

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Resting state methods

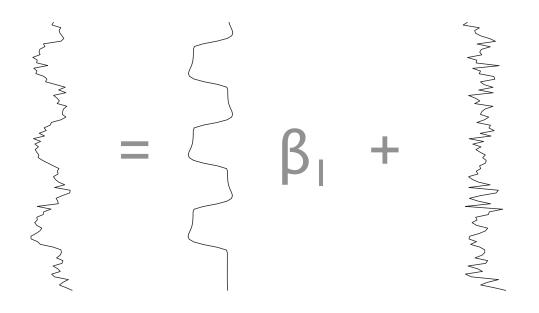
ICA

- Multivariate voxelbased approach
- Finds interesting structure in the data
- Exploratory "modelfree" method
- Spatial approach

Network modelling

- Node-based approach (first need to parcellate the brain into functional regions)
- Map connections
 between specific brain
 regions (connectomics)
- Temporal approach

Model-based (GLM) analysis



- model each measured time-series as a linear combination of signal and noise
- If the design matrix does not capture every signal, we typically get wrong inferences!

Data Analysis

Confirmatory

 "How well does my model fit to the data?"

Model
Analysis

results depend on the model

Exploratory

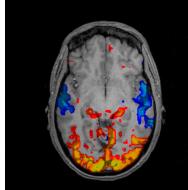
"Is there anything interesting in the data?"

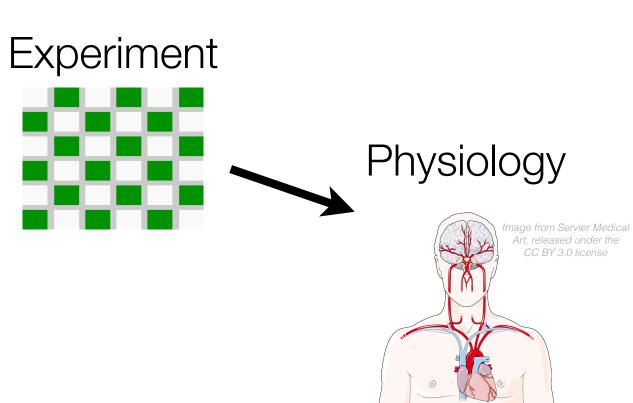
Analysis 🔶 Model

can give unexpected results

FMRI inferential path

Interpretation of final results





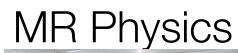
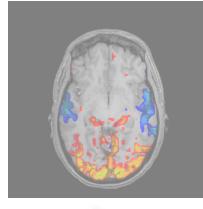


Image from <u>mos.ru</u>, released under the CC BY 4.0 license

Variability in FMRI

Experiment

Interpretation of final results



suboptimal event timing, inefficient design, etc.

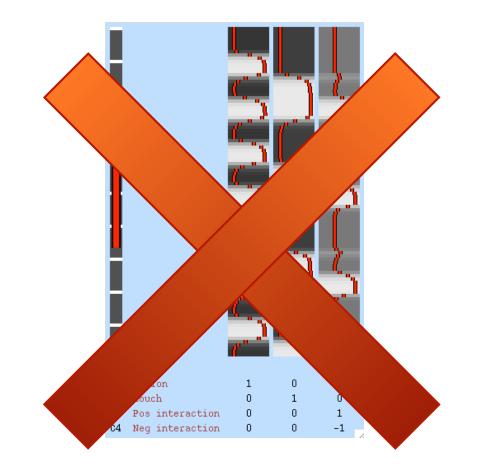
Physiology

secondary activation, illdefined baseline, restingfluctuations etc.

Analysis

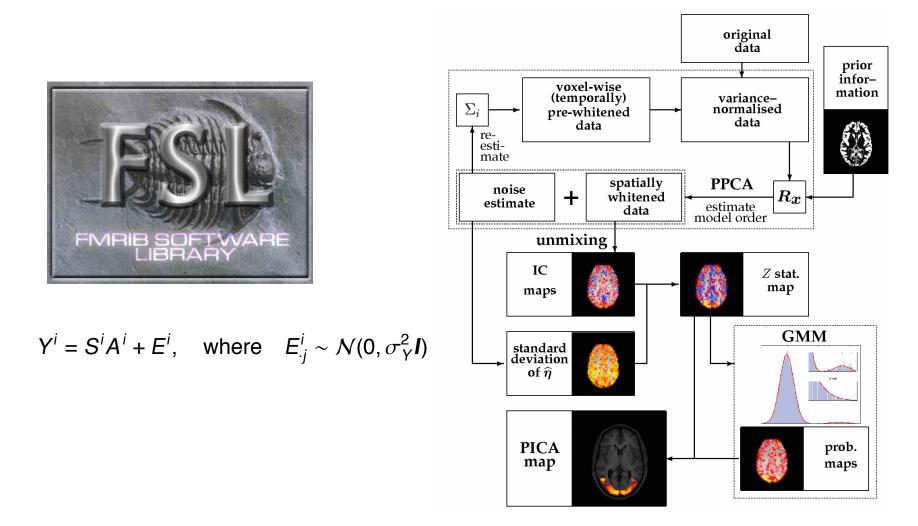
filtering & sampling artefacts, design misspecification, stats & thresholding issues etc. MR Physics MR noise, field inhomogeneity, MR artefacts etc.

