

Retek® Merchandising System
10.0

Operations Guide – Volume 3:
Batch Program Overview

The software described in this documentation is furnished under a license
agreement and may be used only in accordance with the terms of the
agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Corporate Headquarters:
Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Customer Support

Customer Support hours:

8AM to 5PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2002: Jan. 1, May 27, July 4,
July 5, Sept. 2, Nov. 28, Nov. 29, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5000

Fax (+1) 612-587-5100

E-mail support@retek.com

Internet www.retek.com/support
 Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – Restart and recovery.. 3

Table descriptions & definitions ... 3

Data model discussion... 8

Physical set-up... 8

Table and file-based restart/recovery .. 9

API functional descriptions ... 11

Query-based commit thresholds.. 20

Chapter 3 – Multi-threading.. 21

Threading description.. 21

Threading function for query-based.. 21

Restart view for query-based... 22

Thread scheme maintenance ... 24

Batch maintenance .. 25

Scheduling and initialization of restart batch.. 26

Pre- and post-processing ... 26

Chapter 4 – Array processing .. 27

Chapter 5 – Input and output formats 29

General interface discussion.. 29

Detail only files ... 29

Electronic data interchange (EDI)... 31

Interfaces supported by RMS.. 32

Chapter 1 – Introduction 1

Chapter 1 – Introduction
This document describes the following features of Retek Merchandising System
(RMS) 10.0 batch (Pro*C) programs:

• Restart and recovery

• Multi-threading

• Commit thresholds

• Array processing

• Input and output formats to external applications and entities

Chapter 2 – Restart and recovery 3

Chapter 2 – Restart and recovery
RMS has implemented a restart recovery process in most of its batch
architecture. The general purpose of restart/recovery is to:

• Recover a halted process from the point of failure

• Prevent system halts due to large numbers of transactions

• Allow multiple instances of a given process to be active at the same time

Further, the RMS restart/recovery tracks batch execution statistics and does not
require DBA authority to execute.

The restart capabilities revolve around a program’s logical unit of work (LUW).
A batch program processes transactions, and commit points are enabled based on
the LUW. LUWs consist of a relatively unique transaction key (such as
sku/store) and a maximum commit counter. Commit events take place after the
number of processed transaction keys meets or exceeds the maximum commit
counter. For example, every 10,000 sku/store combinations, a commit occurs. At
the time of the commit, key data information that is necessary for restart is stored
in the restart tables. In the event of a handled or un-handled exception,
transactions will be rolled back to the last commit point, and upon restart the key
information will be retrieved from the tables so that processing can continue from
the last commit point.

Table descriptions & definitions
The RMS restart/recovery process is driven by a set of four tables. Refer to
Diagram 1 for the entity relationship diagram, followed by table descriptions.

restart control
(PK) program_name
program_desc
driver_name
num_threads
update_allowed
process_flag
commit_max_ ctr

restart program history
restart_name
thread_val
start_time
program_name

commit_max_ctr
restart_time
finish_time

restart program status
(PK) restart_name
(PK) thread_ val
start_time
program_name
program_status
restart_flag
restart_time
finish_time
current_pid
current_operator_id
err_message

restart bookmark
restart_name
thread_val
bookmark_string
application_image

current_oracle_sid *
current_shadow_pid *

out_file_string *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

num_threads

shadow_pid *
success_flag *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

Note: The fields with asterisks (*) are only used by new batch programs of release 9.0 or later.

Diagram 1 – Restart/recovery table relationships

4 Retek Merchandising System

restart_control
The restart_control table is the master table in the restart/recovery table set. One
record will exist on this table for each batch program that is run with
restart/recovery logic in place. The restart/recovery process uses this table to
determine:

• whether the restart/recovery is table-based or file-based,

• the total number of threads used for each batch program,

• the maximum records that will be processed before a commit event takes
place,

• and the driver for the threading (multi-processing) logic.

restart_control

(PK) program_name varchar2

25 batch program name

program_desc varchar2

50 a brief description of the program
function

driver_name varchar2 25 driver on query, for example,
department (non-updatable)

num_threads num 10 number of threads used for current
process

update_allowed varchar2 2 indicates whether user can update thread
numbers or if done programmatically

process_flag varchar2

1 indicates whether process is table-based
(T) or file-based (F)

commit_max_ctr num 6 numeric maximum value for counter
before commit occurs

Chapter 2 – Restart and recovery 5

restart_program_status
The restart_program_status table is the table that holds record keeping
information about current program processes. The number of rows for a program
on the status table will be equal to its num_threads value on the restart_control
table. The status table is modified during restart/recovery initialization and close
logic. For table-based processing, the restart/recovery initialization logic will
assign the next available thread to a program based on the program status and
restart flag. For file-based processing, the thread value is passed in from the input
file name. Once a thread has been assigned the program_status is updated to
prevent the assignment of that thread to another process. Information will be
logged on the current status of a given thread, as well as record keeping
information such as operator and process timing information.

