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Abstract 

Soil moisture is a dominant control on crop productivity, land-atmosphere feedbacks, and the hydrologic response of 
watersheds. Despite its importance, obtaining gap-free daily moisture data remains challenging. For example, remote sensing-
based soil moisture products often have gaps arising from limits posed by the presence of clouds and satellite revisit period. 
Here, we retrieve a proxy of daily root zone soil moisture (RZSM) using the Surface Flux Equilibrium theory. Our method is 
parsimonious, and only needs widely available meteorological data and standard land-surface parameters. Evaluation of the 
retrievals at Oklahoma Mesonet sites shows that our method, overall, matches or outperforms RZSM estimates from both the 
Variable Infiltration Capacity (VIC) model and the Atmosphere-Land EXchange Inversion (ALEXI) model. RZSM from our 
method could serve as a more accurate and temporally-complete alternative for a variety of applications including mapping of 
agricultural droughts, assimilation of RZSM for hydrometeorological forecasting, and design of optimal irrigation schedules.  

Keywords: Soil moisture proxy, fraction of potential evapotranspiration, kernel regression, surface flux equilibrium theory, 
ALEXI  

 

1. Introduction 

Soil Moisture (SM) plays a critical role in the regional and 
global water cycle. The distribution of soil moisture influences 
the incidence and intensity of floods (Chen et al 2015, De 
Michele and Salvadori 2002, Norbiato et al 2008), and 
droughts (Samaniego et al 2018, Wang et al 2011), mediates 
water quality (Guo et al 2019, Zi et al 2016), and has a range 
of ecohydrological implications including on crop 
productivity (Bolten et al 2009, Chakrabarti et al 2014, Ines et 
al 2013) and the growth and sustainability of trees (Anderegg 
et al 2015, Liu et al 2017, Porporato et al 2002). SM also plays 
a vital role in the partitioning of water and energy fluxes 
between land and atmosphere (Lettenmaier and Famiglietti 
2006, Liu et al 2020, Mintz and Serafini 1992, Trenberth et al 
2007). Despite its influence on a range of ecohydrological and 

atmospheric processes, observed SM data at daily interval is 
not readily available over large domains. While remote 
sensing derived soil moisture products (Chauhan et al 2003, 
Entekhabi et al 2010, Kerr et al 2010, Njoku et al 2003, Torres 
et al 2012, Wagner et al 2013) do provide moisture 
information over large scales, they often suffer from temporal 
and spatial data gaps due to presence of cloud cover, narrow 
swath, and sparse revisit schedules (Anderson et al 2007a, 
Mao et al 2019, Sabaghy et al 2018, Walker and Houser 
2004). For example, Anderson et al (2007a) reported that good 
quality thermal infrared (TIR) imagery, which is often used 
for moisture retrieval over the continental US, was only 
available around 30% of the time in their study area. Similarly, 
the temporal resolution of the latest 3-km SM product from 
the National Aeronautics and Space Administration Soil 
Moisture Active Passive (SMAP) mission, the 
SMAP/Sentinel-1 L2_SM_SP SM product (Das et al 2018) is 



Journal XX (XXXX) XXXXXX Raghav et al  

 2  
 

reported to vary between 3- to 12-days depending on the 
revisit schedules of backscatter measurements of Sentinel-1A 
and Sentinel-1B sensors (Das et al 2016, Entekhabi et al 2010, 
Mao et al 2019). The percentage of missing days for SMAP 
L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture 
Version 6 (SPL3SMP) product and SMAP Enhanced L3 
Radiometer Global Daily 9 km EASE-Grid Soil Moisture 
Version 3 (SPL3SMP_E) product at Oklahoma Mesonet sites, 
the study area under consideration, are over 50% for ascending 
and descending overpass and over 15% for composite data 
during 2015-2019 (see Figure S1 in Supporting Information). 

Here, we propose a method based on the Surface Flux 
Equilibrium Theory (SFET) to retrieve Fraction of Available 
Water (𝑓𝐴𝑊), a proxy for root-zone soil moisture. The proxy 
is then used to also obtain Volumetric Soil Moisture (VSM) in 
the root zone using data of soil properties. The remainder of 
this paper is organized as follows: Section 2 presents details 
of our methodology and a concise overview of the study area 
and datasets. Results are presented in section 3. Section 4 
presents conclusions and related discussion.  
 

