccountController makes an editAccount () call to the
employeeDatabase and edits/updates the database fields.

(vi) A message is sent back to the user interface telling the user that the edit was
successful.

(vii) Otherwise if the employee account does not exist then ask the manager to
enter the correct information.

 57

UC3 deleteAccount

 58

3. Interaction Diagram: UC3 deleteAccount

(i) The manager enters the information for the employee whose account
has to be deleted.

(ii) The empaccountController receives this info which consists of the
employee SSN and sends it to the infoChecker by sending a ifExists ()
signal.

(iii) The infoChecker checks whether the employee SSN exists in the
database or not by comparing it to the SSN provided.

(iv) If it the SSN exists a Valid () message is sent to the
empaccountController and the employee account is deleted from the
database.

(v) Once the account is deleted a message is sent to the user interface of
the successful deletion.

 59

UC4 – Add To Menu

:MenuItemController

:ItemInfo

:ItemChecker :FoodDatabase :Validator

AddItem(info)

item:=create(it)

ifExists(it)

loop

alt

isValid(it)

Valid

alt

else

else

prompt: "choose another FoodID"

Store New Item

Valid == true

addItem(it)

doesnotExist
== true

doesnotExist

GetNextItem()

compare()

Prompt:"enterValidformat"

Prompt:"Item Added"

it

4. Interaction Diagram 4: UC4 – Add Item to Menu

 60

(i) The manager can add a new food item to the menu.
(ii) Manager picks a FoodID for the new item and sends it to the

MenuItemController along with the name, the type of food and its
price.

(iii) The MenuItemController makes an instance of Food Item called “it”.
(iv) The MenuItemController then makes a call ifExists () and passes it to

the ItemChecker to see if the food item already exists in the
FoodDatabase.

(v) ItemChecker then makes a call to the FoodDatabase to get information
about the items in the menu one by one and compares it with the
information provided for the new Item.

(vi) If the comparision results in a match for any item already in the
database, the signal “DoesNotExist” is set to false and a prompt
“choose another FoodID” is displayed. If there is no match, the signal
“DoesNotExist” is set to true and the MenuItemController makes the
call isValid() and sends it to the Validator which checks for the format
of the data. If the data is not in the correct format, the signal “valid” is
set to false and the prompt “ enter Valid Format” is displayed to the
user.

(vii) If the data is in the correct format, the signal “valid” is set to true and
the MenuItemController makes a call AddItem() and passes it to the
FoodDatabase, where the item is stored.

 61

UC5 – Delete Item from Menu

:MenuItemController :ItemChecker :FoodDatabase

DeleteItem(FoodID)

ifExists(FoodID)

loop

alt

else

prompt: "FoodID doesn't exist"

Delete Item

Exists == true

DeleteItem(FoodID)

Exists

GetNextItem()

compare()

prompt: "Item Deleted"

 62

5. Interaction Diagram : UC5- Delete From Menu

(i) The manager enters the FoodID of the item that has to be deleted from
the FoodDatabase.

(ii) The MenuItemController receives the FoodID and makes a call,
ifExists(). It sends it to the itemChecker which checks if the FoodID
exists in the database by comparing it with each FoodID present in the
database.

(iii) If the FoodID does not exist, the signal “Exists” is set to false and a
prompt “FoodID doesn’t exist” is sent to the user.

(iv) If the FoodID does exist, the signal “Exists” is set to true and the item
is deleted from the database.

(v) Once the item is deleted, a prompt “Item Deleted” is sent to the user.

 63

UC6 Paycheck

 64

6. Interaction Diagram: UC6 Paycheck

(i) The manager cuts paychecks for the employees.
(ii) The number of hours worked are provided to the

empaccountController and employee information is checked to see
whether the employee exists in the database or not.

(iii) Next, if the employee exists in the database, the wage () signal is sent
to the database to retrieve the wage of the particular employee.

(iv) Finally, the wage is calculated and stored back in the employeeInfo
and the paycheck is displayed to take a print out.

 65

UC7 – Graphical Analysis

:GAnalysisController
:graphGenerator

:graphicalInfo

generate(analysisType)

generate(barGraph)

analysisType ==
restaurantTraffic

restauranttraffic(true)

employeeEfficiency(true)

:orderDatabase

alt analysisType ==
Employee Efficiency

orderCompletionTime()

generate(barGraph)

create(graphType)

analysisType == Most
popular food item

popularItem(true) numOrders()

create(graphType)
generate(pieChart)

GraphGenerated

numOrders()
create(graphType)

 66

7. Interaction Diagram : UC7- Graphical Analysis

i. The GAnalysisController gets the generate(analysisType) request to generate

graphs for certain data that is collected by the system.
ii. If the analysisType is for finding employee efficiency, the order database is

looked up to find the turnaround time to serve an order by the particular
employee is calculated and a bar graph is generated by sending the
create(graphType) command to the graphGenerator class.

iii. If analysisType is favorite food item then we need the number of orders
placed for a certain food item in the order table and a piechart is created by
sending create() to the graph generator.

iv. If the analysis type is restaurant traffic for a certain day of the month, then the
order database is looked up to find the total number of orders that were placed
that day and it is then graphed for a certain period of time.

 67

UC8 – SeatCustomer

:TableController :TableStatusChecker :TableDatabase

RequestTable(clean)

ifExists(clean)

loop

alt

else

prompt: "Table Not Available"

Change Status

ChangeStatus(TableID)

Exists== true

Exists

GetNextTable()

Check Status()

Prompt:"Table (TableID) assigned."

