

Retrofit for Health and Well-being

Dr David Kelly, Group Director BRE

Other relevant research themes

Centre for Resilience

- Flooding, climate change, energy resilience
 - Research, guidance, tools, standards, innovative tech.

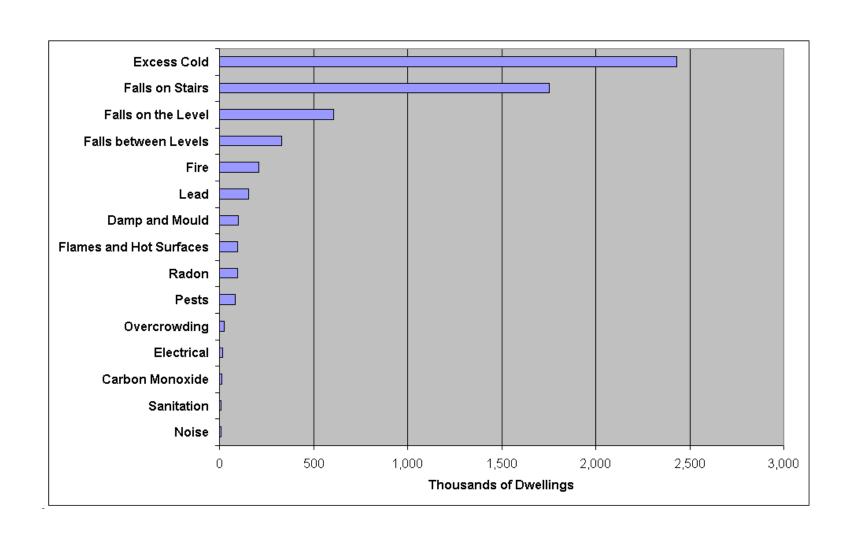
BRE CENTRE FOR RESILIENCE

National Solar Centre

- delivering independent, research led knowledge and guidance about solar and related technology
- Supports growth & innovation in the UK solar market

- Retrofit - Each Home Counts

 this is an area in which we have always had an interest, but which was brought to the fore through the Each Home Counts Review BRE NATIONAL SOLAR CENTRE



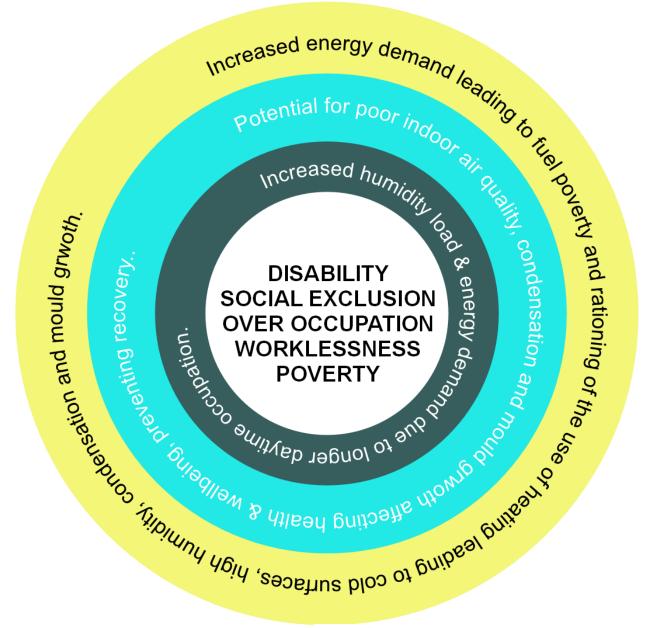
What is the impact of poor housing?

Physiological - Excess Cold, Damp

Occurrence of HHSRS Cat 1 hazards - 2006 EHCS

BRE Innovation Park Ravenscraig

BRE Retrofit/ Dementia House



How to tackle the problem of retrofit

- adopt a blanket 'area-based' approach to investment?
- 'fabric first' or technology based?
- strategic, based on house type?
- or a 'construction-based' rather than 'house type' approach?
- 'top down', or 'bottom up' with a community based approach addressing behavioural and attitudinal change?

Our 4 in a block project is a 'retrofit R&D laboratory'

Project Partners:

BRE, Scottish Government, Edinburgh Napier University, Historic Scotland

Developer - Cruden Building & Renewals

Architects - Kraft Architecture

Engineers - Hannah Reed Consulting Engineers

and an integrated supply chain for the project and follow-on commercialisation activity.

Edinburgh Napier University undertook monitoring of the four units over an extended period including simulated occupancy impacts.