Setup note: Allow row level locking and ‘dirty reads’ (do not wait for rows to
be unlocked for table read).

restart_program_status

(PK)restart_name varchar2 50 Program name

(PK)thread_val num 10 thread counter

start_time date dd-mon-yy hh:mi:ss

program_name varchar2 25 program name

program_status varchar2 15 started, aborted, aborted in init, aborted
in process, aborted in final, completed,
ready for start

restart_flag varchar2 1 automatically set to ‘N’ after abnormal
end, must be manually set to ‘Y’ for
program to restart

restart_time date dd-mon-yy hh:mi:ss

finish_time date dd-mon-yy hh:mi:ss

current_pid num 15 starting program id

current_operator_id varchar2 20 operator that started the program

err_message varchar2

255 record that caused program abort &
associated error message

current_oracle_sid num 15 Oracle SID for the session associated
with the current process

current_shadow_pid num 15 O/S process ID for the shadow process
associated with the current process. It is
used to locate the session trace file when
a process is not finished successfully.

6 Retek Merchandising System

restart_program_history
The restart_program_history table will contain one record for every successfully
completed program thread with restart/recovery logic. Upon the successful
completion of a program thread, its record on the restart_program_status table
will be inserted into the history table. Table purgings will be at user discretion.

restart_program_history

(PK) restart_name varchar2 50

(PK) thread_val Num 10

(PK) start_time Date

program_name varchar2 25

num_threads Num 9

commit_max_ctr num 6

restart_time date

finish_time date

shadow_pid num 15 O/S process ID for the shadow
process associated with the
process. It is used to locate the
session trace file.

success_flag varchar2 1 Indicates whether the process
finished successfully (reserved for
future use)

non_fatal_err_flag varchar2 1 Indicates whether non-fatal errors
have occurred for the process

num_commits num 12 Total number of commits for the
process. The possible last commit
when restart/recovery is closed is
not counted.

avg_time_btwn_commits num 12 Accumulated average time
between commits for the process.
The possible last commit when
restart/recovery is closed is not
counted.

Chapter 2 – Restart and recovery 7

restart_bookmark
When a restart/recovery program thread is currently active, its state is started or
aborted, a record for it will exist on the restart_bookmark table. Restart/recovery
initialization logic inserts the record into the table for a program thread. The
restart/recovery commit process updates the record with the following restart
information:

a concatenated string of key values for table processing

a file pointer value for file processing

application context information such as counters and accumulators

The restart/recovery closing process will delete the program thread record if the
program finishes successfully. In the event of a restart, the program thread
information on this table will allow the process to begin from the last commit
point.

restart_bookmark

restart_name varchar2 50

thread_val num 10

bookmark_string varchar2 255 character string of key of last
committed record

application_image varchar2 1000 application parameters from the
last save point

out_file_string varchar2 255 Concatenated file pointers (Unix
sometimes refers to these as
stream positions) of all the output
files from the last commit point
of the current process. It is used
to return to the right restart point
for all the output files during
restart process.

non_fatal_err_flag varchar2 1 Indicates whether non-fatal errors
have occurred for the current
process.

num_commits num 12 number of commits for the
current process. The possible last
commit when restart/recovery is
closed is not counted.

avg_time_btwn_commits num 12 average time between commits
for the current process. The
possible last commit when
restart/recovery is closed is not
counted.

8 Retek Merchandising System

v_restart_x
Restart views will be used for query-based programs that require multi-threading.
Separate views will be created for each threading driver, e.g. department or store.
A join will be made to a view based on threading driver to force the separation of
discrete data into particular threads. Please see the threading discussion for more
details.

v_restart_x

driver_name varchar2 - example dept, store, region, etc.

num_threads number total number of threads in set (defined on
restart control)

driver_value number - will be the numeric value of the
driver_name

thread_val number thread value defined for driver_value and
num_threads combination

Data model discussion
Why restart_program_status and restart_bookmark are separate tables

The initialization process needs to fetch all of the rows associated with
restart_name/schema, but will only update one row. The commit process will
continually lock a row with a specific restart_name and thread_val. The data
involved with these two processes is separated into two tables to reduce the
number of hangs that could occur due to locked rows. Even if you allow ‘dirty
reads’ on locked rows, a process will still hang if it attempts to do an update on a
locked row. The commit process is only interested in a unique row, so if we
move the commit process data to a separate table with row level (not page level)
locking, there will not be contention issues during the commit. With the separate
tables, the initialization process will now see fewer problems with contention
because rows will only be locked twice, at the beginning and end of the process.

Physical set-up
The restart/recovery process needs to be as robust as possible in the event of
database related failure. The costs outweigh the benefits of placing the
restart/recovery tables in a separate database. The tables should, however, be set
up in a separate, mirrored table space with a separate rollback segment.

Chapter 2 – Restart and recovery 9

Table and file-based restart/recovery
The restart/recovery process works by storing all the data necessary to resume
processing from the last commit point. Therefore, the necessary information will
be updated on the restart_bookmark table before the processed data is committed.
Query-based and file-based modules will store different information on the
restart tables, and will therefore call different functions within the
restart/recovery API to perform their tasks.

When a program's process is query-based, that is, a module is driven by a driving
query that processes the retrieved rows, then the information that is stored on the
restart_bookmark table is related to the data retrieved in the driving query. If the
program fails while processing, the information that is stored on the restart-tables
can be used in the conditional where-clause of the driving query to only retrieve
data that has yet to be processed since the last commit event.