2. Methods 

2.1 Surface Flux Equilibrium Theory (SFET) 

McColl et al (2019) presented SFET where it was 
hypothesized that in the regions with no or minimal advective 
moisture convergence (e.g., inland continental regions), the 
near-surface atmosphere is in the state of “surface flux 
equilibrium”, i.e., the surface heating and surface moistening 
terms in the near-surface relative humidity budget are in the 
state of equilibrium at daily to monthly time scale. McColl and 
Rigden (2020) provided physical explanations for why the 
hypothesis stands using a simple model of an idealized 
atmospheric boundary layer (ABL). The approach does not 
require an explicit parameterization of land surface conditions 
as it assumes that the turbulent fluxes at the land surface 
(latent and sensible heat fluxes) are encoded in the near-
surface atmospheric states (near surface air temperature and 
specific humidity, respectively). Using this theory, the Bowen 
ratio (𝐵) for a given location can be estimated as: 

					𝐵 ≈
𝑅(𝐶*𝑇,-

𝜆-𝑄,
																																																																	(1) 

where 𝐵 is Bowen ratio (= 𝐻/𝜆𝐸) [-], H is the sensible heat 
flux [W m-2], 𝜆 is the latent heat of vaporization [ J kg-1], 𝜆𝐸 
is the latent heat flux [W m-2], 𝑅( = 461.5 is the gas constant 
for water vapor [J kg-1 K-1], 𝐶* = 1005 is the specific heat 
capacity of dry air at constant pressure [J kg-1 K-1], 𝑇, is the 

screen-level air temperature [K], and 𝑄, is the screen-level 
specific humidity of the air [kg kg-1]. The latent heat flux (𝜆𝐸) 
can then be obtained using the following relation derived 
based on surface energy balance: 

					𝜆𝐸 =
𝑅< − 𝐺
1 + 𝐵 																																																															(2) 

where 𝑅< is the net solar radiation [W m-2], and 𝐺 is the ground 
heat flux [W m-2]. More details regarding the calculation of 𝑅< 
and 𝐺 are provided in Supporting Information Text S1. SFET 
based estimates of evapotranspiration have been shown to be 
remarkably accurate, with prediction errors comparable to 
errors in the eddy covariance measurements (McColl and 
Rigden 2020).  

2.2 Soil moisture proxy retrieval 

Here we retrieve Fraction of Available Water (𝑓𝐴𝑊), a 
commonly used proxy for soil moisture (Anderson et al 2007a, 
Hain et al 2011, Hain et al 2009). 𝑓𝐴𝑊 is defined as: 

	𝑓𝐴𝑊 =
(𝜃 − 𝜃B*) × 𝑑
(𝜃EF − 𝜃B*) × 𝑑

																																											(3) 

where 𝜃 is the soil moisture content in the root zone soil layer 
[m3 m-3], 𝜃B* is the soil moisture content at wilting point [m3 
m-3], 𝜃EF is the soil moisture content at field capacity [m3 m-3], 
and d is the root-zone depth [m]. As latent heat flux is 
dominantly controlled by evapotranspiration of soil moisture, 
or its proxy, e.g., 𝑓𝐴𝑊, can be potentially retrieved based on 
evapotranspiration estimates. For example, land surface 
models (LSMs) (Camporese et al 2014, Ferguson et al 2016, 
Hanasaki et al 2013, Panday and Huyakorn 2004, Wang et al 
2013, Wigmosta et al 1994, Wood and Lettenmaier 1996) 
often use a simple soil moisture stress function to relate the 
simulated available water fraction (𝑓𝐴𝑊) to the ratio of actual 
evapotranspiration and potential evapotranspiration. This 
ratio, hereafter referred to as the fraction of potential 
evapotranspiration (𝑓𝑃𝐸𝑇), is defined as: 

		𝑓𝑃𝐸𝑇 =
𝐸𝑇𝑎
𝑃𝐸𝑇																																																															(4) 

where 𝐸𝑇𝑎 is actual evapotranspiration [mm day-1], and 𝑃𝐸𝑇 
is potential evapotranspiration [mm day-1]. Our method 
obtains 𝐸𝑇𝑎 using SFET as described in the previous section. 
The PET is estimated using the Penman-Monteith (PM) 
equation (Monteith 1965, Penman 1948) assuming the soil 
moisture conditions are at field capacity (see Equation 3 in 
Supporting Information Text S2). Once 𝑓𝑃𝐸𝑇 is evaluated, 
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the underlying relation between 𝑓𝐴𝑊 and 𝑓𝑃𝐸𝑇 is used to 
retrieve 𝑓𝐴𝑊. 

