
Ken Birman

Based heavily
on a sl ide set
by Colin Ponce

RETHINKING OPERATING
SYSTEM DESIGNS FOR A

MULTICORE WORLD

 Multicore computer: A computer with more than one CPU.
 1960-1990: Multicore existed in mainframes and supercomputers.
 1990's: Introduction of commodity multicore servers.
 2000's: Multicores placed on personal computers.

 Soon: Everywhere except embedded systems?
 But switched on and off based on need: each active core burns power
 Debated: Will they be specialized cores (like GPUs, NetFPGA) or

general purpose cores? Or perhaps both?

THE RISE OF MULTICORE CPUS

Clearly, traditional
speedup could not
continue beyond
2005. or s0
But we do need

speedup or
technology progress
comes to a halt…

MULTICORE IS INESCAPABLE!

THE END OF THE GENERAL-PURPOSE
UNIPROCESSOR

 The machines have become common, but in fact are mostly
useful in one specific situation
 Cloud computing virtualization benefits hugely from multicore
 We end up with multiple VMs running side by side, maybe sharing

read-only code pages (VM hardware ideally understands that these
are “never dirty” and won’t suffer from false sharing). Each VM uses
the same cores each time it becomes active (hence good affinity)
 Offers a very good price/performance tradeoff to Google, Amazon

 But general purpose exploitation of multicore has been hard
 So the machine on your desk might have 12 cores, yet rarely uses 2…

MULTICORE RESEARCH ISSUES

 To host multiple VMs concurrently, for sure.
 Any modern multitenant data center exploits this feature
 VMs “share nothing”, hence ideal for use with multicore servers

 But for general purpose programming, far less evident
 We see this in mini-project 1: Leveraging multicore parallelism for

speedup is very difficult. Slow-down is not uncommon!
 Problem: any form of sharing seems to be an obstacle to speed
 Even compilers have serious difficulty with modern hardware models.

PUZZLE: IS MULTICORE USEFUL?

 Memory Sharing Styles:
 Uniform Memory Access (UMA)
 Non-Uniform Memory Access (NUMA)
 No Remote Memory Memory Access (NORMA)

 Cache Coherence
 Many models: barrier, sequential, causal…

 Inter-Process (and inter-core) Communication
 Shared Memory: At granularity of “cache line”
 Message Passing: Implemented by OS but shapes what the h/w sees

BASIC CONCEPTS

WRITING PARALLEL PROGRAMS:
AMDAHL'S LAW

Speedup:

N: Number of processors
B: Unavoidably sequential portion
T(n): Runtime with N processors

 Experiment by Boyd-Wickizer et. al. on machine with four
quad-core AMD Operton chips running Linux 2.6.25.

 n threads running on n cores:

 Looks embarassingly parallel… so it should scale well, right?

EXPLOITING PARALLEL PROCESSORS

i d = g e t t h r e a d i d () ;
f = c r e a t e f i l e (i d) ;
wh i l e (True) {
 f 2 = dup (f) ;
 c l o s e (f 2) ;
}

Boyd-Wickizer et. al., “Corey: An Operating System for Many Cores"

 Application developer could provide the OS with hints:
 Parallelization opportunities
 Which data to share
 Which messages to pass
 Where to place data in memory
 Which cores should handle a given thread

 Right now, this doesn’t happen, except for “pin thread to core”
 Should hints be architecture specific? What about GPU?

LINUX IS NOT GOOD AT MULTICORE!

 Example: OpenMP (Open MultiProcessing)

 Coded in C++ 11

 But the pragmas tell the
compiler about intent

 Compiler can then
optimize the code for
parallelism / speed

HINTS IN ACTION

 Modern machines often
have several identical
cores
 But even with identical

cores it isn’t obvious how to
think about these machines
 Problem: Location of data

very much shapes
performance of computation
on that data

 Here is a simple one-chip
AMD 4-core design…

IS IT ONE MACHINE? OR MANY?

 With multiple AMD chips
in a multisocket CPU
board, looks more and
more like a distributed
computer cluster!