File-based processing, however, simply needs to store the file location at the time
of the last commit point. This file's byte location is stored on the
restart_bookmark table and will be retrieved at the time of a restart. This location
information will be used to seek forward in the re-opened file to the point at
which the data was last committed.

Because there is different information being saved to and retrieved from the
restart_bookmark table for each of the different types of processing, different
functions will need to be called to perform the restart/recovery logic. The query-
based processing will call the restart_init and restart_commit functions while the
file-based processing will call the restart_file_init and restart_file_commit
functions.

In addition to the differences in API function calls, the batch processing flow of
the restart/recovery will differ between the files. Table-based restart/recovery
will need to use a priming fetch logical flow, while the file-based processing will
usually read lines in a batch. Table-based processing requires its structure to
ensure that the LUW key has changed before a commit event can be allowed to
occur, while the file-based processing does not need to evaluate the LUW, which
can typically be thought of as the type of transaction being processed by the input
file.

10 Retek Merchandising System

Priming fetch

Process

Fetch

Commit

Close Logic

Initialization Logic
(call restart_init)

Process Function

Diagram 2 - Table-Based Restart/Recovery Program Flow

Inner Loop
process individual records

Process

End Inner Loop

Commit

End Outer Loop

Initialization Logic
(call restart_init)

File Open & Seek

Outer Loop
feed multiple records into buffer

Close Logic

Diagram 3 - File-Based Restart/Recovery Program Flow

Chapter 2 – Restart and recovery 11

Initialization Logic:

• Variable declarations

• File initialization

• Call restart_init() function - will determine start or restart logic

• First fetch on driving query

Start Logic: initialize counters/accumulators to start values

Restart Logic:

• Parse application_image field on bookmark table into counters/accumulators

• Initialize counters/accumulators to values of parsed fields

Process/commit Loop:

• Process updates and manipulations

• Fetch new record

• Create varchar from counters/accumulators to pass into application_image
field on restart_bookmark table

• Call restart_commit()

Close logic:

• Reset pointers

• Close files/cursors

• Call restart_close()

API functional descriptions

restart_init:
An initialization function for table-based batch processing.

The process gathers information from the restart control tables

• Total number of threads for a program and thread value assigned to current
process.

• Number of records to loop through in driving cursor before commit (LUW).

• Start string - bookmark of last commit to be used for restart or a null string if
current process is an initial start and initializes the restart record-keeping
(restart_program_status).

• Program status is changed to ‘started’ for the first available thread.

• Operational information is updated: operator, process, start_time, etc. and
bookmarking (restart_bookmark) tables.

• On an initial start, a record is inserted

12 Retek Merchandising System

• On restart, the start string and application context information from the last
commit is retrieved.

restart_file_init:
An initialization function for file-based batch processing. It is called from
program modules.

1 The process gathers information from the restart control tables:

• number of records to read from file for array processing and for commit
cycle

• file start point- bookmark of last commit to be used for restart or 0 for initial
start

2 The process initializes the restart record-keeping (restart_program_status):

• program status is changed to ‘started’ for the current thread

• operational information is updated: operator, process, start_time, etc.

3 The process initializes the restart bookmarking (restart_bookmark) tables:

• on an initial start, a record is inserted

• on restart, the file starting point information and application context
information from the last commit is retrieved

restart_commit:
A function that commits the processed transaction for a given number of driving
query fetches. It is called from program modules.

The process updates the restart_bookmark start string and application image
information if a commit event has taken place:

• the current number of driving query fetches is greater than or equal to the
maximum set in the restart_program_status table (and fetched in the
restart_init function)

• the bookmark string of the last processed record is greater than or equal to
the maximum set in the restart_program_status table (and fetched in the
restart_init function)

• the bookmark string increments the counter

• the bookmark string sets the current string to be the most recently fetched
key string

Chapter 2 – Restart and recovery 13

restart_file_commit:
A function that commits processed transactions after reading a number of lines
from a flat file. It is called from program modules.

The process updates the restart_bookmark table:

• start_string is set to the file pointer location in the current read of the flat file

• application image is updated with context information

restart_close:
A function that updates the restart tables after program completion.

The process determines whether the program was successful. If the program
finished successfully:

• the restart_program_status table is updated with finish information and the
status is reset

• the corresponding record in the restart_bookmark table is deleted

• the restart_program_history table has a copy of the restart_program_status
table record inserted into it

• the restart_program_status is re-initialized

If the program ends with errors

• the transactions are rolled back

• the program_status column on the restart_program_status table is set to
‘aborted in *’ where * is one of the three main functions in batch: init,
process or final

• the changes are committed

parse_array_args:
This function parses a string into components and stuffs results into
multidimensional array. It is only called within API functions and will never be
called in program modules.

The process is passed a string to parse and a pointer to an array of characters.

The first character of the passed string is the delimiter.

restart_file_write:
This function will append output in temporary files to final output files when a
commit point is reached. It is called from program modules.

restart_cat:
This function contains the logic that appends one file to another. It is only called
within the restart/recovery API functions and will never be called directly in
program modules.