Model-free?



There is no explicit time-series model of assumed 'activity'

Model-free?



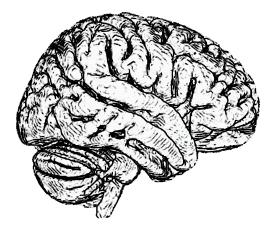
There is an underlying mathematical (generative) model

BSE

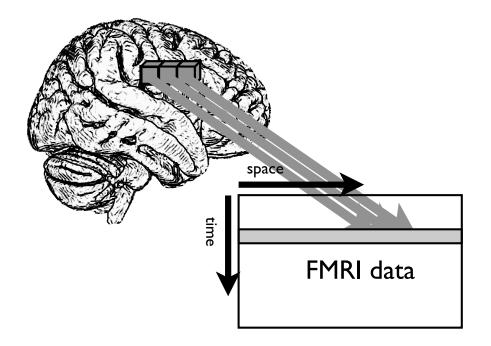
Decomposition techniques

- try to 'explain' / represent the data
 - by calculating quantities that summarise the data
 - by extracting underlying 'hidden' features that are 'interesting'
- differ in what is considered 'interesting'
 - are localised in time and/or space (Clustering)
 - explain observed data variance (PCA, FDA, FA)
 - are maximally independent (ICA)

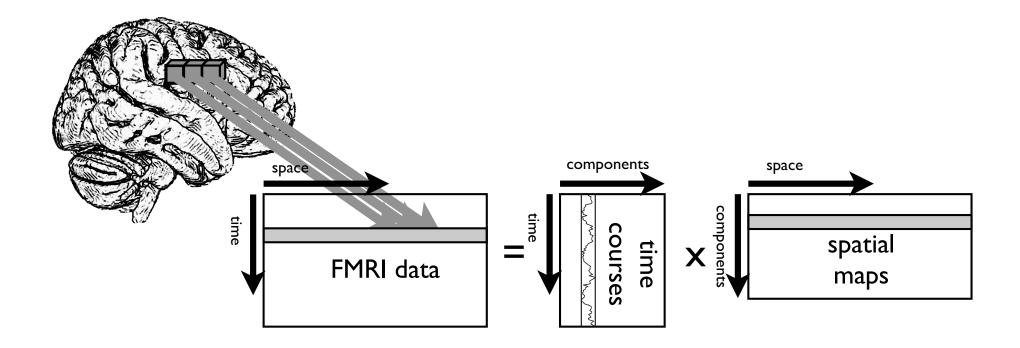
multivariate linear decomposition:



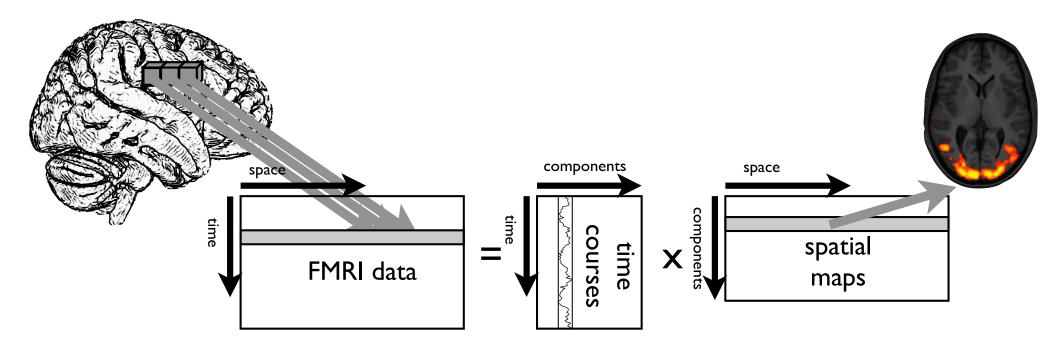
multivariate linear decomposition:



multivariate linear decomposition:

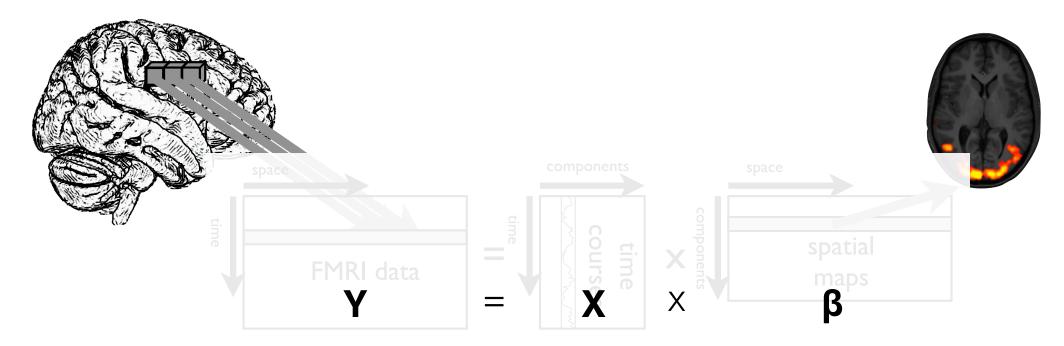


multivariate linear decomposition:



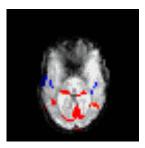
Data is represented as a 2D matrix and decomposed into components

multivariate linear decomposition:

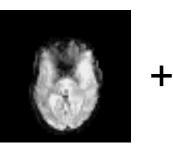


Data is represented as a 2D matrix and decomposed into components

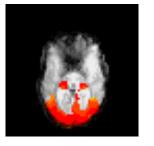
What are components?



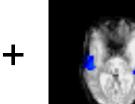
 \approx



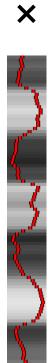
X



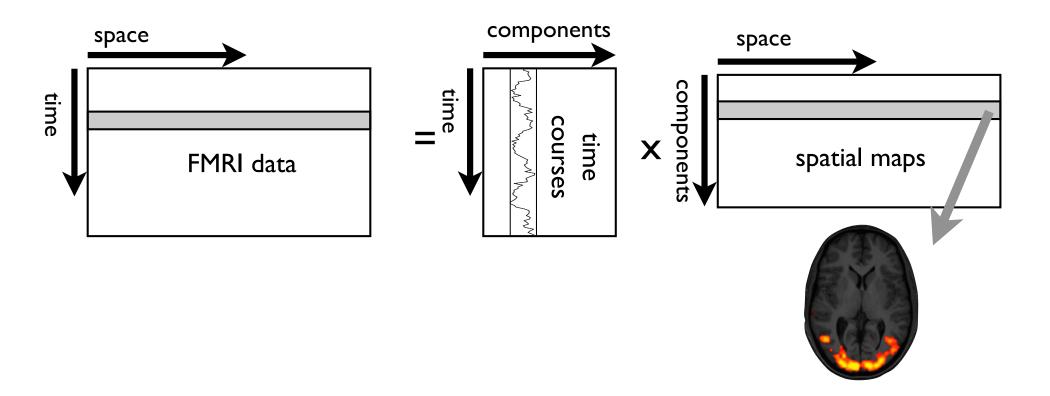
X



- express observed data as linear combination of spatio-temporal processes
- techniques differ in the way data is represented by components



Spatial ICA for FMRI

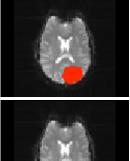


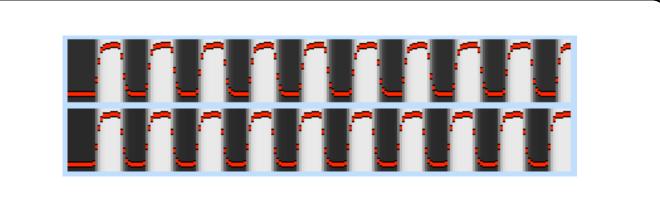
 data is decomposed into a set of spatially independent maps and a set of time-courses