    The relation between 𝑓𝐴𝑊 and 𝑓𝑃𝐸𝑇 is usually derived 
using pre-defined functions (Anderson et al 2007a, Hain et al 
2009, Mahrt and Pan 1984, Stewart and Verma 1992, Wetzel 
and Chang 1987). By intercomparing four different functions 
that relate 𝑓𝐴𝑊 and 𝑓𝑃𝐸𝑇, Hain et al (2009) reported better 
estimates of 𝑓𝐴𝑊 when it is derived as a nonlinear function 
of 𝑓𝑃𝐸𝑇 and 𝐵F∗. 𝐵F∗ is the plant factor that captures the effects 
of stomatal control on the plant transpiration under well-
watered conditions (see Equation 7 in Supporting Information 
Text S2). Instead of using a pre-defined function structure (for 
which the results are shown in Figure S2 in Supporting 
Information), here we fit a single statistical relation between 
observed 𝑓𝐴𝑊 and 𝑓𝑃𝐸𝑇 over all sites using a nonparametric 
kernel-based regression method (Nadaraya 1965, Nadaraya 
1964, Watson 1964). The data used for developing the 
regression relation is restricted to a training period, and 
excludes the model evaluation period (more details are in 
section 2.4). The kernel regression method (see Equation 9 in 
Supporting Information Text S2) has been demonstrated to 
successfully capture nonlinear relations effectively in 
numerous studies (Kannan and Ghosh 2013, Raghav et al 
2020, Rubin et al 2010, Salvi and Ghosh 2013). Here, the 
predictors of the kernel regression are 𝑓𝑃𝐸𝑇 and 𝐵F∗, and the 
predictand is 𝑓𝐴𝑊. The kernel regression algorithm described 
by Hayfield and Racine (2008) and implemented in the R-
Package by (R Core Team 2013) is used. Notably, such a 
relation may be derived using any other observed soil moisture 
data sets existent within the region, such as SCAN and 
USCRN (Diamond et al 2013, Schaefer et al 2007). In regions 
where soil moisture data does not exist, as noted earlier, 𝑓𝐴𝑊 
may be obtained using the pre-defined nonlinear functions.   

2.3 Retrieving volumetric soil moisture (𝜃) 

    𝑓𝐴𝑊 (derived in section 2.2) is converted to actual 
volumetric soil moisture (𝜃, 𝑚L	𝑚ML) using the field capacity 
(𝜃EF) and wilting point (𝜃B*) data using: 

									𝜃 = N𝜃EF − 𝜃B*O𝑓𝐴𝑊+ 𝜃B*																																					(5)                                              

Here we assume the field capacity to be the volumetric water 
content at -33 kPa and wilting point to be the water content at 
-1500 kPa. In absence of site-specific root zone depth data, 𝜃EF 
and 𝜃B* used here are the average values within 0-100 cm 
from the soil surface. 

2.4 Data used for model implementation and 
validation 

    The model is implemented in the state of Oklahoma and the 
results validated at the Oklahoma Mesonet sites (Brock et al 
1995). Data from North American Land Data Assimilation 
System-Phase 2 (NLDAS-2) (Xia et al 2012a) such as air 
temperature, specific humidity, wind speed, shortwave 
downward radiation, longwave downward radiation, and near-
surface atmospheric pressure are used to obtain estimates of 
potential evapotranspiration, actual evapotranspiration, 
𝑓𝑃𝐸𝑇, and 𝑓𝐴𝑊. The data has a temporal resolution of 1 hour 
and spatial resolution of 1/8°, and so are the corresponding 
resolutions of our evapotranspiration estimates. The model 
also uses MODIS Global 500 m Collection 5 land cover 
(MCD12C1) (Friedl and Sulla-Menashe 2015) to define land 
surface parameters (e.g. surface albedo, ℎQ, and 𝑅RS used in 
Equation 6 in Supporting Information S2). LAI is set to a 5 
based on Koren et al (2010) to ensure data parsimony. Soil 
properties used for retrieving VSM are obtained from the 
MesoSoil database (Scott et al 2013), which includes physical 
properties of 13 soil types for 545 individual soil layers across 
117 Oklahoma Mesonet sites. MesoSoil provides the data 
(e.g., sand-silt-clay fraction, volumetric water content at -
33kPa, -1500kPa, residual and saturation water content, 
saturated hydraulic conductivity etc.) at depths of 5cm, 10cm, 
25cm, 45cm, 60cm, and 75cm. 