14 Retek Merchandising System

Restart headers and libraries
The restart.h and the std_err.h header files are included in retek.h to utilize the
restart/recovery functionality.

restart.h
This library header file contains constant, macro substitutions, and external
global variable definitions as well as restart/recovery function prototypes.

The global variables that are defined include:

• the thread number assigned to the current process

• the value of the current process’s thread maximum counter

� for table-based processing, it is equal to the number of iterations of the
driving query before a commit can take place

� for file-based processing, it is equal to the number of lines that will be
read from a flat file and processed using a structured array before a
commit can take place

• the current count of driving query iterations used for table-based processing
or the current array index used in file-based processing

• the name assigned to the program/logical unit of work by the programmer. It
is the same as the restart_name column on the restart_program_status,
restart_program_history, and restart_bookmark tables

std_rest.h
This library header file contains standard restart variable declarations that are
used visible in program modules.

The variable definitions that are included are:

• the concatenated string value of the fetched driving query key that is
currently being processed

• the concatenated string value of the fetched driving query key that is next to
be processed

• the error message passed to the restart_close function and updated to
restart_program_status

• concatenated string of application context information, for example, counters
& accumulators

• the name of the threading driver, for example, department, store, warehouse,
etc.

• the total number of threads used by this program

• the pointer to pass to initialization function to retail number of threads value

Chapter 2 – Restart and recovery 15

New restart headers & libraries
The current RMS restart/recovery library has been modified to enhance
maintainability, enable easier coding and improve performance. While the
current mechanism and functionality of batch restart/recovery are preserved, the
following improvements and enhancements have been done:

• Organize global variables associated with restart recovery

• Allow the batch developer full control of restart recovery variables parameter
passing during initialization

• Remove temporary write files to speed up the commit process

• Move more information and processing from the batch code into the library
code

• Add more information into the restart recovery tables for tuning purposes

retek_2.h
This library header file is included by all C code within Retek and serves to
centralize system includes, macro defines, globals, function prototypes, and,
especially, structs for use in the new restart/recovery library.

The globals used by the old restart/recovery library are all discarded. Instead,
each batch program declares variables needed and calls retek_init() to get them
populated from restart/recovery tables. Therefore, only the following variables
are declared:

• gi_no_commit: flag for NO_COMMIT command line option (used for tuning
purposes)

• gi_error_flag: fatal error flag

• gi_non_fatal_err_flag: non-fatal error flag

16 Retek Merchandising System

In addition, a rtk_file struct is defined to handle all file interfaces associated with
restart/recovery. Operation functions on the file struct are also defined.

#define NOT_PAD 1000 /* Flag not to pad
thread_val */

#define PAD 1001 /* Flag to pad
thread_val at the end */

#define TEMPLATE 1002 /* Flag to pad
thread_val using filename template */

#define MAX_FILENAME_LEN 50

typedef struct

{

 FILE* fp; /* File
pointer */

 char filename[MAX_FILENAME_LEN + 1]; /* Filename */

 int pad_flag; /* Flag whether to pad thread_val
to filename */

} rtk_file;

int set_filename(rtk_file* file_struct, char*
file_name, int pad_flag);

FILE* get_FILE(rtk_file* file_struct);

int rtk_print(rtk_file* file_struct, char* format,
...);

int rtk_seek(rtk_file* file_struct, long offset, int
whence);

The parameters retek_init() needs to populate are required to be passed in using a
format known to retek_init().A struct is defined here for this purpose. An array of
parameters of this struct type is needed at each batch program. Other
requirements are:

• Need to be initialized at each batch program.

• The lengths of name, type and sub_type should not exceedthe definitions
here.

• Type can only be: "int", “uint”, "long", "string", or "rtk_file".

• For type "int", “uint” or "long", use "" as sub_type.

• For type "string", sub_type can only be "S" (start string) unless the string is
the thread value or number of threads, in which case use “” as sub_typeor "I"
(image string).

Chapter 2 – Restart and recovery 17

• For type "rtk_file", sub_type can only be "I" (input) or "O" (output).
#define NULL_PARA_NAME 51

#define NULL_PARA_TYPE 21

#define NULL_PARA_SUB_TYPE 2

typedef struct

{

 char name[NULL_PARA_NAME];

 char type[NULL_PARA_TYPE];

 char sub_type[NULL_PARA_SUB_TYPE];

} init_parameter;

New restart/recovery functions
Starting from release 9.0, all new batch programs are coded using the new
restart/recovery functions. Batch programs using the old restart/recovery API
functions are still in use. Therefore, Retek is currently maintaining two sets of
restart/recovery libraries.

int retek_init(int num_args, init_parameter *parameter, ...)
retek_init initializes restart/recovery (for both table- and file-based):

1 Pass in num_args as the number of elements in the init_parameter array, then
the init_parameter array, then variables a batch program needs to initialize in
the order and types defined in the init_parameter array. Note that all int, uint
and long variables need to be passes by reference.

