\qquad
\qquad

The numbers $\ldots-3,-2,-1,0,+1,+2,+3, \ldots$ are integers.
Integers are the set of positive whole numbers, their opposites, and 0 .

The absolute value of a number is its distance from 0 on a number line. $|-4|=4$. Opposite integers, like -4 and 4 , are the same distance from 0 .

You can use integers to represent real-world situations. On the Fahrenheit thermometer to the right, the temperature reads 5° below zero. The integer -5 can be used to represent this situation.

Write the opposite of each integer.

1. 7 \qquad
2. -212 \qquad
3. 49 \qquad
4. 1,991 \qquad
5. -78 \qquad
6. 16 \qquad

Find each absolute value.
7. $|-2|$
8. $|-100|$
9. $|-16|$
\qquad
10. $|16|$
11. |12|
12. |75|
\qquad
13. spend $\$ 20$
15. 8° below 0° Centigrade
\qquad
17. earn $\$ 15$
\qquad
14. ride to the 12 th floor on an elevator
\qquad
16. dive 10 feet below the water's surface
\qquad
18. gain of 1,400 feet in elevation
\qquad
\qquad
\qquad
\qquad

Reteaching 11-2

You can use a number line to compare integers. For two integers on a number line, the greater integer is farther to the right.

Compare - 2 and 1.
(1) Locate -2 and 1 on the number line.
(2) Find that 1 is farther to the right.
(3) Write $1>-2(1$ is greater than -2$)$, or $-2<1(-2$ is less than 1$)$.

Compare, using < or >.

1. $7 \square-5$
2. $-9 \square-5$
3. $6 \square-6$
4. $-12 \square 0$
5. $-33 \square 0$
6. -11 \square -13
7. $-5 \square 4$
8. $-3 \square-2$

Order each set of integers from least to greatest.
9. $-7,-9,-19,-8$
10. $1,-5,6,8,-2$
\qquad
11. $5,-31,-4,-10$
12. $-2,-22,10,-7$

Write an integer that is located on a number line between the given integers.
13. $-3, \longrightarrow .8$
14. $-24,22$ \qquad 15. $-5, \longrightarrow, 9$
16. \qquad , 4
17. ,2
18. $-17, \ldots,-15$

Complete with an integer that makes the statement true.
19. $-10>$ \qquad
20. $0>$ \qquad
21. $-2>$ \qquad
22. 5 < \qquad
23. $-7<$ \qquad
24. $-36<$ \qquad
\qquad
\qquad
\qquad

You can add integers on a number line.

Example 1: Find $4+3$.

Start at 0 . Move 4 units right and then 3 units right.

$4+3=7$
Example 2: Find $-3+-2$.
Start at 0 . Move 3 units left and then 2 units left.

Example 3: Find $5+(-3)$.
Start at 0 . Move 5 units right and then 3 units left.

$5+(-3)=2$
Example 4: Find $-4+1$.
Start at 0 . Move 4 units left and then 1 unit right.

10. $-14+(-5)$ \qquad 11. $5+(-12)$ \qquad 12. $-9+9$ \qquad
13. $18+(-18)$ \qquad 14. $0+(-4)$ \qquad 15. $6+0$ \qquad
16. $15+(-15)$ \qquad 17. $-12+0$ \qquad 18. $-9+10$ \qquad
21. $2+(-10)$ \qquad
\qquad
\qquad
\qquad

T o subtract an integer, add the opposite.
Example 1: Subtract 5-8.
Add the opposite: $5+(-8)$

Example 2: Subtract $2-(-4)$.
Add the opposite: $2+4$

$5-8=-3$

Use a number line. Find each difference.

1. $3-(-6)$ \qquad 2. $2-(-4)$
2. $-1-2$ \qquad
3. $-3-(-5)$ \qquad
4. $-8-(-3)$ \qquad
5. $4-(-4)$ \qquad
6. $-8-2$ \qquad
7. $8-(-2)$ \qquad
8. $-8-(-2)$ \qquad
9. $-7-4$ \qquad
10. $-10-2$ \qquad
11. $-5-(-5)$ \qquad
12. $-5-6$
13. $9-(-3)$ \qquad
14. $-11-(-6)$ \qquad