TableID

 68

8. Interaction Diagram : UC8- SeatCustomer

(i) The host makes a call RequestTable(clean) to the Table Controller.

Clean defines the status of the table.
(ii) The Controller receives the required status and makes a call, ifExists().

It sends it to the TableChecker which checks the Table database to see
if any table has the status “clean”.

(iii) If such a table does not exist, the signal “Exists” is set to false and a
prompt “Table not available” is sent to the host.

(iv) If a clean table does exist, the signal “Exists” is set to true and the
TableStatusChecker sends the corresponding table ID to the
TableController.

(v) The TableController makes a call ChangeStatus() and sends it to the
TableDatabase with the TableID.

(vi) The TableDatabase changes the status and the TableController sends a
prompt “Table (TableID) assigned.”

 69

UC9 – Preparing Order

 70

9. Interaction Diagram : UC9- Preparing an Order

i. Cook controller gets information about the status of an order, whether the
order is placed by the waiter and is still pending to be cooked.

ii. The order status checker checks whether the order exists or not and gets the
next order from the order database.

iii. The OrderStatusChecker then checks what the status of the order is. If it is
“placed”, the cook will process the order.

iv. The OrderStatusChecker then changes the order status in the Order database
to “prepared”.

 71

UC10 clean

:TableController :TableStatusChecker :TableDatabase

CheckTable(dirty)

ifExists(dirty)

loop

alt

else

prompt:"No dirty Tables"

Change Status()

ChangeStatus(TableID)

Exists== true

Exists

GetNextTable()

Check Status()

TableDirty(TableID)

 72

10. Interaction Diagram: UC10 clean

(i) The busboy makes a function call checktable() that checks for dirty
tables in the database and returns the first ID that it gets.

(ii) The busboy then cleans the table and then changes its status to clean.
(iii) If there are no dirty tables, the prompt, “No Dirty Tables” is returned to

the screen.

 73

UC11 Order

:OrderController

:OrderInfo

:OrderDatabase

PlaceOrder(info)

od:=create(info)

UpdateDatabase(od)

Add Order to Database

:FoodDatabase

loop getItem()

itemID

od

 74

11. Interaction Diagram: UC11 Order

i. The waiter makes a call PlaceOrder() and passes it to the
OrderController.

ii. The Controller then creates an instance of the order called
“od” and sends it to the OrderInfo.

iii. The instance collects all fooditemIDs from the foodDatabase.
iv. The OrderInfo makes a call UpdateDatabase() and passes the

instance “od” to the Database.
v. The Order Database is then updated with the new order.

 75

UC12 Deliver

:waiterController :OrderStatusChecker :OrderDatabase

getorder(orderid)

ifExists(orderid)

loop

alt

else

prompt: "Order Not Available"

changeorderStatus(orderid)

Exists== true

Exists

GetNextOrder()

CheckorderID()

NextOrder(orderID)

 76

12. Interaction Diagram: UC12 Deliver

(iv) After delivering the order to tha table, the waiter makes a call to the
waiter controller getorderID()

(v) The order status checker checks to see if the order exists in the database
and if it does, return a “true” value.

(vi) The waiter then makes a call changeorderstatus()

 77

UC13 PayBill

:waiterController :OrderStatusChecker :OrderDatabase

getinfo(orderid)

ifExists(orderid)

loop

alt

else

prompt: "Order Not Available"

CalculateTotal(summation(id.quantity*id.price))

Exists== true

Exists

GetNextOrder()

CheckorderID()

NextOrder(orderID)

:Calculator

Orderinfo(orderID)

OrderTotal(orderID)

OrderTotal(orderID)

 78

13 Interaction Diagram: UC13 PayBill

i. The waiter collects the payment made by the customer for their order. The
WaiterController gets information about a certain orderid in getinfo(orderid)

ii. The OrderStatusChecker checks whether the order exists or not in the
OrderDatabase.

iii. If the order exists, the Calculator class calculates the order total and sends
OrderTotal(orderid) to the waiterController.

iv. If the order does not exist, an “Order Not Available” prompt is sent to the
waiter interface.

 79

UC14Login

:empaccountController infoChecker

:empDatabase

login(EID)

isValid(EID)

loop

alt

else

invalid SSN & password

Valid ==true

Valid

nextEmployee

compare()

Login

:AccessController

SetPermissions()

 80

14 Interaction Diagram: UC14Login

(vii) Employee provides login () information like his SSN.
(viii) The empaccountController makes a call isValid() and passes it to the

infoChecker which compares the SSN to each SSN in the employee
database.

(ix) If the SSN is not correct, the Controller sends back a prompt saying that
the SSN and Password are invalid.

(x) If the SSN and the password are valid. The valid signal is set to true and
the information is then sent to the page access controller which sets
permissions regarding what pages of the system that particular
employee can access.

 81

UC15 addInventory

:InventoryController

:InventoryInfo

:InventoryChecker :FoodDatabase

AddItem(info)

item:=create(it)

ifExists(it)

loop

alt

else

prompt: "choose another ItemID"

Store New Item()
addItem(it)

doesnotExist
== true

doesnotExist

GetNextItem()

compare()

Prompt:"Item Added"

it

 82

15 Interaction Diagram: UC15 AddInventory

(i) The manager can add a new item to the inventory database.
(ii) Manager picks an itemID for the new item and sends it to the

InvenoryController along with the name, and quantity of the item.
(iii) The InventoryController makes an instance of Item called “it”.
(iv) The InventoryController then makes a call ifExists () and passes it

to the InventoryChecker to see if the item already exists in the
InventoryDatabase.