2 Get all global and module level values from databases.

3 Initialize records for RESTART_PROGRAM_STATUS and
RESTART_BOOKMARK.

4 Parse out user-specified initialization variables (variable arg list).

5 Return NO_THREAD_AVAILABLE if no qualified record in
RESTART_CONTROL or RESTART_PROGRAM_STATUS.

6 Commit work.

18 Retek Merchandising System

int retek_commit(int num_args, ...)
retek_commit checks and commits if needed (for both table- and file-based):

1 Pass in num_args, then variables for start_string first, and those for image
string (if needed) second. The num_args is the total number of these two
groups. All are string variables and are passed in the same order as in
retek_init();

2 Concatenate start_string either from passed in variables (table-based) or from
ftell of input file pointers (file-based);

3 Check if commit point reached (counter check and, if table-based, start string
comparison);

4 If reached, concatenated image_string from passed in variables (if needed)
and call internal_commit() to get out_file_string and update
RESTART_BOOKMARK;

5 If table-based, increment pl_current_count and update ps_cur_string.

int commit_point_reached(int num_args, ...)
commit_point_reached checks if the commit point has been reached (for both
table- and file-based). The difference between this function and the check in
retek_commit() is that here the pl_current_count and ps_cur_string are not
updated. This checking function is designed to be used with
retek_force_commit(), and the logic to ensure integrity of LUW exists in user
batch program. It can also be used together with retek_commit() for extra
processing at the time of commit.

1 Pass in num_args, then all string variables for start_string in the same order
as in retek_init(). The num_args is the number of variables for start_string. If
no start_string (as in file-based), pass in NULL.

2 For table-based, if pl_curren_count reaches pl_max_counter and if newly
concatenated bookmark string is different from ps_cur_string, return 1;
otherwise return 0.

3 For file-based, if pl_curren_count reaches pl_max_counter return 1;
otherwise return 0.

Chapter 2 – Restart and recovery 19

int retek_force_commit(int num_args, ...)
retek_force_commit always commits (for both table- and file-based):

1 Pass in num_args, then variables for start_string first, and those for image
string (if needed) second. The num_args is the total number of these two
groups. All are string variables and are passed in the same order as in
retek_init().

2 Concatenate start_string either from passed in variables (table-based) or from
ftell of input file pointers (file-based).

3 Concatenated image_string from passed in variables (if needed) and call
internal_commit() to get out_file_string and update
RESTART_BOOKMARK.

4 If table-based, increment pl_current_count and update ps_cur_string.

int retek_close(void)
retek_close closes restart/recovery (for both table- and file-based):

1 If gi_error_flag or NO_COMMIT command line option is TRUE, rollback
all database changes.

2 Update RESTART_PROGRAM_STATUS according to gi_error_flag.

3 If no gi_error_flag, insert record into RESTART_PROGRAM_HISTORY
with information fetched from RESTART_CONTROL,
RESTART_PROGRAM_BOOKMARK and
RESTART_PROGRAM_STATUS tables.

4 If no gi_error_flag, delete RESTART_BOOKMARK record.

5 Commit work.

6 Close all opened file streams.

Int retek_refresh_thread(void)
Refreshes a program’s thread so that it can be run again.

1 Updates the RESTART_PROGRAM_STATUS record for the current
program’s PROGRAM_STATUS to be ‘ready for start’.

2 Deletes any RESTART_BOOKMARK records for the current program.

3 Commits work.

void increment_current_count(void)
increment_current_count increases pl_current_count by 1.

Note: This is called from get_record() of intrface.pc for file-based I/O.

int parse_name_for_thread_val(char* name)
parse_name_for_thread_val parses thread value from the extension of the
specified file name.

20 Retek Merchandising System

int is_new_start(void)
is_new_start checks if current run is a new start; if yes, return 1; otherwise 0.

Query-based commit thresholds
The restart capabilities revolve around a program’s logical unit of work (LUW).
A batch program processes transactions and enables commit points based on the
LUW. An LUW is comprised of a transaction key (such as item-store) and a
maximum commit counter. Commit events occur after a given number of
transaction keys are processed. At the time of the commit, key data information
that is necessary for restart is stored in the restart table. In the event of a handled
or un-handled exception, transactions will be rolled back to the last commit point.
Upon restart the restart key information will be retrieved from the tables so that
processing can resume with the unprocessed data.

Chapter 3 – Multi-threading 21

Chapter 3 – Multi-threading
Processing multiple instances of a given program can be accomplished through
“threading”. This requires driving cursors to be separated into discrete segments
of data to be processed by different threads. This will be accomplished through
stored procedures that will separate threading mechanisms (for example,
departments or stores) into particular threads given value (for example,
department 1001) and the total number of threads for a given process.

File-based processing will not truly “thread” its processing. The same data file
will never be acted upon by multiple processes, however, Multi-threading will be
accomplished by dividing the data into separate files each of which will be acted
upon by a separate process. The thread value is related to the input file. This is
necessary to ensure that the appropriate information can be tied back to the
relevant file in the event of a restart.

RMS 10.0 increased the store length to ten digits. Therefore, thread values, which
can be based upon the store number, should allow ten digits as well. Due to the
thread values being declared as ‘C’ variables of type int (long), the system is
restricting thread values to nine digits.

This does not mean that you cannot use ten digit store numbers. It means that if
you do use ten digit store numbers you cannot use them as thread values.