    We validate the estimated 𝑓𝐴𝑊 against the fractional water 
index (FWI) measurements at the Oklahoma Mesonet sites 
(Brock et al 1995). The observation data network is located in 
the south-central region of the United States and spans entire 
Oklahoma with an area of ~181,196 km2. Dominant land cover 
types include grassland (~58%), croplands (~15%), and 
forests with Savannas (~15%), Woody Savannas (~5%), and 
Deciduous Broadleaf Forests (~3%) (see Figure 2a). The 
network has at least one gauging station in each of 
Oklahoma’s 77 counties. The Mesonet network has been 
extensively used for validation of soil moisture or proxy 
products in previous studies  (Drusch 2007, Fang et al 2013, 
Gu et al 2008, Hain et al 2009, Swenson et al 2008, Xia et al 
2014). Notably, the Mesonet sites provide the opportunity for 
intercomparison not only with in situ data but also with 
retrievals from Atmosphere-Land EXchange Inversion 
(ALEXI) surface energy balance model (Anderson et al 1997, 
Anderson et al 2011, Mecikalski et al 1999). ALEXI is a state-
of-the-science tool that has been frequently used to track soil 
moisture stress in crops and forests (Anderson et al 2007a, 
Anderson et al 2007b, Anderson et al 2016b, Knipper et al 
2019, Mishra et al 2013) and forms the basis for next 
generation of moisture stress measurements (Anderson et al 
2016a, Cawse-Nicholson et al 2020, Fisher et al 2020, Guan 
et al 2017).  
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    The validation is performed for the warm period (April-
September) of 2002-2004. The period allows model 
evaluation against both in situ data and ALEXI model 
estimates. Figure S3 in Supporting Information shows the 
locations of stations at which we validated our model results. 
The selected sites cover a variety of land covers across 
Oklahoma (see Figure 2a), and were also used in (Hain et al 
2009) for evaluation of estimated 𝑓𝐴𝑊. For validation, 
estimated 𝑓𝐴𝑊	is compared against observed Fractional 
Water Index (FWI). FWI has been demonstrated to be 
equivalent to observed 𝑓𝐴𝑊 at Mesonet sites with a 
correlation coefficient of 0.97 between computed 𝑓𝐴𝑊 and 
FWI (Hain et al 2009). Although FWI observations are 
available at fine temporal resolution (~5 minutes) and at 
depths of 5 cm, 25 cm, 60 cm, and 75 cm (Illston et al 2008), 
due to the absence of site-specific root zone distribution data, 
following Hain et al (2009), the observations at all the sensor 
depths are averaged to obtain an average FWI. Notably, the 
nonparametric kernel regression that establishes a relation 
between 𝑓𝐴𝑊	and 𝑓𝑃𝐸𝑇 (as outlined in Section 2.2) is 
obtained using two years (2000-2001) of 𝑓𝐴𝑊	observation 
data and 𝑓𝑃𝐸𝑇 estimates at all the Mesonet sites used in this 
study. This training period for regression is mutually exclusive 
to the model validation period which ranges from 2002 to 
2004. Derivation of a single regression relation that is then 
used for 𝑓𝐴𝑊 estimation at all the sites ensures the generality 
of the approach, as such a relation may be developed using 
any alternative soil moisture observation data as well. 

    Model results are also compared against other widely 
available temporally continuous root-zone soil moisture 
products. This includes Variable Infiltration Capacity (VIC) 
model-based soil moisture product, that was generated in the 
North American Land Data Assimilation System (NLDAS, 
(Xia et al 2012b)). The temporal resolution of the VIC 
simulated soil moisture within NLDAS is 1 hour and its spatial 
resolution is 1/8°. We use VIC-simulated 0-100 cm soil 
moisture for the evaluation of our results. Comparison is also 
performed against the moisture proxy retrieval from the 
ALEXI model. As data of ALEXI moisture estimates are not 
available, the comparison is directly performed against the 
ALEXI model performance statistics reported in (Hain et al 
2009). In Hain et al (2009), the ALEXI model was executed 
at daily temporal resolution (but only on cloud-free days) and 
a spatial resolution of ~10 km. For evaluation, moisture 
estimates were averaged over composite periods spanning 2-5 
days each due to data coverage gaps caused by clouds. The 
composite periods included 15-19 Jun 2002, 11-12 May 2003, 
28-29 May 2003, 4-5 Jul 2003, 27-31 Jul 2003, 6-7 May 2004, 
1-2 Jun 2004, and 1-3 Aug 2004. Although we simulate gap-

free daily 𝑓𝐴𝑊 and VSM estimates and they are duly used for 
evaluation against in situ observations, composite estimates 
are obtained for intercomparison with ALEXI-derived 𝑓𝐴𝑊 
estimates over the aforementioned composite periods. 