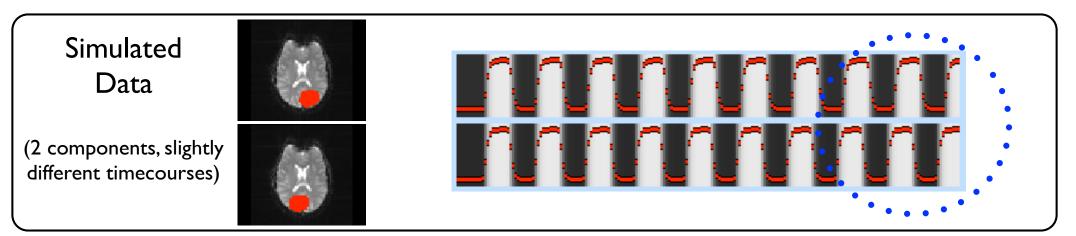
McKeown et al. HBM 1998

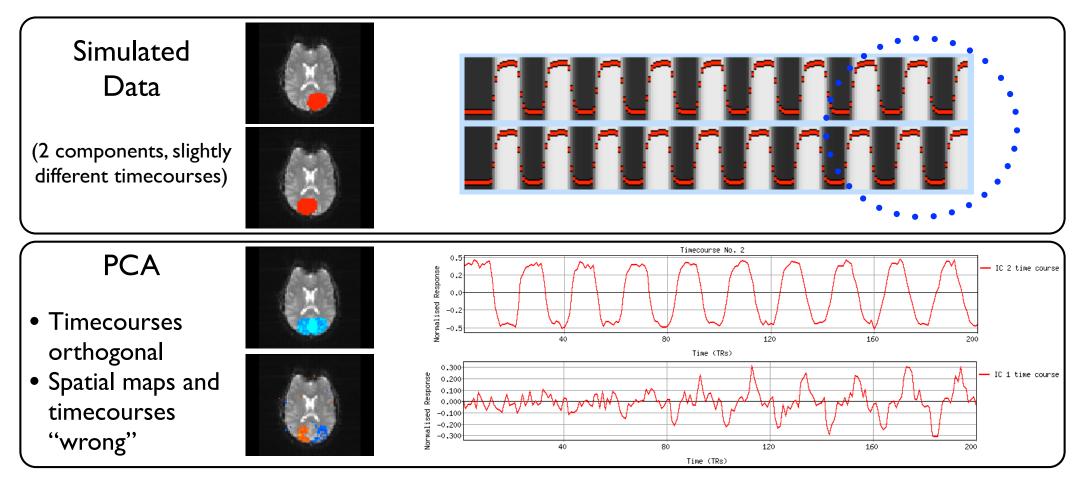
Independence

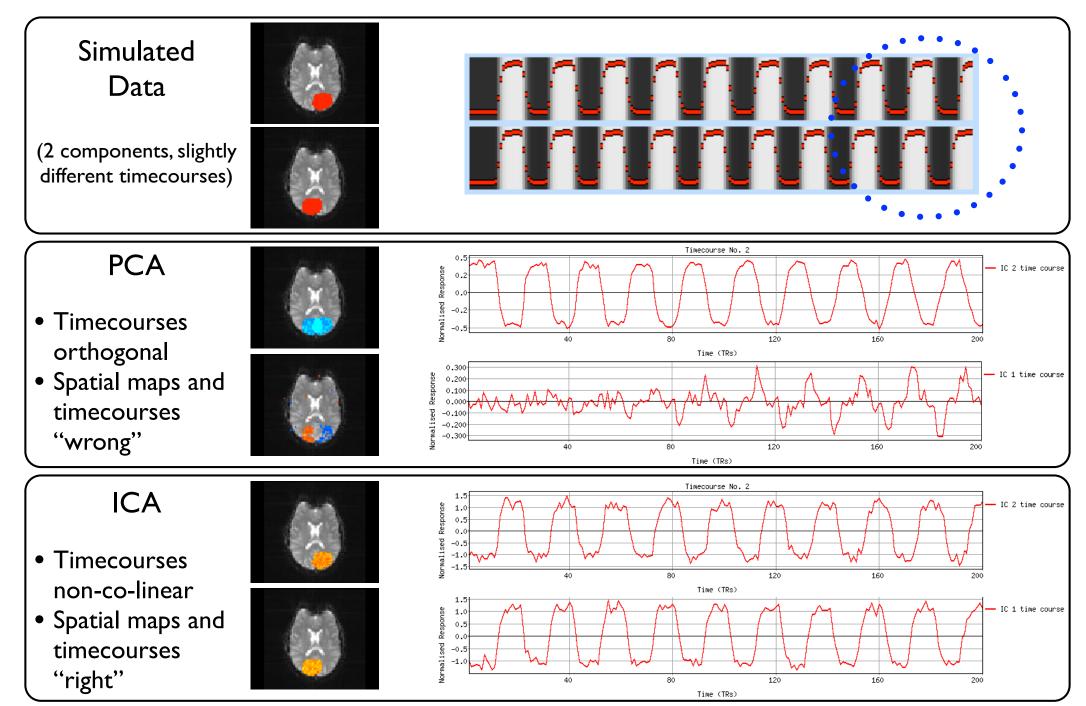
(2 components, slightly different timecourses)