Find each difference.
\qquad 17. $-12-3$ \qquad 18. $21-(-7)$
19. $3-(-12)$ \qquad
20. $-2-10$ \qquad
21. $-13-13$ \qquad
22. $5-(-5)$ \qquad 23. $18-(-10)$ \qquad 24. $-7-(-13) \square$
25. $14-16$ \qquad
26. 3-15 \qquad
27. $-6-(-9)$ \qquad
\qquad
\qquad
\qquad
Reteaching 11-5
When two integers have like signs, the product will always be positive.
Both integers are positive:

$$
\begin{aligned}
& 3 \times 4=12 \\
& -3 \times(-4)=12
\end{aligned}
$$

Both integers are negative:
When two integers have different signs, the product will always be negative.
One integer positive, one negative: $\quad 3 \times(-4)=-12$ One integer negative, one positive:
$-3 \times 4=-12$

Example 1: Find -8×3.
(1) Determine the product. $8 \times 3=24$
(2) Determine the sign of the product. Since one integer is negative and one is positive, the product is negative.
(3) So $-8 \times 3=-24$.
(3) $\mathrm{So}(-10) \times(-20)=200$.

Find each product.

1. $7 \times(-4)$
2. $-5 \times(-9)$
3. -11×2
4. $8 \times(-9)$
5. $15 \times(-3)$
6. $-7 \times(-6)$
7. -12×6
8. $13 \times(-5)$
9. $-10 \times(-2)$
10. A dog lost 2 pounds per week three weeks in a row. What integer expresses the total change in the dog's weight? \qquad
Find each quotient.
11. $18 \times(-6)$
12. $-35 \times(-7)$
13. -15×3
\qquad
\qquad
\qquad
14. $28 \times(-4)$
15. $25 \times(-5)$
16. $-27 \times(-9)$
17. -12×4
18. $33 \times(-11)$
19. $-50 \times(-2)$
\qquad

184

When two integers have like signs, the quotient will always be positive.
$\begin{array}{ll}\text { Both integers are positive: } & 8 \div 2=4 \\ \text { Both integers are negative: } & -8 \div(-2)=4\end{array}$
When two integers have different signs, the quotient will always be negative.
One integer positive, one negative: $8 \div(-2)=-4$
One integer negative, one positive: $\quad-8 \div 4=-2$

Example 1: Find $-24+8$.

(1) Determine the quotient.

$$
24 \div 8=3
$$

(2) Determine the sign of the quotient. Since one integer is negative and one is positive, the quotient is negative.
(3) $\mathrm{So},-24 \div 8=3$.

Example 2: Find $35+(-7)$.
(1) Determine the quotient.

$$
35 \div 7=5
$$

(2) Determine the sign of the quotient. Since one integer is positive and one is negative, the quotient is negative.
(3) So, $35 \div(-7)=-5$.

Find each quotient.

1. $18 \div(-6)$
2. $-35 \div(-7)$
3. $-15 \div 3$
\qquad
\qquad
4. $28 \div(-4)$
5. $25 \div(-5)$
6. $-27 \div(-9)$
\qquad
\qquad
7. $-50 \div(-25)$
8. $-12 \div 4$
9. $33 \div(-11)$

Find the rate of change for each situation.
10. The water level in a lake rises 12 inches in 4 days.
11. The temperature drops 40° as you rise 4 kilometers into the air.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reteaching

You can solve equations that contain integers using the same methods you used to solve equations with whole numbers.
Solve the equations. Check the solution.
Solve. $\quad y-6=-18$

$$
\begin{aligned}
y-6+6 & =-18+6 \quad \leftarrow \text { Add } 6 \text { to each side to undo the subtraction. } \\
y & =-12
\end{aligned} \quad \leftarrow \text { Simplify. }
$$

Check $(-12)-6=-18 \leftarrow$ Check by replacing y with -12 .
Solve. $\quad-4 x=-16$

$$
\begin{aligned}
-4 x \div(-4) & =-16 \div(-4)
\end{aligned} \longleftrightarrow \text { Divide each side by }-4 \text { to undo the multiplication. }
$$

Check. $\quad-4 \cdot 4=-16 \quad \leftarrow$ Check by replacing x with 4 .

Solve each equation. Check the solution.

1. Solve.

$$
\begin{array}{rlrl}
n+6 & =36 \\
n+6-6 & =36-6 \\
n & =\square & \leftarrow \text { Subtract } 6 \text { from each side to undo the addition. } \\
n & \leftarrow \text { Simplify. }
\end{array}
$$

Check.