    Bias Error (BE), Mean Absolute Error (MAE), Root Mean 
Square Difference (RMSD), unbiased Root Mean Square 
Difference (ubRMSD), and Pearson correlation coefficient 
(𝑅) are used as performance metrics to assess the accuracy of 
𝑓𝐴𝑊 estimates against in situ data. As the standard 𝑅𝑀𝑆𝐷 is 
sensitive to biases in the mean or high extreme values 
(outliers), here we also use the 𝑢𝑏𝑅𝑀𝑆𝐷, a metric used by 
SMAP to quantify the product accuracy (Entekhabi et al 
2010). 

3. Results and Explanations 

3.1 Evaluation of temporal variations in simulated 
𝑓𝐴𝑊 

    The retrieved 𝑓𝐴𝑊, using the method outlined in Section 2, 
captures more than 48% (R = 0.69) of the variations in the 
observed FWI (see Figure 1a). For the same eight composite 
periods as used in Hain et al (2009), the model’s performance 
is better during the composite periods (Figure 1b) i.e., when 
clear sky conditions prevail, w.r.t. all periods (Figure 1a). The 
possible reason for this is that the estimates of net radiation 
(and therefore latent heat flux) are generally more accurate 
during the largely clear sky, non-raining days. This is 
demonstrated at selected FluxNet sites where observed net 
short wave radiation data is available for evaluation (see 
Figures S4 and S5 in Supporting Information). Overall, with 
respect to the observed, the presented method overestimates 
drier conditions and underestimates wetter conditions. This is 
in line with the conclusions in other studies (Akuraju et al 
2017, Allen et al 1998, Scott et al 2003), where also it was 
observed that the relation between 𝑓𝐴𝑊	and 𝑓𝑃𝐸𝑇 is 
ineffective when soil moisture conditions are above (below) 
𝜃EF (𝜃B*).  

    Comparison of our 𝑓𝐴𝑊 estimates against those obtained 
from ALEXI for the composite periods shows that our method, 
overall, matches or outperforms the ALEXI results (as 
reported in Table 2 of Hain et al (2009)) in the study area. 
ALEXI 𝑓𝐴𝑊 has a larger scatter with 𝑅- of 0.48 as compared 
to a 𝑅- of 0.60 or R of 0.77 (see Figure 1b and Table 1) from 
our method. Our method shows a slightly larger positive bias, 
with 𝐵𝐸	of 8.7% as compared to BE of -4.3% for ALEXI 
model. The RMSE and MAE are found to be 18.86 % (21.3%) 
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and 14.58% (17.7%) respectively for our method (ALEXI 
model). It is to be noted that Hain et al (2009) used a blended 
relation between 𝑓𝐴𝑊 and 𝑓𝑃𝐸𝑇 but we use a nonparametric 
kernel-based method for the same. To assess if better 
performance of 𝑓𝐴𝑊 estimates from our method w.r.t. the 
ALEXI estimates is due to the use of SFET or the kernel-based 
method, we regenerate the 𝑓𝐴𝑊 estimates using the blended 
relation used in Hain et al (2009). Results (Figure 1b and 
Figure S2b) show our model performance (R = 0.77) does not 
change for the composite periods depending on the use of the 
nonparametric kernel-based method and the blended relation, 
and the estimates from either are better than that from ALEXI 
(R = 0.69, see Table 1). Notably, the nonparametric kernel-
based method yields better model performance when 
considering estimates from all the days (see Figure 1a vs. 
Figure S2a). These comparisons indicate better 𝑓𝐴𝑊 
estimates from our method is a result of the use of both SFET 
to obtain evapotranspiration and the non-parametric kernel-
based method used to obtain the relation between 𝑓𝐴𝑊 and 
𝑓𝑃𝐸𝑇. Given that ALEXI derived 𝑓𝐴𝑊 estimates have been 
demonstrated to be more effective than Eta Data Assimilation 

System (EDAS) for accurate Numerical Weather Prediction 
(NWP) forecasts (Hain et al 2009), by extension, it may be 
claimed that estimates from our method will overperform the 
EDAS product as well.  Notably, our method also provides 
temporally continuous daily estimates. In contrast, ALEXI 
estimates which uses TIR data suffer from large data gaps due 
to the presence of clouds and other satellite operational 
failures (Liou and Kar 2014).  