(v) InventoryChecker then makes a call to the InventoryDatabase to
get information about the items in the menu one by one and
compares it with the information provided for the new Item.

(vi) If the comparision results in a match for any item already in the
database, the signal “DoesNotExist” is set to false and a prompt
“choose another itemID” is displayed. If there is no match, the
signal “DoesNotExist” is set to true and the InventoryController
makes a call AddItem() and passes it to the InventoryDatabase,
where the item is stored.

 83

UC16 Update/DeleteInventory

 84

16. Interaction Diagram: UC16Update/DeleteInventory

(i) Manager makes a call Updateitem() and sends the ID of the item to
be updated.

(ii) The InventoryController then makes a call ifExists () and passes it
to the InventoryChecker to see if the item already exists in the
Inventory Database.

(iii) InventoryChecker then makes a call to the InventoryDatabase to
get information about the items in the menu one by one and
compares it with the information provided.

(iv) If the comparision results in a match for any item already in the
database, the signal “DoesNotExist” is set to false.

(v) The manager then enters the quantity to be changed. The
InventoryChecker checks if the quantity entered is zero, if it is, the
item is deleted.

(vi) If it is not zero, the item is updated to the quantity specified.
(vii) If the item does not exist in the database, a prompt “choose another

itemID” is displayed.

 85

10.
CLASS DIAGRAM AND INTERFACE SPECIFICATION

Class Diagram

 86

Description

Class diagrams are the mainstay of object-oriented analysis and design. UML class
diagrams show the classes of the system, their interrelationships (including inheritance,
aggregation, and association), and the operations and attributes of the classes.

 The simple UML class diagram above is the conceptual model of the restaurant
automation system we will be implementing. Classes are depicted as boxes with three
section, the top one indicates the name of the class, the middle list is for the attributes of
the class, and the third one lists the methods. Some of the methods have a return type
mentioned.

Some of the classes that will be used for our system are as follows:

• employeeAccountController
• Validator
• infoChecker
• employeeInfo
• employeeDatabase
• MenuItemController
• Iteminfo
• FoodDatabase
• ItemChecker
• OrderController
• Order Database
• Order Info
• TableController
• TableStatusChecker

Explanation of some of the Classes Used:

1. employeeAccountController: This class controls the use cases that are applicable
to Employee Accounts. This controller is available to Manager, where the
manager can Add new Employees, edit existing employee information and delete
an employee from the employee data base.

2. Validator: This class is used to check the information entered either by the

Manager of the employees is correct or not. It returns a Boolean value stating
whether the information entered from the user interface is relevant or not for a
particular operation.

3. infoChecker: This class is used to get employees information from the database

and compare the information retrieved from the database to the information
provided in the user interface. For example in case we want to delete an employee

 87

from our database the infoChecker checks whether the Social Security Number
for the employee exists in the Employee Database or not.

4. employeeInfo: This class is used to create an employee’s account, also to

calculate the wage for that employee and cut a paycheck.

5. employeeDatabase: Has methods that deal with the database for the employee
information.

6. MenuItemController: This class controls the use cases that are applicable to the

menu/food database. This controller is available to Manager, where the manager
can Add new Items, or delete existing items from the database.

7. ItemInfo: This class is used to create a new item.

8. FoodDatabase: Has methods that deal with the database for the food items

available for the restaurant.

9. ItemChecker: This class is used to get Food item information from the database
and compare the information retrieved to the information provided in the user
interface. For example in case we want to delete an item from our database, the
itemChecker checks whether the FoodID for the item exists in the Food Database
or not.

10. OrderController: This class controls the use cases that are applicable to the orders

database. This controller is available to the waiter and the cook. The manager can
also access it, but usually does not need to add to it. The waiter adds new orders
to the order table, and the cook sets the status symbol when the order is ready to
serve.

11. Order Database: Has methods to deal with adding new order information.

12. OrderInfo: This class is used to create a new order object.

13. TableController: This class controls the use cases that are applicable to the table

database. This controller is available to the Host and the waiters. The manager can
also access it but does not usually modify it. The host uses it to assign tables to
new customers.

14. TableStatusChecker: This class is used to get Table information from the database

and compare the information retrieved to the information provided in the user
interface. For example if the Host needs to assign a table for some new customers,
he can use this to check for a clean empty table.

 88

The classes have access specifiers placed in front of their methods which define whether
the methods are private, public or protected. These access specifiers determine who can
use the definitions that follow.

• + is for public: These members/methods are available to everyone.
• # is for protected: These members/methods are available to an inheriting class.
• - is for private: These members/methods are available to only the class they are

created in and no other place.

For simplicity sake we have defined our methods as public. For a good design there
should be low coupling and high cohesion. By coupling we mean that dependency of one
module on other modules. A good design should have lower dependencies and hence low
coupling. Our design has classes that are less dependent on other classes which can be
seen by the number of dotted lines, which are very few in our design. Also another good
design principle is to have high cohesion in the design. Cohesion is a measure of how
well the lines of source code within a module work together to provide a specific piece of
functionality. In our class diagram we have provided modules that will be expert at their
functionality. High cohesion is preferred since it provides robustness, reliability,
reusability and easy understandability for the system. Thus we have considered these
software quality metrics in our design.

