
Resting state fMRI and ICA

• Introduction to resting state

• Independent Component Analysis

• Single-subject ICA

• Multi-subject ICA

• Dual regression



Resting state methods

- Node-based approach 
(first need to parcellate 
the brain into functional 
regions) 

- Map connections 
between specific brain 
regions (connectomics) 

- Temporal approach 

Network modelling

- Multivariate voxel-
based approach 

- Finds interesting 
structure in the data 

- Exploratory “model-
free” method 

- Spatial approach 

ICA



Model-based (GLM) 
analysis

- model each measured time-series as a linear 
combination of signal and noise 

- If the design matrix does not capture every signal, 
we typically get wrong inferences!

+β1=



Data Analysis

- “Is there anything 
interesting in the data?” 

- can give unexpected 
results

Exploratory

Problem Data

Analysis Model

Results

- “How well does my 
model fit to the data?” 

- results depend on the 
model

Problem Data

AnalysisModel

Results

Confirmatory



 FMRI inferential path
Experiment

MR PhysicsAnalysis

PhysiologyInterpretation 
of final results

Image from mos.ru, released 
under the CC BY 4.0 license

Image from Servier Medical  
Art, released under the  

CC BY 3.0 license 



Interpretation 
of final results

Variability in FMRI
Experiment

MR PhysicsAnalysis

Physiology

MR noise, 
field inhomogeneity, 
MR artefacts etc.

filtering & sampling artefacts, design 
misspecification, stats & 
thresholding issues etc.

suboptimal event timing, 
inefficient design, etc.

secondary activation, ill-
defined baseline, resting-

fluctuations etc.

Image from Servier Medical  
Art, released under the  

CC BY 3.0 license 

Image from mos.ru, released 
under the CC BY 4.0 license



There is no explicit time-series model 
of assumed ‘activity’

Model-free?



Model-free?

Yi = SiA i + Ei , where Ei
·j ⇠ N(0,σ

2
Y I)

There is an underlying mathematical 
(generative) model



Decomposition techniques

- try to ‘explain’ / represent the data 

- by calculating quantities that summarise the data 

- by extracting underlying ‘hidden’ features that are 
‘interesting’ 

- differ in what is considered ‘interesting’ 

- are localised in time and/or space (Clustering) 

- explain observed data variance (PCA, FDA, FA) 

- are maximally independent (ICA)



Melodic

multivariate linear decomposition:  
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Data is represented as a 2D matrix and 
decomposed into components
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multivariate linear decomposition:  

Data is represented as a 2D matrix and 
decomposed into components

tim
e

FMRI data

space

Y = βX x



What are components?

- express observed 
data as linear 
combination of 
spatio-temporal 
processes 

- techniques differ in 
the way data is 
represented by 
components 

≈

×

+

×

+

×



Spatial ICA for FMRI

- data is decomposed into a set of spatially 

independent maps and a set of time-courses

McKeown et al. 
HBM 1998

x

space
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Independence



PCA vs. ICA ?
Simulated

Data

(2 components, slightly 
different timecourses)
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PCA

• Timecourses 
orthogonal

• Spatial maps and 
timecourses 
“wrong”

PCA vs. ICA ?
Simulated

Data

(2 components, slightly 
different timecourses)



ICA

• Timecourses 
non-co-linear

• Spatial maps and 
timecourses 
“right”

PCA

• Timecourses 
orthogonal

• Spatial maps and 
timecourses 
“wrong”

PCA vs. ICA ?
Simulated

Data

(2 components, slightly 
different timecourses)



PCA vs. ICA

• PCA finds projections of 
maximum amount of variance 
in Gaussian data (uses 2nd 
order statistics only) 

• Independent Component 
Analysis (ICA) finds 
projections of maximal 
independence in non-
Gaussian data (using higher-
order statistics)
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non-Gaussian 
data

PCA vs. ICA

• PCA finds projections of 
maximum amount of variance 
in Gaussian data (uses 2nd 
order statistics only) 

• Independent Component 
Analysis (ICA) finds 
projections of maximal 
independence in non-
Gaussian data (using higher-
order statistics)
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Plot x vs. y
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Correlation vs. independence

• de-correlated 
signals can still be 
dependent
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high order correlations
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r= −0.118

• higher-order 
statistics (beyond 
mean and variance) 
can reveal these 
dependencies 

• Stone et al. 2002



Non-Gaussianity

sources mixtures

mixing



mixing

Non-Gaussianity

Gaussiannon-Gaussian



• Random mixing results in more Gaussian-
shaped PDFs (Central Limit Theorem) 

• conversely:                   

if mixing matrix produces less  Gaussian-
shaped PDFs this is unlikely to be a random 
result 

➡    measure non-Gaussianity 

• can use neg-entropy as a measure of non-
Gaussianity 

       Hyvärinen & Oja 1997

ICA estimation



ICA estimation

- need to find an unmixing matrix such that the 
dependency between estimated sources is 
minimised 

- need (i) a contrast (objective/cost) function to 
drive the unmixing which measures statistical 
independence and (ii) an optimisation technique: 

- kurtosis or cumulants & gradient descent (Jade) 

- maximum entropy & gradient descent (Infomax) 

- neg-entropy & fixed point iteration (FastICA)



Overfitting & thresholding



The ‘overfitting’ problem

fitting a noise-free model to noisy observations:


- no control over signal vs. noise (non-interpretable 
results)


- statistical significance testing not possible 

 GLM analysis standard ICA (unconstrained)



statistical “latent variables” model:  we observe linear 

mixtures of hidden sources in the presence of Gaussian 

noise 

Probabilistic ICA model

Issues: 

- Model Order Selection: how many components? 

- Inference: how to threshold ICs?

Y = βX

+ noise

+ E



Model Order Selection

under-fitting: the amount 
of explained data 
variance is insufficient to 
obtain good estimates of 
the signals

15

optimal fitting: the amount of 
explained data variance is sufficient 
to obtain good estimates of the 
signals while preventing further splits 
into spurious components

33

over-fitting: the inclusion of 
too many components leads 
to fragmentation of signal 
across multiple component 
maps, reducing the ability to 
identify the signals of interest

165

‘How many components’?



Model Order Selection
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Thresholding



Thresholding

- classical null-hypothesis 
testing is invalid 

- data is assumed to be a 
linear combination of 
signals and noise 

- the distribution of the 
estimated spatial maps 
is a mixture distribution!

−2 −1 0 1 2 3 4 5 6 7

1 2 3 4 5 6

right tail

−2.5−2−1.5−1

left tail



Alternative Hypothesis Test

- use Gaussian/Gamma mixture model fitted to the histogram 
of intensity values (using EM)



What about overlap?



What about overlap?

⇢ = 0.5

Sources

⇢ < 0.1

Sources + 
noise

ICA 
solution

⇢ = 0

after 
thresholding

⇢ ⇡ 0.5