Threading description
The use of multiple threads or processes in Retek batch processing will increase
efficiency and decrease processing time. The design of the threading process has
allowed maximum flexibility to the end user in defining the number of processes
over which a program should be divided.

Originally, the threading function was going to be used directly in the driving
queries. This was found, however, to be unacceptably slow. Instead of using the
function call directly in the driving queries, the designs call for joining driving
query tables to a view (for example, v_restart_store) that includes the function.

Threading function for query-based
A stored procedure has been created to determine thread values.
Restart_thread_return returns a thread value derived from a numeric driver value,
such as department number, and the total number of threads in a given process.
Clients should be able to determine the best algorithm for their design, and if a
different means of segmenting data is required, then either the
restart_thread_return function can be altered, or a different function can be used
in any of the views in which the function is contained.

22 Retek Merchandising System

Currently the restart_thread_return function is a very simple modulus routine:
CREATE OR REPLACE FUNCTION
RESTART_THREAD_RETURN(in_unit_value NUMBER,

 in_total_threads NUMBER)

 RETURN NUMBER IS

 ret_val NUMBER;

BEGIN

 ret_val := MOD(ABS(in_unit_value),in_total_threads) +
1;

 RETURN ret_val;

END;

Restart view for query-based
Each restart view will have four elements:

• the name of the threading mechanism, driver_name

• the total number of threads in a grouping, num_threads

• the value of the driving mechanism, driver_value

• the thread value for that given combination of driver_name, num_threads,
and driver value, thread_val

The view will be based on the restart_control table and an information table such
as DEPS or STORES. A row will exist in the view for every driver value and
every total number of threads value. Therefore, if a client were to always use the
same number of threads for a given driver (dept, store, etc.), then the view would
be relatively small. As an example, if all of a client’s programs threaded by
department have a total of 5 threads, then the view will contain only one value
for each department. For example, if there are 10 total departments, 10 rows will
exist in v_restart_dept. However, if the client wants to have one of the programs
to have ten threads, then there will bet 2 rows for every department: one for five
total threads and one for ten total threads (for example, if 10 total departments,
20 rows will exist in v_restart_dept). Obviously, clients should be advised to to
keep the number of total thread values for a thread driver to a minimum to reduce
the scope of the table join of the driving cursor with the view.

Chapter 3 – Multi-threading 23

Below is an example of how the same driver value can result in differing thread
values. This example uses the restart_thread_return function as it currently is
written to derive thread values.

Driver_name num_threads driver_val thread_val

DEPT 1 101 1

DEPT 2 101 2

DEPT 3 101 3

DEPT 4 101 2

DEPT 5 101 2

DEPT 6 101 6

DEPT 7 101 4

Below is an example of what a distribution of stores might look like given 10
stores and 5 total threads:

Driver_name num_threads driver_val thread_val

STORE 5 1 2

STORE 5 2 3

STORE 5 3 4

STORE 5 4 5

STORE 5 5 1

STORE 5 6 2

STORE 5 7 3

STORE 5 8 4

STORE 5 9 5

STORE 5 10 1

24 Retek Merchandising System

View syntax:

The following is an example of the syntax needed to created the view for the
multi-threading join, created with script (see threading discussion for details on
restart_thread_return function):

create or replace view v_restart_store as

 select rc.driver_name driver_name,

 rc.num_threads num_threads,

 s.store driver_value,

 restart_thread_return(s.store, rc.num_threads)
thread_val

 from restart_control rc, store s

 where rc.driver_name = 'STORE'

There is a different threading scheme used within Sales Audit. Because Sales
Audit needs to run 24 hours a day and seven days a week, there is no batch
window. This means that there may be batch programs running at the same time
that there are online users. Sales Audit solved this concurrency problem by
creating a locking mechanism for data that is organized by store days. These
locks provide a natural threading scheme. Programs that cycle through all of the
store day data attempt to lock the store day first. If the lock fails, the program
simply goes on to the next store day. This has the affect of automatically
balancing the workload between all of the programs executing.

Thread scheme maintenance
All program names will be stored on the restart_control table along with a
functional description, the query driver (dept, store, class, etc.) and the user-
defined number of threads associated with them. Users should be able to scroll
through all programs; to view the name, description, and query driver; and if the
update_allowed flag is set to true to modify the number of threads (update is set
to true).

File-based
File based processing does not truly “multi-thread” and therefore the number of
threads defined on restart_control will always be one. However, a
restart_program_status record will need to be created for each input file that is to
be processed for the program module. Further, the thread value that is assigned
should be part of the input file name. The restart_parse_name function that is
included in the program module will parse the thread value from the program
name and use that to determine the availability and restart requirements on the
restart_program_status table.

Refer to the beginning of this multi-threading section for a discussion of limits on
using large (greater than nine digits) thread values.

Chapter 3 – Multi-threading 25

Query-based
When the number of threads is modified in the restart_control table, the form
should first validate that no records for that program are currently being
processed in the restart_program_status_table (that is, all records = ‘Completed’).
The program should insert or delete rows depending on whether the new thread
number is greater than or less than the old thread number. In the event that the
new number is less than the previous number all records for that program_name
with a thread number greater than the new thread number will be deleted. If the
new number is greater than the old number new rows will be inserted. A new
record will be inserted for each restart_name/thread_val combination.