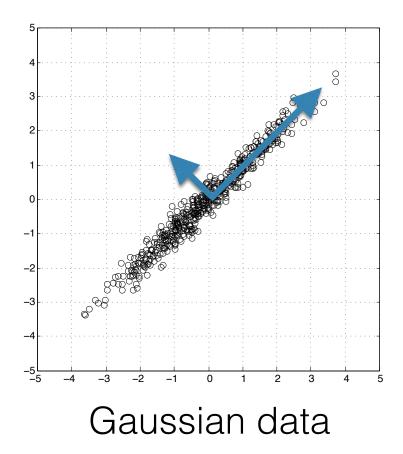




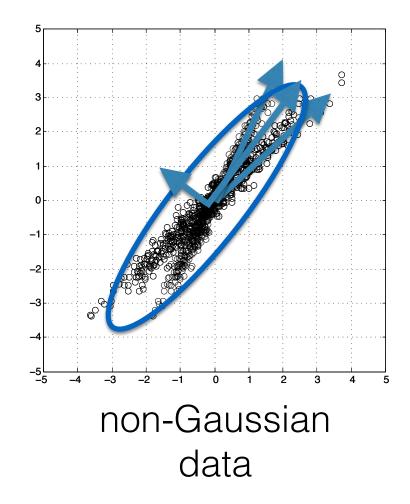




 PCA finds projections of maximum amount of variance in Gaussian data (uses 2nd order statistics only)



- PCA finds projections of maximum amount of variance in Gaussian data (uses 2nd order statistics only)
- Independent Component Analysis (ICA) finds projections of maximal independence in non-Gaussian data (using higherorder statistics)



Correlation vs. independence

1.0

ß

o.

0.0

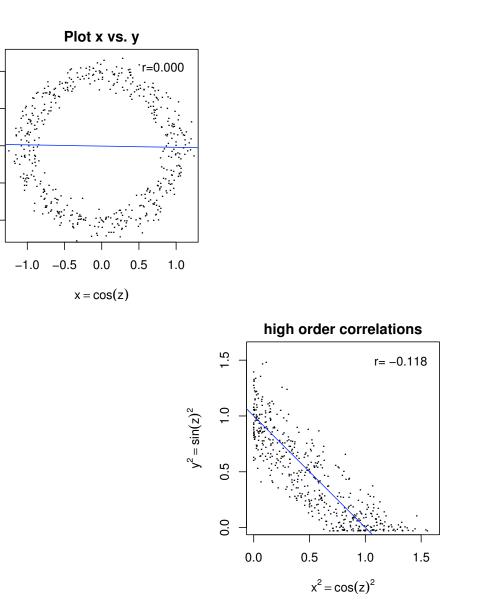
-0.5

-1.0

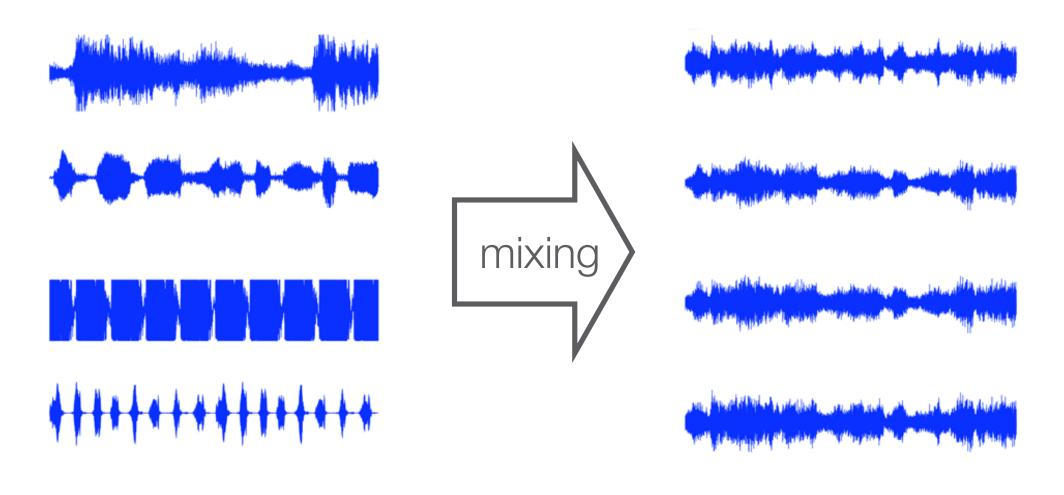
y = sin(z)