Therefore, the above design is the best suited for our purposes and would yield the results
desired with high software quality.

 89

Object Constraint Language

Contract CO1: createAccount

Operation: createAccount (SSN: integer, password: integer, wage: float, type:

integer, lastName: string, firstName: string)

Cross References: createAccount UC1

Pre Conditions : The employee Social Security Number, wage, password, type, last

name and first name should be provided in the correct format and using
the correct type. If employee does not have an SSN then a unique
identification number should be provided to the system to create his
account.

Post Conditions:

• Employee SSN instance was created for a particular employee
• Employee password instance is created
• Assigned wage, employee type and employee name in the

database fields.
• A message sent to user interface that the account creation was

successful

Contract CO2: editAccount

Operation: editAccount (password: password, wage: float, type: integer, lastName:

string)

Cross References: editAccount UC2

Pre Conditions: An account exists for the employee

Post Conditions:

• password: password , reset the employee password in the
database

• wage: wage, update employee wage in the database
• type: type, update employee type in the database
• lastName: string, update the last name of the employee
• A message sent to user interface that the account has been

updated

 90

Contract CO3: deletingAccount

Operation: deleteAccount (SSN: integer, password: password)

Cross References: deletingAccount UC3

Preconditions: The employee should have an existing account in the database

Postconditions:

• SSN identifies employee whose account has to be deleted
• password: password to abandons the earlier password for that

employee.
• Employee information fields in the database are deleted
• A message is sent to the user interface of the successful deletion of

the employee account

Contract CO4: Add Item to Menu

Operation: AddItem (FoodID: integer, Name: char, Type: Integer, Price: Integer)

Cross References: Add Item To Menu UC4

Preconditions: The FoodID should not be in use by any other Food Item already present
in the database.

Postconditions:

• FoodID: is unique so each item can be searched for by it. It can be
passed as the search parameter when an item needs to be deleted
from the database.

• A name, type and price has been assigned for each FoodID.
• A prompt showing the successful completion of the change is sent

to the user.
• Only the Manager can add to or delete from the table.
• An order can be placed only from items in the Food Database.

 91

Contract CO5: Delete Item From Menu

Operation: deleteItem (FoodID: integer)

Cross References: Delete Item From Menu UC5

Preconditions: The Item should exist in the database for it to be deleted.

Postconditions:

• FoodID identifies the specific item that the manager wants to
delete.

• All Item information fields like name, type, price are deleted along
with the foodID.

• That FoodID can now be used again when a new item is entered.
• A message is sent to the user interface of the successful deletion of

the item.

Contract CO6: paycheck

Operation: hoursWorked (SSN: integer, password: password, hours: hours)

Cross References: paycheck UC 6

Preconditions: The employee should have an existing account in the database

PostConditions:

• Hours worked are multiplied by wage for that employee to
calculate pay for the particular period

• Paycheck is created and stored in the database
• A print out of the paycheck is taken

 92

Contract CO7: Graphical Analysis

Operation: generateGraph(timeOrdered:DateTime, timeReady:DateTime,

timeDelivered:DateTime, orderid:int)

Cross References: Graphical Analysis UC 7

Preconditions:

• In the order table in the database, the information about the time the
order is placed by the waiter, time the order is made ready by the cook
and time the waiter takes to deliver it to the customer has been already
entered by the respective employees.

• Also the order ids exist in the database for the food ordered in the
restaurant

PostConditions: Graphs are generated for employee efficiency, favorite food item and
the restaurant traffic.

Contract CO8: SeatCustomer

Operation: RequestTable (status: integer)

Cross References: SeatCustomer Table UC 8

Preconditions: The employee using this has to be the Host.

PostConditions:

• The request will only work if there is a clean, ready to use table in
the database.

• If there isn’t a clean, ready to use table, the request is denied.
• The host will have to send the request again if he still needs to

assign a new table.

 93

Contract CO9: Preparing Order

Operation: GetInfo(OrderID:integer, Status:Boolean, TimeStamp:DateTime,

TableID: Integer, FoodID: integer)

Cross References: Preparing Order UC 9

Preconditions: The waiter must already have entered the order for the cook to be

able to see it.

PostConditions:

• The status is set by the cook after the meal is prepared.

Contract CO10: Clean

Operation: CheckTable(Status:Boolean)

Cross References: Clean UC 9

Preconditions: There are dirty tables in the restaurant. There is a busboy.

PostConditions:

• The table has been cleaned by the busboy.
• The table status has been changed by the busboy after cleaning.

 94

Contract CO11: Order

Operation: Order (CookID:integer, Status:Boolean, TimeStamp:DateTime, TableID:
Integer, FoodID: integer)

Cross References: Preparing Order UC 11

Preconditions: Only the waiter can place orders. The Priority override field has to be
unique to each order.

PostConditions:

• The status is set by the cook after the meal is prepared.
• The orders will be processed according to their status in the “priority

override” field.

Contract CO12: Deliver

Operation: getOrder (OrderID:integer, Status:Boolean, TableID: Integer)

Cross References: Deliver UC-13

Preconditions: The food has been prepared by the cook, and its status changed to ready.

PostConditions:

• The waiter has delivered the food.
• The status should be changed by the waiter after delivery.