    Figure 2b (Figure 2c) shows the spatial variation of 
temporal correlations between daily 𝑓𝐴𝑊 estimates for April-
September (composite periods) of 2002-2004 from our 
method and in-situ observations. The correlation is positive at 
all the sites with the highest correlation of 0.77 (0.99) and the 
lowest correlation of 0.18 (0.11) at 0.05 significant level (see 
Figures 2d and 2e). Between different land covers, the highest 
correlation is found in Woodland Savanna while the lowest 
correlation is observed in cropland areas (see Figure 2d). 
Relatively poor performance in croplands w.r.t. woodland is 
often attributed to the heterogeneity introduced by irrigation 
and is consistent with the conclusions of Naeimi et al (2009). 
Notably, the Bowen ratio obtained from SFET (see Equation 
1) that is then used here for evaluation of 𝑓𝐴𝑊 (using 

  

Figure 1. Comparison between daily observed and simulated fraction of available water (𝑓𝐴𝑊) at selected Oklahoma Mesonet stations 
(identified in Figure S3 in Supplement Information) during April-September of 2002-2004. The red straight line is the 1:1 line. (a) 
shows the comparison for all days during April-September, 2002-2004, (b) shows comparisons for the eight composite periods (see 
section 2.4 for definition of composite periods). 

 
Table 1. Error statistics for soil moisture proxy retrieved by our method and ALEXI during composite days at Mesonet 
stations. The error statistics for ALEXI shown here, have been obtained from Hain et al (2009). 

 R RMSD 
 (%	𝒇𝑨𝑾) 

BE 
(%	𝒇𝑨𝑾) 

MAE 
(%	𝒇𝑨𝑾) 

Our method 0.77 18.86 8.7 14.58 

ALEXI 0.69 21.3 -4.3 17.7 
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Equations 4 and S9), is an integrated land-atmosphere 
feedback response of areas surrounding the Mesonet station. 
Hence, 𝑓𝐴𝑊 derived from this method is likely to represent 
an effective soil moisture within the grid (of spatial resolution 
1/8°), and may diverge from point estimates especially if the 
area experiences significant moisture heterogeneity. 

3.2 Evaluation of spatial variations in simulated 𝑓𝐴𝑊 

    The retrieved 𝑓𝐴𝑊, overall, captures the spatial gradient of 
root-zone soil moisture conditions within the study area 
(Figure 3). For example, for the composite period 15-19 June, 
2002, observed dry soil moisture conditions in extreme 
western Oklahoma and wet soil moisture conditions in eastern 
Oklahoma are reflected in the model estimates as well (see 
Figure 3a). Similarly, our method also retrieves the dry soil 
moisture conditions all across Oklahoma during the composite 
period 27-31 July, 2003 (Figure 3e). Although, the overall 

spatial variability of soil moisture is captured by our model, 
there are disagreements. This could be due to a number of 
factors including scale mismatch between point measurements 
and our retrieval which is performed using meteorological 
data over a 0.125° x 0.125° grid. Additional sources of errors 
may be from varying 𝑓𝐴𝑊 vs. 𝑓𝑃𝐸𝑇 relations across different 
land covers, quality of input data, and errors in estimate of ET 
especially on cloudy days.  