For example if the batch program saldly has its number of processes changed
from 2 to 3, then an additional row (3) will be added to the
restart_program_status table. Likewise, if the number of threads was reduced to 1
in this example, rows 2 and 3 would be deleted.

Original restart_program_status table:

row # restart_name thread_val program_name etc…

1 WinSal -main 1 WinSal …

2 WinSal -main 2 WinSal …

restart_program_status table after insert:

row # restart_name thread_val program_name etc…

1 WinSal -main 1 WinSal …

2 WinSal -main 2 WinSal …

3 WinSal -main 3 WinSal …

restart_program_status table after delete:

row # restart_name thread_val program_name etc…

1 WinSal -main 1 WinSal …

Users should also be able to modify the commit_max_ctr column in
restart_program_status table. This will control the number of iterations in driving
query or the number of lines read from a flat file that determine the logical unit of
work (LUW).

Batch maintenance
Users should be able to view the status of all records in restart_program_status
table. This is where the user will come to view error messages from aborted
programs, and statistics and histories of batch runs. The only fields that will be
modifiable will be program_status and restart_flag. The user should be able to
reset the restart_flag to ‘Y’ from ‘N’ on records with a status of aborted, started
records to aborted in the event of an abend (abnormal termination), and all
records in the event of a restore from tape/re-run of all batch.

26 Retek Merchandising System

Scheduling and initialization of restart batch
Before any batch with restart/recovery logic is run, an initialization program
should be run to update the status in the restart_program_status table. This
program should update the program_status to ‘ready for start’ wherever a
record’s program_status is ‘completed’. This will leave unchanged all programs
that ended unsuccessfully in the last batch run.

Pre- and post-processing
Due to the nature of the threading algorithm, individual programs might need a
pre or a post program run to initialize variables or files before any of the threads
have run or to update final data once all the threads are run. The decision was
made to create pre-programs and post-programs in these cases rather than let the
restart/recovery logic decide whether the currently processed thread is the first
thread to start or the last thread to end for a given program.

Chapter 4 – Array processing 27

Chapter 4 – Array processing
Retek batch architecture uses array processing to improve performance wherever
possible. Instead of processing SQL statements using scalar data, data is grouped
into arrays and used as bind variables in SQL statements. This improves
performance by reducing the server/client and network traffic.

Array processing is used for select, insert, delete, and update statements. Retek
typically does not statically define the array sizes, but uses the restart maximum
commit variable as a sizing multiple. Users should keep this in mind when
defining the system's maximum commit counters.

An important factor to keep in mind when using array processing is that Oracle
does not allow a single array operation to be performed for more than 32000
records in one step. The Retek restart/recovery libraries have been updated to
define macros for this value: MAX_ORACLE_ARRAY_SIZE.

All batch programs that use array processing need to limit the size of their array
operations to MAX_ORACLE_ARRAY_SIZE.

If the commit max counter is used for array processing size, check it after the call
to restart_init() and, if necessary, reset it to the maximum value if greater. If
retek_init() is used to initialize, check the returned commit max counter and reset
it to the maximum size if it is greater. In case of retek_init(), reset the library’s
internal commit max counter by calling extern int
limit_commit_max_ctr(unsigned int new_max_ctr).

If some other variable is used for sizing the array processing, the actual array-
processing step will have to be encapsulated in a calling loop that performs the
array operation in sub segments of the total array size where each sub-segment is
at most MAX_ORACLE_ARRAY_SIZE large. Currently all Retek batch
programs are implemented this way.

Chapter 5 – Input and output formats 29

Chapter 5 – Input and output formats
Retek batch processing will utilize input from both tables and flat files. Further,
the outcome of processing can both modify data structures and write output data.
Interfacing Retek with external systems is the main use of file based I/O.

General interface discussion
To simplify the interface requirements, Retek requires that all in-bound and out-
bound file-based transactions adhere to standard file layouts. There are two types
of file layouts, detail-only and master-detail, which are described below.

An interfacing API exists within Retek to simplify the coding and the
maintenance of input files. The API provides functionality to read input from
files, ensure file layout integrity, and write and maintain files for rejected
transactions.

Standard file layouts
The RMS interface library supports two standard file layouts; one for
master/detail processing, and one for processing detail records only. True sub-
details are not supported within the RMS base package interface library
functions.

A 5-character identification code or record type identifies all records within an
I/O file, regardless of file type. Valid record type values include the following:

• FHEAD—File Header

• FDETL—File Detail

• FTAIL—File Tail

• THEAD—Transaction Header

• TDETL—Transaction Detail

• TTAIL—Transaction Tail

Each line of the file must begin with the record type code followed by a 10-
character record ID.

Detail only files
File layouts have a standard file header record, a detail record for each
transaction to be processed, and a file trailer record. Valid record types are
FHEAD, FDETL, and FTAIL.

Example:
FHEAD0000000000STKU1996010100000019960929

FDETL0000000001SKU100000040000011011

FDETL0000000001SKU100000050003002001

FDETL0000000001SKU100000050003002001

FTAIL00000000020000000003

30 Retek Merchandising System

Master and detail files
File layouts will have a standard file header record, a set of records for each
transaction to be processed, and a file trailer record. The transaction set will
consist of a transaction set header record, a transaction set detail for detail within
the transaction, and a transaction trailer record. Valid record types are FHEAD,
THEAD, TDETL, TTAIL, and FTAIL.