 95

Contract CO13: PayBill

Operation: GetInfo(orderID:integer, FoodID:int, Price: float, TableID: Integer)

Cross References: PayBill UC 13

Preconditions: The order has been delivered to the customer.

PostConditions:

• The waiter takes the Payment from the customer.

Contract CO14: Login

Operation: login (EmployeeID:integer, Password:string, type:string)

Cross References: Login UC 14

Preconditions:

• The employee has already been added to the database by the
manager.

• The employee knows his/her username, password and job type.

PostConditions:

• The employee is taken to his or her page which links to all the pages
needed to perform his/her job.

 96

Contract CO15: addInventory

Operation: AddItem(itemID:integer, name:string, quantity:integer)

Cross References: addInventory UC-15

Preconditions: The itemID should not be present in the database.

PostConditions:

• The new item is added and the system updated.

Contract CO16: Update/Delete Inventory

Operation: UpdateItem (itemID:integer, quantity:integer)

Cross References: Update/Delete Inventory UC-16

Preconditions: The item has to exist in the database.

PostConditions:

• If the quantity entered is 0, the item has to be completely deleted
from the database.

• If the quantity was a non zero number the quantity should have been
updated to the number entered.

 97

11. System Architecture and System Design

Architectural Styles

There are various architectural styles that we could have utilized in creating this
application. The first thought was to use the Repository Architectural Style in which
subsystems access and modify a central repository. Each of the subsystems are
independent from each other and only interact with the data through the central
repository. This style was quickly thrown out because of the high coupling found
between the subsystems and the repository. We would not be able to change the
repository or subsystems very easily. In the end, it is not portable and changes to the user
interface would be difficult to implement quickly.

The second architectural style we investigated was the Model/View/Controller or MVC
Architectural Style. In this architectural style, we separate all the subsystems into three
categories. The model subsystems maintain the data of the application, the view
subsystems display and format the data to the user, and the controller subsystems are
responsible for managing the interactions between user and system. The model
subsystem should be independent of the view and control subsystems. This is a very
good possible architectural style for our application. It allows changes to the user
interface to be very easily implemented. We will see later why this architectural style
was not chosen.

The last architectural style we looked at was the Three-Tier Architectural Style; which is
very similar to the MVC Architectural Style. The subsystems are once again, separated
into three layers:

• Interface Layer – boundary objects that deal with the user (User Interface)
• Application Logic Layer – control and entity objects
• Storage Layer – the database

Once again, partitioning all the layers allows changes to be made to them very easily.
We can change the User Interface very easily without having to make changes to the
database or how we deal with the data.

The main difference between the MVC and Three-Tier Architectural Style is how the
data is relayed back to the user. MVC follows a triangular path in which the model
subsystems directly update the view subsystems. An example of the dataflow would be a
user making a request through the controller which passes the request to the model
subsystem which than updates the view. On the other hand, Three-Tier follows a linear
path of events. All requests from the user have to pass through the interface which than
goes through the application logic which than submits that request to the database. In
other words, the user never has direct access to the database. The following diagram
taken from Wikipedia (http://en.wikipedia.org/wiki/Image:Overview_of_a_three-
tier_application.png) should help visualize how the Three-Tier Architectural Style works:

 98

In the end, we chose to use the Three-Tier Architectural Style because we are developing
a web based application built on PHP/MySQL. Natively, PHP is not a framework that is
based on the MVC Architectural Style. It is much closer to the Three-Tier Architectural
Style because all requests are sent to the server from the client. The server is responsible
for interpreting the request and than forwarding it to the database. The database sends the
data back to the server which than formats that information and sends it to the client. At
no point, is the server circumvented in the interaction between user and data. This is a
linear flow of events and not a triangular flow which the MVC Architectural Style
utilizes.

Identifying Subsystems

 99

• LoginSubsystem is responsible for keeping track of the Time-in and Time-out for
the various employees. It will also send the employee to the relevant part of the
application for their job type.

• ManagerSubsystem is responsible for presenting information and operations to
the manager of the restaurant. From here, they can change various tables in the
DatabaseSubsystem. The manager can also create various reports from the data
that is stored in the DatabaseSubsystem.

• HostSubsystem is responsible for displaying the various tables in the restaurant
and their states to the Host. The Host can seat customers at the various tables and
change their status.

• WaiterSubsystem is responsible for providing the various operations to the waiter.
He can place orders for the various tables, check on his order status, and tally up
the bill.

• CookSubsystem is responsible for displaying the queue of orders to the cooks in
the restaurant. It is a FIFO queue of orders and upon completion they change the
status of the order for pickup.

 100

• BusboySubsystem is responsible for informing the busboys when a table is ready
to be cleaned up. When they are finished they change the status of the table to be
ready.

• DatabaseSubsystem is responsible for providing access to the MySQL Database
to the various other subsystems. It is also in charge of storing the data in a
predetermined schema.

The various classes listed in the previous section are contained within these different
subsystems. The subsystems are important for keeping functionally related objects
together.

Subsystem Classes
ManagerSubsystem employeeAccountController,

employeeInfo, MenuItemController
DatabaseSubsystem Validator, infoChecker, employeeDatabase,

ItemInfo, FoodDatabase, ItemChecker,
OrderDatabase

WaiterSubsystem OrderController
CookSubsystem OrderInfo
BusboySubsystem TableStatusChecker
HostSubsystem TableController

Mapping Subsystems to Hardware

The application consists of three distinct virtual machines. The first one is the client
computer which is running a W3C Compliant Web Browser. The client computer can be
a normal computer, Pocket PC, or PDA. The second virtual machine is the Apache
Webserver which is serving up the various HTML/PHP pages to the client computer
across the network. The last virtual machine is the MySQL Database which serves up the
data to the Apache Webserver.