 This illustrates a 16-core
system, but looks just
like a quad-computer
system with each chip
being a 4-core AMD
processor

EVEN WITH IDENTICAL CORES…

AMD keeps pushing
it to larger and
larger scale…

Like a cluster on a

chip

AMD 64-CORE CHIP

Will it ever end?

Real puzzle: how to

harness all the cores

AMD 256-CORE CHIP

 More and more vendors are exploring specialized cores
 GPU cores for high speed graphics
 NetFPGA: devices that can process video streams or other streams of

data on the network at optical line speeds
 Computational geometry cores for manipulating complex objects
 Scientific computing accelerators that offer special functions like

DFFTs via hardware support: you load the data, the chip does the
operation, and then the outcome is available on the other side
 Some of these can support complex programs that run on the special

processor, but use its own domain-specific programming style

CORE DIVERSITY

 Context: Need to understand the state of play in late 1990’s:
 Ten years prior, memory was fast relative to the CPU. During the 90's,

CPU speeds improved over 5x as quickly as memory speeds.
 Over the course of the 90's, communication became a bottleneck.

 1990 was prior to the full multicore revolution. But even in

1990 these issues were exacerbated in multicore systems.
 Tornado developers saw this as a primary issue

TODAY’S PAPERS: TORNADO

Tornado: Maximizing Locality and Concurrency in a Shared Memory Multiprocessor Operating System"
Ben Gamsa, Orran Krieger, Jonathan Appavoo, Michael Stumm OSDI 1999

 The hardware makes cross-core interactions transparent, but
in fact the cost penalty is often high
 Locking by threads is cheap if on same core, expensive cross-core
 Memory sharing looks free, but in reality cache-line migration can be

very costly (true sharing with writes is the big issue)
 L2 cache will be cold if a thread is paused, then resumes on a

different core than where it ran previously

 So Tornado tries to minimize these costly overheads

INITIAL OBSERVATIONS

 Develops data structures and algorithms to minimize
contention and cross-core communication. Intended for use
with multicore servers.

 These optimizations are all achieved through replication and
partitioning.
 Clustered Objects
 Protected Procedure Calls
 New locking strategy

TORNADO

 OS treats memory in an object-oriented manner.

 Clustered objects are a form of object virtualization: the
il lusion of a single object, but actually composed of individual
components spread across the cores called representatives .
 One option is to simply replicate an object so that each core has a

local copy, but can also partition functionality across representatives.
 Exactly how the representatives function is up to the developer.
 Representative functionality can even be changed dynamically.

TORNADO: CLUSTERED OBJECTS

 Primary use case: To support parallel cl ient-server interactions.

 Idea is similar to that of clustered objects. Calls pass from a
client task to a server task without leaving that core.
 Benefits from affinity: hardware resources accessed by the collection of

threads can live local to the core
 In effect, the OS is structured in a way that matches what the hardware

is already good at doing.

 By spreading server representatives over multiple cores, we get
parallel speedup without cross-core contention delays

TORNADO: PROTECTED PROCEDURE CALLS

 Locks are kept internal to an object, l imiting the scope of the
lock to reduce cross-core contention.

 Locks can be partitioned by representative, allowing for
optimizations involving mixed coarse and fine-grained uses.

 For intended use (Apache web server), very good match to
need, although seems a bit peculiar and not very general…

TORNADO: LOCKING

 Pollack’s Rule:
 Thousand Core Chips: A Technology Perspective. Shekhar Borkar

 Pollack's Rule: Performance increase is roughly proportional

to the square root of the increase in circuit complexity. This
contrasts with power consumption increase, which is roughly
linearly proportional to the increase in complexity

 Implication: Many small cores instead of a few large cores.

… TEN YEARS PASSED

 A completely new OS, built from scratch that
 Views multicore machines as networked, distributed systems.
 No inter-core communication except through message-passing.
 Core OS seeks to be as hardware-neutral as possible, with per-

architecture adaptors treated much like device drivers.
 Replicates entire application state across cores: everything is local.