- de-correlated signals can still be dependent
- higher-order statistics (beyond mean and variance) can reveal these dependencies

Stone et al. 2002



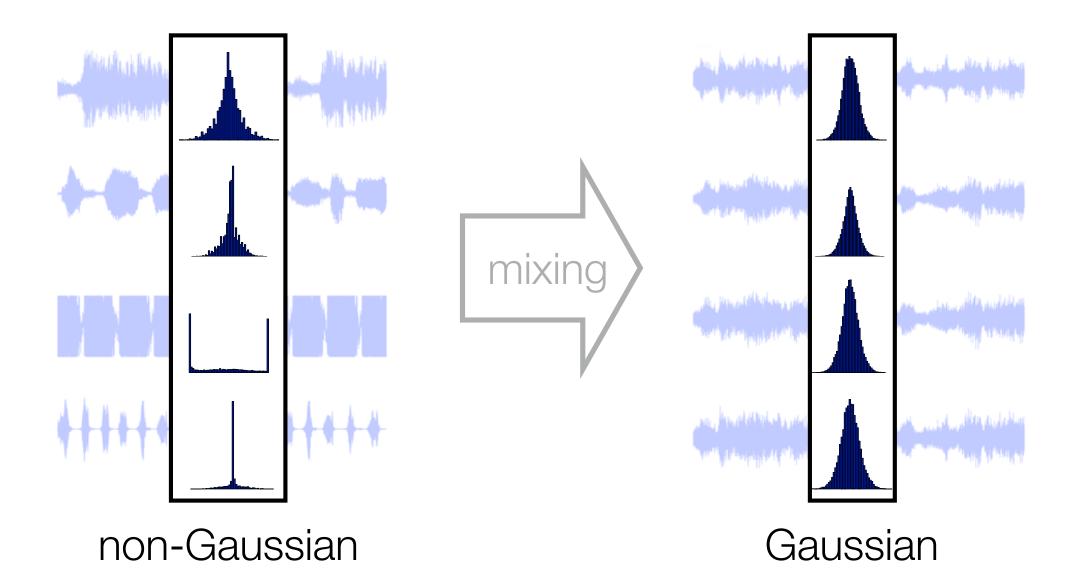
Non-Gaussianity



sources

mixtures

Non-Gaussianity



ICA estimation

 Random mixing results in more Gaussianshaped PDFs (Central Limit Theorem)

• conversely:

if mixing matrix produces less Gaussianshaped PDFs this is unlikely to be a random result

 can use neg-entropy as a measure of non-Gaussianity

ICA estimation

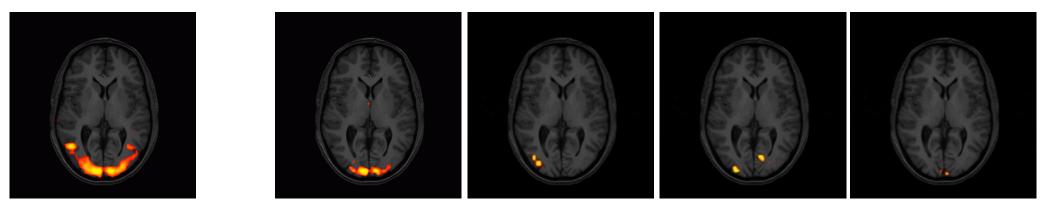
- need to find an unmixing matrix such that the dependency between estimated sources is minimised
- need (i) a contrast (objective/cost) function to drive the unmixing which measures statistical independence and (ii) an optimisation technique:
- kurtosis or cumulants & gradient descent (Jade)
- maximum entropy & gradient descent (Infomax)
- neg-entropy & fixed point iteration (FastICA)

Overfitting & thresholding

The 'overfitting' problem

fitting a noise-free model to noisy observations:

- no control over signal vs. noise (non-interpretable results)
- statistical significance testing not possible