UML Diagram:

 101

Persistent Data Storage

Our application will definitely need to save data that will be persistent and accessible to
various different clients at any time. The application will need to store various data
including a list of employees, list of food, orders, tables, and payroll. The best way to
organize the data is to utilize a relational database such as MySQL. The reason for this is
that relational databases are good for when you have concurrent access and possibly
multiple applications accessing the same data. In this case, we might have waiters, hosts,
cooks, managers, and busboys accessing the database at once. We would also like the
ability to extend upon the database with other programs. In addition, we will be running
various queries for various reports such as most popular dish, payroll, and busiest hours.
A good database schema is very important to the operation of the application. A bad
schema will result in unneeded calls to the database which will result in poor
performance. It is important that the schema is created and standardized. It will allow
future expansions to the application.

 102

The persistent objects are as follows:

• _order
• Orderxfoodxaddon
• Food
• Addon
• foodXAddon
• employee
• _table
• Payroll

The _order table keeps track of specific orders, what table they belong to, which waiter is
taking care of it, its status, and many other things detailed in the following database
schema. This is the base table for any orders that will occur in the restaurant.

The orderxfoodxaddon table is the items that are contained in an order. As the waiter
adds items to an order, a new record is created with that item in this table.

The food table keeps track of all the items that the restaurant sells and includes a field for
the price of the item. In addition, the addon and foodXAddon tables are used to list what
addons are available and which ones are valid for specific food items.

The employee table is a listing of all the employees at the restaurant. We keep records of
what type of employee they are and their wage. We also store their login password here.

The _table table is for assigning the specific tables to specific waiters and keeping track
of the status of the table.

The payroll table is to keep track of individual employee’s hours and to calculate the
payroll for the week.

All these persistent objects are tables that can be found in the database schema. They
contain various records that are important and should be available to users of the
application.

The schema is attached:

 103

Database Schema

Tables
employee

_table
_order
food

addon
ingredients
foodxaddon
orderdetail

orderxfoodxaddon
ingredientsxinventory

foodxingredients
payroll

Details to follow…

 104

employee

Field Type Key Default Extra
id int(5) PRI auto_increment

fname varchar(20)
lname char(2)
wage float 0

password int(4) 0
type varchar(20)

_table

Field Type Key Default Extra
id int(5) PRI auto_increment

employeeid int(5)
status varchar(20)

_order

Field Type Key Default Extra
id int(5) PRI auto_increment

timeordered datetime 0000-00-00 00:00:00
timeready datetime 0000-00-00 00:00:00

timedelivered datetime 0000-00-00 00:00:00
waiterid int(5) 0
tableid int(5) 0
status varchar(20)
total float

food

Field Type Key Default Extra
id int(5) PRI auto_increment

name varchar(20)
price float 0
type varchar(20)

addon

Field Type Key Default Extra
id int(5) PRI auto_increment

name varchar(20)
price float 0

ingredients

Field Type Key Default Extra
id int(11) PRI auto_increment

name varchar(20)

 105

foodxaddon
Field Type Key Default Extra
foodid int(5) 0

addonid int(5) 0

orderdetail
Field Type Key Default Extra

orderid int(5)
foodid int(5)

addonids varchar(20)
quantity int(5)
status varchar(20)

id int(5) PRI auto_increment

orderxfoodxaddon
Field Type Key Default Extra

orderid int(5) 0
foodid int(5) 0

addonid varchar(20)

ingredientsxinventory
Field Type Key Default Extra

ingredientid int(11) 0
curr_quantity int(11) 0

foodxingredients

Field Type Key Default Extra
foodid int(11) 0

ingredientid int(11) 0
ingredient_quantity int(11) 0

payroll

Field Type Key Default Extra
id int(5) 0

timein datetime 0000-00-00 00:00:00
timeout datetime 0000-00-00 00:00:00

The fields are color coded according to secondary key restrictions
For example in the table orderxfoodxaddon the field orderid is color-coded in orange
the id field in the order table is also in orange. This means that the field orderid in this table
is a secondary key based on the primary key of the orders table which is the id field

 106

Network Protocol

Since this is a web based application utilizing PHP/MySQL; we will be running on an
Apache server. All communication between the clients and server will be done over the
HTTP protocol. Any client that can run a web browser will be compatible with the
application. For example, the application can be easily extended to Pocket PC’s/PDA’s
that have a built in web browser. They just need to go to the website and the browser will
render the client appropriately for the browser. The application will detect the user agent
and change the formatting appropriately for the browser type. For example, a PDA will
have a smaller screen than a normal PC. So the website will need to be rendered in a
smaller size.

PHP has a built in library for communicating with MySQL databases. It is much more
efficient and faster than opening an ODBC connection. We will be using this built in
library for communications between the application and its backend MySQL database.

Global Control Flow

Execution Orderness
This application is an event-driven system that waits for user input before doing anything.
When an event occurs, it is dispatched to the system with the correct information. The
advantage is a simpler structure and the centralizing of all inputs into a main loop. The
difficulties arise when a sequence requires multiple steps to complete. Each individual
user of the application can generate actions for each request. For the most part, the
events in our application do not require multiple steps and can be easily completed at
once. They do not depend on different actions from different users. Consequently, there
are no timers or need for concurrency in the application.