\leftarrow Check by replacing n with your solution.
2. $r-10=-33$
3. $c \div 13=-3$
4. $9 k=-108$
\qquad
\qquad
\qquad
\qquad

5. $-6 r=96$
6. $-11+s=-1$
7. $b+(-3)=-18$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Class \qquad
\qquad
Reteaching 11-8
Example: Graph $(2,-4)$.

- 2 is the x-coordinate. It tells how far to move left or right from the origin.
- -4 is the y-coordinate. It tells how far to move up or down from the origin.

Find the coordinates of point A.
(1) Start at the origin.
(2) How far left or right? 3 left The x-coordinate is -3 .
(3) How far up or down? 5 up The y-coordinate is 5 .

The coordinates of point A are $(-3,5)$.

Graph each point in a coordinate plane.

1. $B(1,6)$
2. $C(-4,-3)$
3. $D(0,5)$
4. $E(-2,2)$
5. $F(-1,-5)$
6. $G(6,-4)$
7. $H(5,5)$
8. $J(4,0)$
9. $K(-4,-4)$
10. $L(2,-3)$
11. $M(-2,0)$
12. $N(5,-1)$
13. $P(0,-3)$
14. $Q(-4,0)$

Find the coordinates of each point.

15. R \qquad 16. S \qquad
17. T \qquad 18. U \qquad

Look at the coordinate grid above.
19. If you travel 7 units down from S, at which point will you be located?
\qquad
20. If you travel 4 units right from T and 2 units down, at which point will you be located?
\qquad
\qquad
\qquad

Reteaching 11-9

T o find a balance, add the income (positive number) and the expenses (negative number).
The sum is the balance.

Balance Sheet for Lunch Express		
Month	Income	Expenses
January	$\$ 1,095$	$-\$ 459$
February	$\$ 1,468$	$-\$ 695$
March	$\$ 1,773$	$-\$ 700$
April	$\$ 602$	$-\$ 655$

- To find the balance for February, add
$1,468+(-695)=773$.
Lunch Express made a profit of $\$ 773$.
- To find the balance for April, add
$602+(-655)=-53$.
Lunch Express had a loss of $\$ 53$.

T o look for a trend in the data, draw a line graph of the monthly balances.

- Balances range from $-\$ 53$ to $\$ 1,073$. Make the vertical scale from - $\$ 200$ to $\$ 1,100$. Use intervals of $\$ 100$.
- Use the horizontal scale for the months.

The trend was for increasing balancesuntil April.

Find each sum or difference.

1. $-\$ 9+\$ 17$
2. $\$ 51-\$ 83$
3. $\$ 42-(-\$ 18)$
4. $-\$ 77+\$ 92$
5. $-\$ 109+\$ 109$
6. $\$ 28-\$ 4,310$
7. $-\$ 156+\$ 429$
8. $\$ 232-(-\$ 97)$
9. $-\$ 401-\$ 582$
\qquad
\qquad
10. A company earned $\$ 2,357$ in January. The company earned $\$ 2,427$ in February and $\$ 1,957$ in March. The company's total expenses for the first quarter were $\$ 4,594$. What was the company's profit?
11. Your bank account is overdrawn $\$ 31$. The bank charges $\$ 20$ for being overdrawn. You deposit $\$ 100$. What is the balance of your bank account?
\qquad
\qquad
\qquad

Reteaching 11-10

A table or a graph can show how the input and output of a function are related.

Make a table to show how number of feet is a function of number of yards.

Input (yards)	Output (feet)
1	3
2	6
3	9
4	12
5	15

The table shows that for every yard, there are 3 feet. You multiply the number of yards by 3 to find the number of feet.

Use the values in the table to draw a graph of the function.
(1) Locate the points from the table:
$(1,3),(2,6),(3,9),(4,12),(5,15)$
(2) Draw a line through the points.

Complete the table.
1.

Input	Output
1	4
2	5
3	6
4	
5	

2.

Input	Output
4	2
6	4
8	6
10	
12	

3.

Input	Output
2	10
3	15
4	20
5	
6	

Complete each table given the rule. Then graph some points for the function.
4. cups as a function of quarts

5. days as a function of weeks