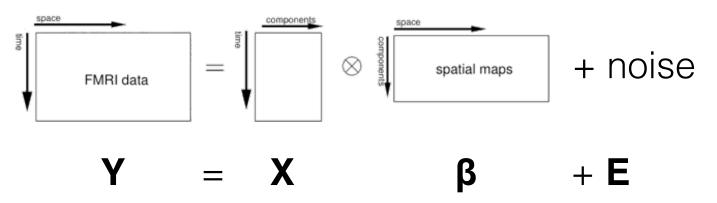


GLM analysis

standard ICA (unconstrained)

Probabilistic ICA model

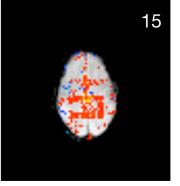
statistical "latent variables" model: we observe linear mixtures of hidden sources in the presence of Gaussian noise



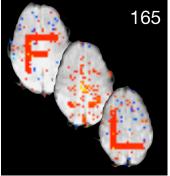
Issues:

- Model Order Selection: how many components?
- Inference: how to threshold ICs?

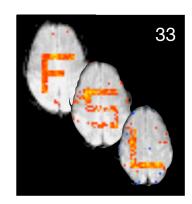
Model Order Selection 'How many components'?



under-fitting: the amount of explained data variance is insufficient to obtain good estimates of the signals

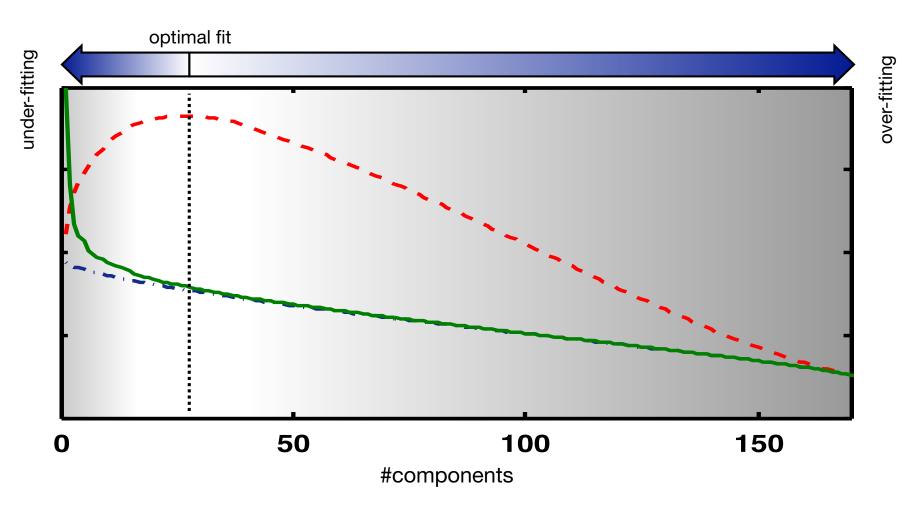


over-fitting: the inclusion of too many components leads to fragmentation of signal across multiple component maps, reducing the ability to identify the signals of interest



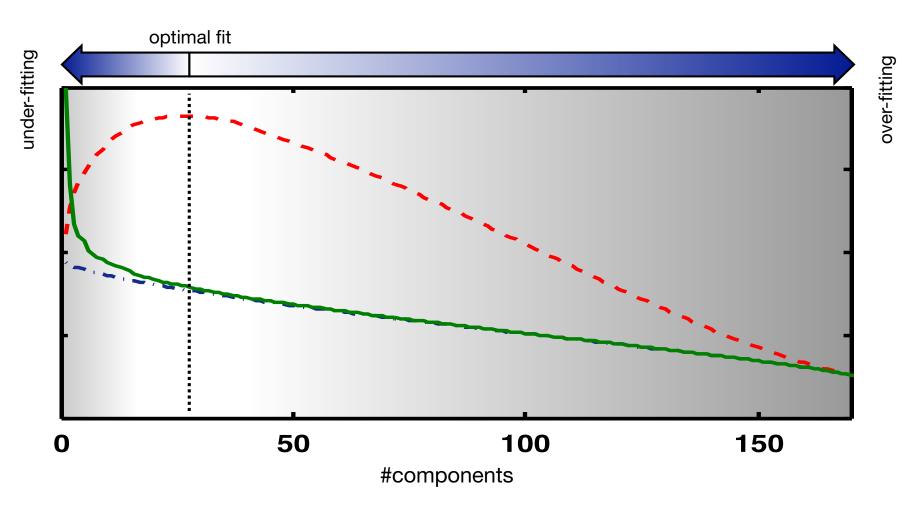
optimal fitting: the amount of explained data variance is sufficient to obtain good estimates of the signals while preventing further splits into spurious components