Time Dependency
There are no timers in the application since it is an event-response system.

Concurrency
The system does not use multiple threads.

Hardware Requirements

The hardware requirements for the application are very low. The most important parts
will be a fast hard drive for the MySQL database to reside on and a good network. The
client part of the application is very portable since the only required piece of software is a
W3C Compliant Web Browser. Microsoft Windows, *Nix, and Mac OS all have
browsers that will work with the application.

What follows are the minimum specifications for the various computers and other
hardware:

 107

Server Requirements
Minimum CPU – P4/AMD Athlon 1.6GHz+
Minimum Disk Space – 2GB
Minimum Memory – 512MB
Minimum Network – 10/100MB Network
Required Software – Apache, PHP, MySQL

Client Requirements
Minimum CPU – P3/AMD Athlon 1.0 GHz+
Minimum Disk Space – 512MB
Minimum Memory – 256MB
Minimum Network – 10/100MB Network
Minimum Display – 800x600 Color CRT
Required Software – W3C Compliant Web Browser (Internet Explorer)

PDA Requirements
Minimum Network – 802.11b Wireless Network
Minimum Display – 240x320 Color Touch Screen LCD
Required Software – W3C Compliant Web Browser (Pocket Internet Explorer)

Other Hardware Required
10/100 Switch
802.11b Wireless Access Point

Optional Hardware
Touch Screens

 108

12. Algorithms and Data Structures

Algorithms

Our system does not use any complex algorithms

Data Structures

Our system does not use any complex data structures

 109

13. User Interface Design and Implementation

The primary goal of the interface is to be very simple and fast to use so that little time is
wasted while inputting orders or preparing food. For the most part, the original interface
mockups have been followed when being implemented in HTML. A majority of the
choice menus will be dropdown so that waiters, busboys, hosts, and cooks will not need
to use keyboards for most of the functions. Ideally, touch screens will be the main form
of input. There will be no pictures or fancy graphics present so that the application will
load quickly and lessen the load on the network and server. Simple customizations such
as the name of the restaurant and color scheme will be easily changed to suit the
customer. The color scheme can be controlled via CSS (Cascading Style Sheets) and will
allow fast changes without needing to edit the underlying PHP code.

As we stated in the requirements section, the minimum supported screen resolution will
be 800x600. The application will be formatted with this screen resolution in mind. All
buttons and information should be viewable within the screen without excessive
scrolling. In some cases, scrolling will be needed but for the most part will be restricted
to administrative pages or non-essential data. Important functions, such as placing
orders, are streamlined for the least amount of user effort. In order to simplify things,
Internet Explorer can be run in Kiosk Mode.

A special interface for waiters will be implemented that can be utilized on wireless
PDAs. The test unit will be a Dell Axim X5. This PDA has a screen resolution of
240x320 and uses a stylus for input. This interface will be very similar to the normal
waiter screen. The application will automatically detect that the “User Agent” of the web
browser is either Pocket Internet Explorer or Internet Explorer.

Table layout of the restaurant was an interesting issue that we discussed at length. We
had two options available to us when implementing the table screen for the host, waiter,
and busboy. Many of the groups decided to implement a layout screen that mimicked the
actual layout of the restaurant. We; however, decided that the most efficient way to do
this would be to have a static table layout which was numerically arranged. Our
reasoning for this hinged on the fact that its faster to find tables if they are arranged
numerically. Instead of having to pick out the specific table on a map of the restaurant
you would just have to click that number table. In a real restaurant, all the tables are
numbered and the waiters know the numbers for their assigned table. It is faster for them
to find that number on the screen if it’s in order rather than in a physical location type of
order. This also reduces dependency on the physical layout of the restaurant or the need
for the manager to constantly be there for any table layout changes. Simplicity was the
main goal and this was achieved.

 110

All users to the system will be presented with a Login Screen into which they will enter
their Employee ID number and password. This screen will also serve as the Sign-In for
payroll purposes. Every employee will also have a button to clock out of their shift. Both
of these buttons will create records in order to calculate hours worked.

Manager

The manager will have access to four different functions and each will have its associated
screen. There will be buttons for:

• Add/Edit/Remove Employees
• Manage Inventory
• Manage Payroll
• Reports Screen
•

The Add/Edit/Remove Employees screen will allow the manager to add new employees
to the payroll. They can also change an employee's type so that they can fill a different
role in the restuarant. In addition, they can remove an employee from the database.

The Manage Inventory screen will have a list of items that the restaurant keeps on stock.
It will have a box with the current amount. The manager can add/remove new items and
change the amount.

The Manage Payroll screen will show all the employees and how many hours they have
worked during the week. In addition, it will have a field for their pay rate and it will
calculate how much their paycheck should be at the end of the week.

 111

The Reports Screen will show various charts and graphs of collected statistics such as
hourly traffic flow into the restaurant and popularity of various dishes.

Host

The host has one screen which displays the various tables in the restaurant and their
status. When they click on a table it will allow them to change the status of the table and
seat customers.