Next, the average of daily spatial correlations for all days 
during April-September of 2002-2004 is obtained. The 
average spatial correlation using data from all aforementioned 
days is equal to 0.62 (see Figure S6 in Supplement 
Information). The corresponding average correlation for the 
eight composite periods is 0.71. During the eight composite 
periods, the highest correlation is 0.84 for the composite 
period 15-19 June, 2002 when the soil moisture conditions are 
wettest (see Figure 3a) and the lowest correlation is 0.54 

           

 

 

Figure 2. (a) Land cover map of Oklahoma, (b) correlation between daily modeled 𝑓𝐴𝑊 estimates and in-situ observations during warm 
periods of 2002-2004 at Oklahoma Mesonet sites, (c) correlation between modeled 𝑓𝐴𝑊 estimates and in-situ observations during the 
eight composite periods, (d) box plots of correlation coefficients shown in panel b for different land cover types, and (e) box plots of 
correlation coefficients shown in panel c for different land cover types. The dark black line in each boxplot shows the mean correlation 
for each land cover. The n-value at the top of each boxplot is the number of Mesonet sites within a particular land cover. 
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during the composite period 27-31 July, 2003 when the 
moisture conditions are driest (see Figure 3e). The difference 
in model performance between wet and dry dates is likely due 
to multiple factors, including the existence of a larger spatial 
gradient in soil moisture during the wet composite period, and 

a smaller sensitivity of moisture dynamics on 
evapotranspiration when the ground is dry.  

3.3 Retrieving actual soil moisture 

    The retrieved 𝑓𝐴𝑊 estimates are converted to volumetric 
soil moisture (VSM) using the method outlined in Section 2.3. 

Figure 3. Spatial maps of 𝑓𝐴𝑊 over the state of Oklahoma for different composite periods. For each composite period, the left panel 

shows in-situ observations of 𝐹𝑊𝐼	at different mesonet sites and the right panel shows retrieved 𝑓𝐴𝑊 using our method.  

 

Figure 4. Comparison between daily observed and simulated volumetric soil moisture at the Oklahoma Mesonet sites (shown in Figure 
S3 of Supplementary Information). (a) SM estimates from our method, and (b) SM estimates from the VIC model, during April-
September of 2002-2004. The red straight line is the 1:1 line.  
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A comparison between VSM estimates from our method and 
observations is performed (Figure 4a). The correlation 
coefficient between the simulated daily soil moisture from our 
model and observed during the warm period of 2002-2004 is 
close to 0.90 when considering all the observation sites into 
the analysis. The significant increase in correlation for VSM 
w.r.t. that for 𝑓𝐴𝑊 (0.9 vs. 0.69 as seen in Figures 4a and 1a, 
respectively) is attributable to spatial heterogeneity in soil 
properties (see Supplement Figure S7). The model, overall, 
captures the temporal dynamics of VSM in diverse land cover 
types (Figure S8 in Supplementary information), although just 
like for 𝑓𝐴𝑊 (see Figure 1) lower (higher) moisture values are 
overpredicted (underpredicted). We also compare VSM 
estimates from Variable Infiltration Capacity model (VIC) 
(Figure 4b) that was run within the phase 2 of the North 
American Land Data Assimilation System (NLDAS-2) on a 
1/8° grid over the continental U.S (Xia et al 2012a). It is to be 
noted that VIC derived soil moisture has been used in 
numerous studies for drought analysis (Mishra et al 2010, 
Sheffield et al 2004, Wang et al 2009), flood estimation 
(Lakshmi et al 2004), and climate change impact assessment 
(Mishra et al 2014). In contrast to VSM estimates from our 
model, the VIC model estimates show a larger scatter with a 
R of 0.49. Furthermore, the VIC model overestimates the 
VSM observations with a bias error of 46.46 % of the 
observations (see Figure 4b).  These results are consistent with 
Xia et al (2015) where it was reported that VIC model 
overestimated soil moisture. Overall, VSM estimates from our 
model (VIC model) show correlation, bias, RMSD, MAE, and 
unbiased RMSD of 0.90 (0.49), -0.78% (46.46%), 14.79% 
(54.95%), 11.71% (47.59%), and 0.03 𝑚L	𝑚ML (0.06 
𝑚L	𝑚ML), respectively. We also evaluate the error statistics for 
VSM retrievals during the eight composite periods (Table 2). 
Results show our method outperformed both ALEXI and VIC 
model estimates. VIC model performance was worst among 
the three methods. Notably, our SM estimates adequately meet 
the SMAP mission requirement of 𝑢𝑏𝑅𝑀𝑆𝐷 to be less than 
0.04	𝑚L𝑚ML (Chan et al 2016). 

4. Conclusions and synthesis 

    This study presented a new method to obtain daily estimates 
of root zone soil moisture proxy and volumetric root zone soil 
moisture. The method was based on surface flux equilibrium 
theory (SFET), and only needs readily available 
meteorological data and standard land surface 
parameterizations to obtain estimates of moisture proxy. Soil 
moisture proxy estimates from the method were in good 
agreement with the in-situ measurements at the Oklahoma 
Mesonet sites both temporally and spatially. The estimate of 
volumetric soil moisture in the root zone adequately met the 
SMAP soil moisture retrievals requirement of 𝑢𝑏𝑅𝑀𝑆𝐷 <
0.04	𝑚L	𝑚ML.  