Model Order Selection



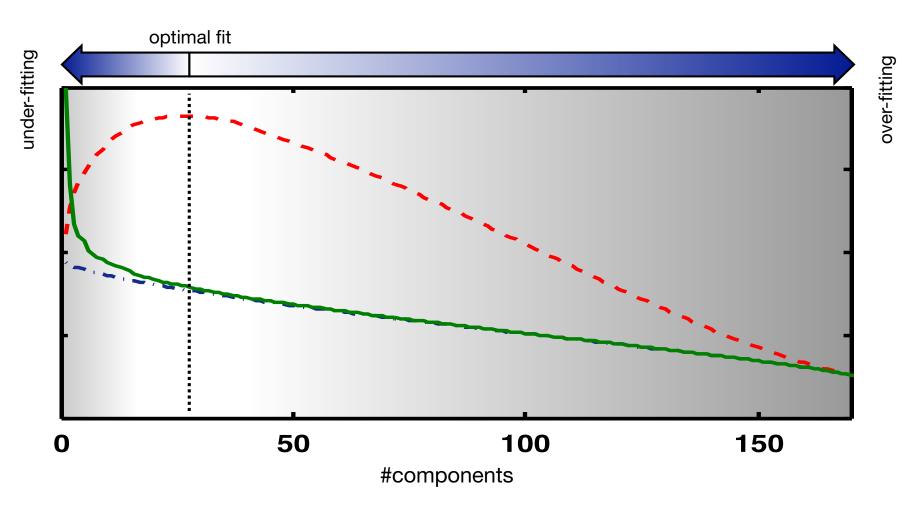
- observed Eigenspectrum of the data covariance matrix
- Laplace approximation of the posterior probability of the model order
- theoretical Eigenspectrum from Gaussian noise

Model Order Selection



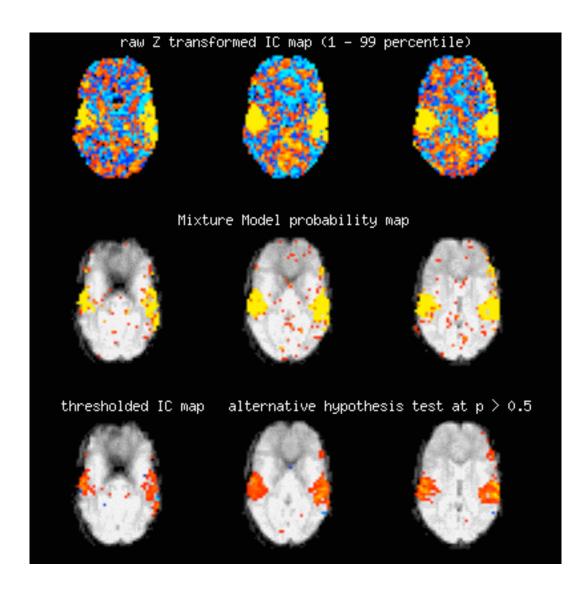
- observed Eigenspectrum of the data covariance matrix
- Laplace approximation of the posterior probability of the model order
- theoretical Eigenspectrum from Gaussian noise

Model Order Selection



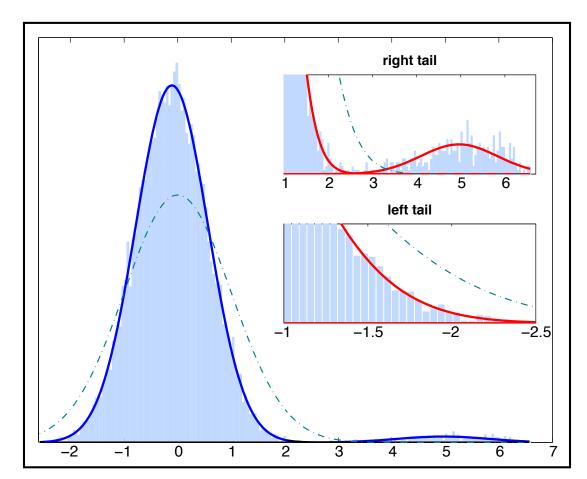
- observed Eigenspectrum of the data covariance matrix
- Laplace approximation of the posterior probability of the model order
- theoretical Eigenspectrum from Gaussian noise

Thresholding



Thresholding

- classical null-hypothesis testing is invalid
- data is assumed to be a linear combination of signals and noise
- the distribution of the estimated spatial maps is a mixture distribution!



Alternative Hypothesis Test



 use Gaussian/Gamma mixture model fitted to the histogram of intensity values (using EM)

What about overlap?