 112

 113

Waiter

The waiter has the most complex interface of the various users. Their main screen will
display the various tables that they are responsible for in the restuarant. On the right side,
they will have a Order Status screen which will alert them when to pickup orders from
the kitchen. When they have delivered the order they just have to click on it and the status
will change to Delivered. When they click on a table they will be presented with two
options:

1. Place Order
2. Pay Bill

When they click on Place Order they will be see the Order Page and it is here that they
can select various items from a drop down menu and input the quantity ordered. The
order will be shown below that and by pressing the “-” they can remove items from the
order. The order will be totaled at the bottom and they can place the order by pressing the
“Place Order” button at the bottom right.

The Pay Bill button will change the status of the table to “dirty” and inform the busboy
that the table needs to be cleaned.

 114

 115

Cook

The cook's screen consists of a FIFO queue that displays the various orders and presents
them with buttons to show the details of the order and a button to signal that the order is
complete and ready for delivery. We will also keep track of how long it takes to complete
the orders. Once the order is delivered it will be removed from the queue.

 116

Busboy

The busboy's view is very similar to the host's view. The main difference is that there will
be a list on the right showing the tables that need to be cleaned. This will also be a FIFO
queue. By clicking on the table, the busboy will change the status of the table to “ready”.

User Effort Estimation

Placing an Order

• Navigation: total 3 mouse clicks, as follows
• Click Appropriate Table Icon
• Click “Place Order” Button
• --- Complete Data Entry ---
• Click “Place Order” Button

• Data Entry: total 3 mouse clicks and 1 keystroke multiplied by the number of
items, as follows:

• Select Item from Drop Down (2 mouse clicks)
• Input Quantity (Default 1 otherwise press “#” key)
• Click “Add to Order”
• Repeat for each item

Signing In

• Navigation: total 1 mouse click, as follows

 117

• --- Complete Data Entry ---
• Click “Sign In” Button

• Data Entry: total 1 keystroke, as follows
• Input “Employee ID”
• Press Tab
• Input “Password”

 118

14. History of Work & Current Status of Implementation

 119

• This restaurant automation project in itself is a very big accomplishment due
to the fact that it gives us the sense of creating something from scratch.

• Although some of the group members had experience working with PHP and
MySQL, none of us were proficient in either one. We overcame the difficulty
this difficulty by researching and taking tutorials on the web in both PHP and
MySQL.

• Debugging our code in order to work out software glitches was also another
problem that consumed a lot of time. Working out the glitches was a good
experience and taught us a great deal about dealing with software glitches.

• The interface that we designed for the website was done in CSS and even
though a fancy interface did not bring us a better grade for the course, our
group decided that a fancy interface would be necessary in order to make this
product realistic for a touch screen interface that a restaurant would use
because it would make things easier on the eye.

• Meeting the milestones was also another big accomplishment due to the fact
that we had to work around the schedule of all the different members of the
group.

 120

15. Conclusions and Future Work

Challenge: The setup and implementation of the overall architecture was one of the most

challenging tasks at the beginning of this project. The group has some trouble reaching a

decision on the necessary functionalities required for different users of the restaurant

automation model.

Solution: The used case and domain models discussed during the building blocks for this

project. Using the fully dressed descriptions, we were able to implement use cases and

modify them according to the individual needs of the host, waiter, manager, busboy, and

chef. The domain model was crucial in tying everything together. It became evident that

everything is interlinked and much of the code can be easily reused for different

functions.

Challenge: When we began the implementation of the database and coding, the structure

and organization of the class as well as their functionalities were very unclear. We were

not sure of the required parameters and information required to implement the database.

The various functionalities of different users caused some unnecessary repetitiveness in

the database.

Solution: Using the class diagram and interface specification discussed in class, we were

able to coordinate and implement an organized database containing only the necessary

information and eliminating unnecessary repetitiveness. This also made the distribution

of tasks easier within the group as the classes and functionalities required had now

become very clear.

Challenge: The next challenge we faced in the group was communication among the

users of the restaurant automation model (host, waiter, etc). We realized that when one

 121

user enters the model and performs a certain task, it affects all other users. For example,

when the host seats a customer, the waiter needs to acknowledge this and serve the table.

When the waiter serves the table, the order needs to be sent to the chef. The chef then

needs to alert the waiter when the food is ready, and finally, the waiter needs to alert the

busboy at the end of the meal. This communication seemed tedious and caused some

problems with shared access.

Solution: The Publisher-Subscriber pattern discussed during the course was a perfect

implementation for this project. This way, all the users would be subscribed to their

related tasks, and when one user performs a task, all other users are automatically

updated.

Other Helpful Knowledge: The course did not focus much on the database

implementation of the project. Although there was a general overview provided, there

was no specific focus on the technical practices and habits for efficient database

modeling. Knowledge from our current internships and jobs helped greatly with the

implementation of this database model. This knowledge can be very helpful to many

students that are unfamiliar with the implementation of a database.

Possible Directions for Future Work: This model can be easily redefined for personal

needs of consumers (menu items, waiter functions, etc). However, a better

implementation of the GUI for the PDA can be a future prospect due to their small

screens and relatively slower operating speeds.

 122

16. References

http://www.caip.rutgers/~marsic/books/SE/book-SE_marsic.pdf
http://www.caip.rutgers.edu/~marsic/Teaching/CSE/report1.html
www.wikipedia.org

Bruegge, Bernd and DuAllen H.Dutoit. Object-Oriented Software Engineering: Using
UML, Patterns and Java. Second Edition, Prentice Hall, Upper Saddle River, NJ, 2004.