    An intercomparison of our estimate with the ALEXI model, 
which forms the basis for the next generation of moisture 
stress measurements (Anderson et al 2016a, Cawse-Nicholson 
et al 2020, Fisher et al 2020, Guan et al 2017), showed our 
method matched or outperformed ALEXI derived estimates. 
Better performance was found to be due to two reasons, a 
better evapotranspiration estimate using SFET and use of the 
non-parametric kernel-based method to obtain the relation 
between 𝑓𝐴𝑊 and 𝑓𝑃𝐸𝑇. Another advantage of our method 
is its gap-free nature. In contrast, ALEXI or other thermal 
infrared (TIR) imagery-based retrievals of soil moisture 
provide estimates only during clear sky days as thermal 
imagery cannot be collected on cloudy days. Also, unlike our 
method, TIR-based methods for soil moisture proxy retrievals 
are dependent on a number of land surface parameters which 
are difficult to obtain in many cases. Given that ALEXI 
derived moisture proxy estimates have been demonstrated to 
be more effective than Eta Data Assimilation System (EDAS) 
for accurate Numerical Weather Prediction (NWP) forecasts 
(Hain et al 2009), by extension, it may be claimed that 
estimates from our method will overperform the EDAS 
product as well. Comparison against estimated moisture from 
VIC, a widely used land surface model, showed our results 
outperformed it as well. These results indicate the advantage 
of our method over several widely used land surface models.  

Table 2. Error statistics for volumetric soil moisture (𝑚L	𝑚ML) retrieved by our method, ALEXI, and VIC model during composite days 
at Mesonet stations. The error statistics for ALEXI shown here, have been taken from Hain et al (2009). 

 RMSD 
(𝒎𝟑	𝒎M𝟑) 

BE 
(𝒎𝟑	𝒎M𝟑) 

MAE 
(𝒎𝟑	𝒎M𝟑) 

ubRMSD 
(𝒎𝟑	𝒎M𝟑) 

Our method 0.03 -0.005 0.02 0.03 

ALEXI 0.06 -0.01 0.05 0.06 

VIC 0.11 0.10 0.10 0.05 
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    As the presented method provides gap-free daily root-zone 
soil moisture estimates, it distinguishes itself from most 
remote-sensing based soil moisture retrievals methods that 
often suffer from data gaps due to being impacted by 
atmospheric conditions (such as the presence of clouds) and/or 
satellite revisit period. Furthermore, our method provides the 
root zone soil moisture estimate, while remote sensing-based 
soil moisture retrievals are often limited to moisture states in 
the surficial soil layer.  

    Although our validation results showed an overall 
satisfactory performance, it is to be noted that the performance 
is not competent across all soil moisture states and land 
covers. Our method especially fell short to capture extreme 
dry soil moisture conditions. Also, the performance was 
relatively poor in cropland settings. Subpar performance on 
occasions can be from multiple sources including (1) scale 
mismatch between the point measurements and model pixel, 
(2) quality and resolution of input meteorological data, (3) 
heterogeneity in soil properties, especially when converting 
moisture proxy to volumetric moisture, (4) absence of strong 
relation between fractional moisture content and the ratio of 
actual to potential evapotranspiration for extremely wet and 
dry moisture states, and (5) violation of assumptions that are 
inherent in SFET. Despite these limitations, this study 
highlights the advantages of our method over remote-sensing 
retrievals and land surface model predictions for root zone soil 
moisture retrievals. These advantages make the presented 
method apt for continuous assimilation of moisture in land 
surface and numerical weather prediction models. Gap-free 
moisture estimates from this method can be useful for many 
applications such as tracking crop stress, monitoring 
agriculture drought, irrigation management, estimation of 
groundwater recharge, etc. To further improve confidence in 
the applicability of the method for a wider range of settings, 
future work may focus on model evaluation in other settings. 
To assess the usefulness of the improved moisture estimates 
from this method, future studies may assimilate these 
estimates within the land surface and earth system models to 
evaluate the impacts on prediction accuracy of floods and 
droughts, and land-atmosphere feedbacks. 
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