 In ef fect, Barrelfish choses not to use features of the chip

that might be very slow.

BARRELFISH

The Multikernel: A new OS architecture for scalable multicore systems. Andrew Baumann, Paul Barham, Pierre-Evariste Dagand,
Tim Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schaupbach, Akhilesh Singhania. SOSP 2009

 Presumes that in fact, cores will be increasingly diverse
 A small data center on a chip, with specialized computers that play

roles on behalf of general computers

 And also assumes the goal is really research
 Not clear that Barrelfish intends to be a real OS people will use
 More of a prototype to explore architecture choices and impact

 “How fast can we make a multicomputer run”?

THE WAY OF BARRELFISH

 … so, Barrelfish
 Starts with a view much like that of a virtual computing system
 Lots of completely distinct VMs. Obvious fit for multicore

 But then offers a more integrated set of OS features
 So we can actually treat the Barrelfish as a single machine

 And these center on ultrafast communication across cores
 Not shared memory, but messages passed over channels

THE WAY OF BARRELFISH

 This is the only way for separate cores to communicate.

 Advantages:
 Cache coherence protocols look like message passing anyways, just

harder to reason about.
 Eases asynchronous application development.
 Enables rigorous, theoretical reasoning about communication

through tools like π-calculus.

BARRELFISH MESSAGE PASSING

 They design a highly asynchronous message-queue protocol
 We’ll see it again in a few weeks when we discuss RDMA
 The Barrelfish version is circular

 Basically
 Wait for a slot in the circular queue to some other processor
 Drop your message into that slot, and done (no cross-core lock used)
 Request/reply: You include a synchronization token, and reply will

eventually turn up, and wake up your thread

HOW IT WORKS

 Operating system state (and potentially application state) is
automatically replicated across cores as necessary.

 OS state, in reality, may be a bit dif ferent from core to core
depending on needs, but that is behind the scenes.
 Reduces load on system interconnect and contention for memory.
 Allows us to specialize data structures on a core to its needs.
 Makes the system robust to architecture changes, failures, etc.

 Claim: Enables Barrelfish to leverage distributed systems
research (like Isis2 , although this has never been tried).

THE MULTIKERNEL

 Separate the OS as much as possible from the hardware. Only
two aspects of the OS deal with specific architectures:
 Interface to hardware
 Message transport mechanisms (needed for GPUs)

 Advantages:
 Facilitates adapting an OS to new hardware: “device driver”.
 Allows easy and dynamic hardware- and situation-dependent message

passing optimizations.
 Limitation:
 Treats specialized processors like general purpose ones…
 Future world of NetFPGA devices “on the wire” would be problematic

ATTEMPT TO BE HARDWARE NEUTRAL

 Multicore computers are here!

 They work really well in multitenant data centers (Amazon)

 But less well for general purpose computing
 Our standard style of coding may be the real culprit
 Seems like pipelines of asynchronous tasks are a better fit to the

properties of the hardware, but many existing OS features are
completely agnostic and allow any desired style of coding, including
styles that will be very inefficient

SUMMARY

	Rethinking Operating System Designs for a Multicore World
	�The Rise of Multicore CPUs�
	Multicore is Inescapable!
	The End of the General-Purpose Uniprocessor
	Multicore Research Issues
	Puzzle: Is Multicore Useful?
	Basic Concepts
	Writing Parallel Programs: Amdahl's Law
	Exploiting Parallel Processors
	Linux is not good at Multicore!
	Hints in Action
	Is it one machine? Or many?
	Even with Identical Cores…
	AMD 64-core Chip
	AMD 256-Core Chip
	Core diversity
	Today’s Papers: Tornado
	Initial Observations
	Tornado
	Tornado: Clustered Objects
	Tornado: Protected Procedure Calls
	Tornado: Locking
	… Ten Years Passed
	Barrelfish
	The Way Of BarrelFish
	The Way Of Barrelfish
	Barrelfish Message Passing
	How it works
	The MultiKernel
	ATTEMPT TO BE Hardware Neutral
	Summary