Example:
FHEAD0000000001RTV 19960908172000

THEAD000000000200000000001234199609091202000000000003R

TDETL000000000300000000001234000001SKU10000012

TTAIL0000000004000001

THEAD000000000500000000001234199609091202001215720131R

TDETL000000000600000000001234000001UPC400100002667

TDETL000000000700000000001234000001UPC400100002643 0

TTAIL0000000008000002

FTAIL00000000090000000007

Record Name Field Name Field Type Default Value Description

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of the
current file

 File Type
Definition

Char(4) n/a Identifies transaction
type

 File Create Date Date Create date Date file was written by
external system

Transaction
Header

File Type Record
Descriptor

Char(5) THEAD Identifies file record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of the
current file

 Transaction Set
Control Number

Char(14) Specified by
external system

Used to force unique
transaction check

 Transaction Date Char(14) Specified by
external system

Date the transaction was
created in external
system

Transaction
Detail

File Type Record
Descriptor

Char(5) TDETL Identifies file record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of the
current file

Chapter 5 – Input and output formats 31

Record Name Field Name Field Type Default Value Description

 Transaction Set
Control Number

Char(14) Specified by
external system

Used to force unique
transaction check

 Detail Sequence
Number

Char(6) Specified by
external system

Sequential number
assigned to detail records
within a transaction

Transaction
Trailer

File Type Record
Descriptor

Char(5) TTAIL Identifies file record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of the
current file

 Transaction
Detail Line
Count

Number(6) Sum of detail
lines

Sum of the detail lines
within a transaction

File Trailer File Type Record
Descriptor

Char(5) FTAIL Identifies file record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of the
current file

 Total
Transaction Line
Count

Number(10) Sum of all
transaction lines

All lines in file less the
file header and trailer
records

Electronic data interchange (EDI)
Starting with release 7.0, EDI files used or created by RMS are in a generic
format: RMS no longer supports particular EDI standards. By processing EDI
output and input in a generic format, RMS is no longer limited to a single
standard, which allows Retek customers to better utilize any and all standards
they choose to use. Translating EDI input and output files into any format from
any format by third-party software is an industry “best practice”.

Formerly, EDI transactions in RMS conformed to ASC X12/VICS (version
3040) and ANA/TRADACOMS standards. EDI transactions are now expected to
be in a format that adheres to the RMS file interfacing standards. Both in-bound
and out-bound files are written in a fixed field layout with standard file header
and trailer records. Transaction information is included in master/detail or detail-
only records. The layouts are consistent with interface files used elsewhere in the
RMS.

RMS EDI batch processes write out-bound transaction files into the generic
layout format, which are then translated by the third-party software into the
standard required by each trading partner. The post-translated versions are
transmitted to the trading partner. In-bound transactions should be formatted by
the trading partner in a predetermined standard, transmitted, and then translated
by the Retek client’s translation software into the generic file layout. The generic
file is used as the input file for RMS EDI batch processing.

32 Retek Merchandising System

It is impractical for Retek to continue to maintain code that supports any
particular EDI standard. There are multiple viable standards that are utilized by
vendors and clients. Further, those standards have multiple versions. Most
retailers are already using software to map and translate EDI transactions into the
required standard or version. There are excellent third-party software packages,
such as Sterling Software’s Gentran™ translator, that effectively translate in-
bound and out-bound transactions into the necessary formats. The use of third-
party translation software is not only the common business practice, but also the
best business practice of today’s retailer.

Interfaces supported by RMS
The RMS batch modules include interfaces with many external systems. Point of
sales systems both send sales files through Retek Sales Audit and receive item
pricing and maintenance files from RMS. EDI translation packages translate in-
bound and out-bound transactions from standard EDI formats to Retek's generic
interface layouts. Planning and forecasting systems receive sales history and item
information and provide order and replenishment information. Finally, external
open to buy systems receive histories and provide new parameters to RMS.

	Contents
	Chapter 1 – Introduction
	Chapter 2 – Restart and recovery
	Table descriptions & definitions
	restart_control
	restart_program_status
	restart_program_history
	restart_bookmark
	v_restart_x

	Data model discussion
	Physical set-up
	Table and file-based restart/recovery
	API functional descriptions
	restart_init:
	restart_file_init:
	restart_commit:
	restart_file_commit:
	restart_close:
	parse_array_args:
	restart_file_write:
	restart_cat:
	Restart headers and libraries
	New restart headers & libraries
	New restart/recovery functions

	Query-based commit thresholds

	Chapter 3 – Multi-threading
	Threading description
	Threading function for query-based
	Restart view for query-based
	Thread scheme maintenance
	File-based
	Query-based

	Batch maintenance
	Scheduling and initialization of restart batch
	Pre- and post-processing

	Chapter 4 – Array processing
	Chapter 5 – Input and output formats
	General interface discussion
	Standard file layouts

	Detail only files
	Master and detail files

	Electronic data interchange (EDI)
	Interfaces supported by RMS

