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Application and concepts
• Requirement: synchronize multiple lasers to a reference signal 

– Original spec was 100fs RMS maintained over 8 hours
• Emphasis on reliability, as downtime is costly

• Concept: synchronize lasers to RF signal transmitted on fiber
– Well-established high harmonic laser locking technique

• We demonstrated 15fs synchronization of two lasers at 2.5GHz
– RF-over-fiber is cable TV technology

• All fiber telecom parts for reliability and cost
• Standard telecom fiber

– Uses LBL-developed low noise digital phase detector
• 0.01 degree phase sensitivity (10fs at 3GHz)

• Optical interferometer to senses fiber delay change
– High temporal resolution
– Low noise heterodyne interferometer

• Interferometer reports to digital phase detector, which then applies 
correction to received RF
– No mechanical time delay adjusters



Environmental perturbations of 
fiber, cable, laser 

• thermal coefficient of index is the main driver for fiber 

Material Coeff. of delay per deg C ∆ delay for 1m, 1 
deg.C

Steel 15 x 10^-6 50fs

Aluminum 22 x 10^-6 72fs

Fiber 8 x 10^-6 40fs

Coax, teflon -85 x 10^-6 -425fs

Coax, air heliax -10 x 10^-6 -50fs

Air (thermal) -3 x 10^-6 -10fs

Air (pressure) 2 x 10^-6 / 10 millibars 7fs / 10mbar

Air (humidity) 4 x 10^-6 / 10%RH 13fs / 10%RH



Schematic of one link

• FRM is Faraday rotator mirror (ends of the Michelson interferometer)
• FS is optical frequency shifter
• CW laser is absolutely stabilized
• Transmitted RF frequency is 2856 MHz
• Detection of fringes is at receiver
• Signal paths not actively stabilized are temperature controlled
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Expansion to multiple channels

• Since all processing is at reciever, a multi-channel transmitter is not 
complex
– 32-channel amp/splitter/ref arm fits in 8U (14”) high rack chassis
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Two-channel test interferometer

• This is an out-of-loop test to see if the interferometers are working
• Also, it’s a measurement of the actual drift and noise
• We installed this in LCLS, and measured tunnel and gallery 2km fibers
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Test interferometer results

• Translating phase error on the 100MHz beat note to 200THz optical, the 
integrated jitter is ~0.25fs (assuming perfect wavelength stability)

• With 2ns total correction, the average drift is 3fs (less than one wave) per day
– We later found the monotonic drift was a computation artefact
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Receiver functions are implemented
by a digital phase detector

• 14 bit DACs
• 125MHz sample rate
• It controls both the interferometer and RF 

phase locked loops



Phase detector stability test

• Blue area is temperature stabilized
• Signal paths to digitizer are not delay stable

– We are measuring the phase difference between signal and reference
– The calibration signal presents a common mode signal to both paths, 

so that differential delay changes can be subtracted out
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Phase stability test results

• 24 hours, 125kHz bandwidth, 2856MHz input
• Uncorrected differential temporal error, 140fs RMS
• Corrected differential temporal error, 15fs RMS
• We are close to the theoretical limit, given the the noise figure of the 

components



We tested a dual channel system

• Opt. Lett. 34, 3050 (2009)
• Measurement of the differential phase variation between two stabilized links
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Dual-channel results

• 1kHz bandwidth
• For 2.2km, 19fs RMS over 60 hours
• For 200m, 8.4fs RMS over 20 hours
• 2-hour variation is room temperature
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We correct for group versus phase delay

group error as
fiber heats

1.6% correction added

36fs
RMS

• Group delay is not equal to phase delay, due to dispersion

• A temperature dependent Sellmeier equation was fitted to previous data by 
Ghosh et al (IEEE JLT 12, 1338)

• We correct for group delay by adding RF delay proportional to the optical 
correction
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We determine the additional correction 
by adjusting to minimize error in situ

• Adjust feedforward correction until error is minimized
• We don’t find significant changes to this factor

– Tested mainly on multi-fiber SMF cable
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Power-to-phase conversion in 
the photodiode is not a problem

• Near saturation, high density of photocarriers screens applied field
– Carriers are not swept out, response is slowed
– Why it’s not monotonic is unclear, but it’s useful

• +/- 10% power variation around zero slope point causes <10fs time shift
• In practice, power is stable to this degree and we don’t have to regulate

– This is an option
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Manufacturer knows about this, 
is improving diodes

• Their results were for pulses, 1GHz harmonic 
• We need to test these with modulated CW, which has much smaller effect
• At least we don’t have to worry the effect will get worse

– New zero slope point is OK, reduces power requirements

Joshi and Datta, IEEE Phot. Tech. Lett. 21, 1360 (2009)



LCLS timing scheme

• We sync to bunch arrival time monitor
• The laser is treated as a VCO
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2-channel, out-of-loop, in situ test

• 27fs RMS in 125kHz BW
• 16fs RMS in 1kHz BW
• Drift is due to short cable 

between receivers, room 
temperature
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Laser locking configuration

• Phase compare at 2856MHz
• Sync first to 68MHz to remove “bucket ambiguity”
• Works better than the commercial lockbox
• New arrangement uses faster diode, eliminates X6 multiplier
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In-loop results

• Improvements to the laser should decrease high frequency noise
– Acoustic and vibration isolation
– Lower noise pump

Laser control error signal
125kHz BW (gray): 120fs RMS
1kHz BW (black): 25fs RMS

RF control error signal
125kHz BW (gray): 31fs RMS
1kHz BW (black): 8fs RMS



The transmitter fits in a standard rack

• VCO

• Receiver 
(for laser)

• Splitter

• Diagnostic

• Amplifier

• Modulator

• Wavelength 
locker

• CW laser



Conclusions, future work

• We have demonstrated a laser-to-RF sync system in an FEL
– 16fs between two RF channels, 25fs laser loop error (1kHz)
– Used reliably for experiments (as reported earlier)

• Easily manufacturable, expandable
– First commercially produced subsystems being tested
– LCLS is engineering next version, will be making 8 channels soon, 

upgrading transmitter to 16 channel capability

• Future work
– Improve laser control
– Better synchronization measurements
– Try higher frequencies
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