Project aim – to demonstrate 'market ready upgrade packages'

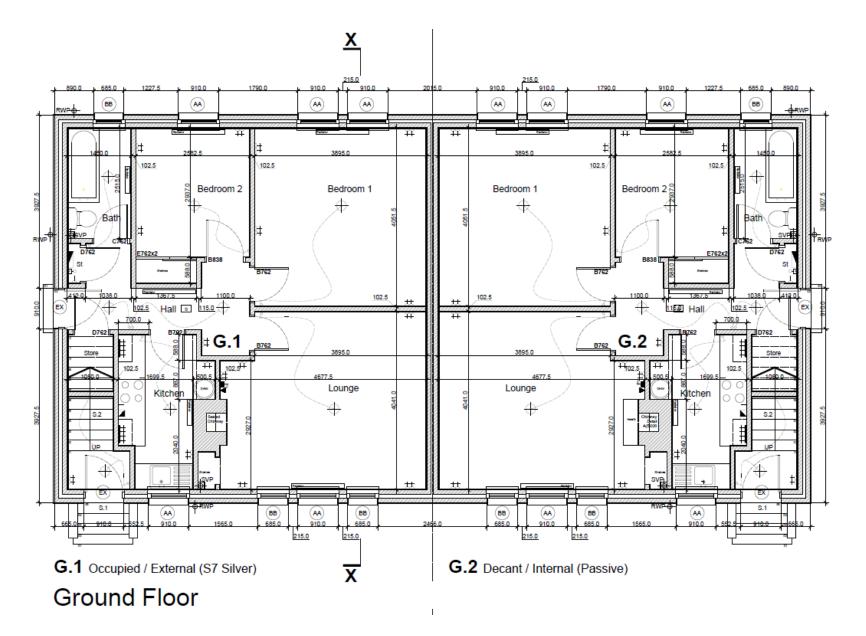
The project uses a common Scottish Housing typology, a generic '4 in a block' which is found all over Scotland in different contexts as the test bed.

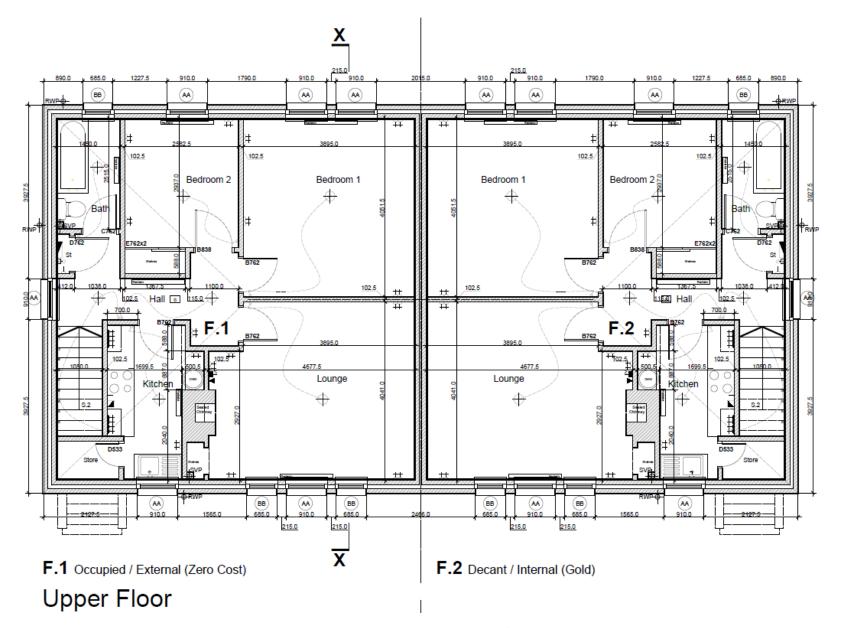
Four approaches were demonstrated, based on market ready and tested technologies.

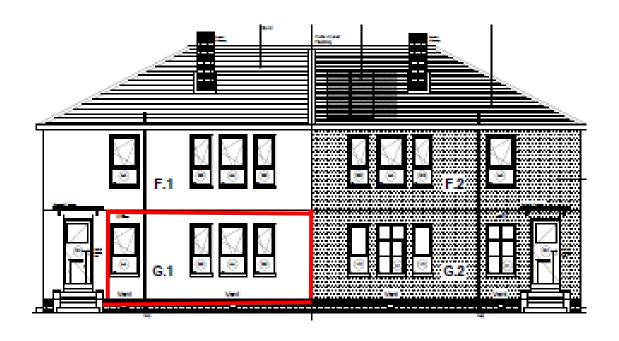
An APP was also developed to allow users to adapt the approach to suit their budget and to understand the associated risks and opportunities.

The project offers first hand experience of different technologies within the practical and commercial reality of available funding model parameters.

This is crucial for successful dissemination of the project findings into practice.


	'Four in a Block' Baseline Model					
Ground Floor	Un-insulated Suspended Timber Floor					
External Wall	Un-insulated Cavity Wall Construction with existing render coat & internal lining					
Windows & Doors	Replacement UPVC					
Separating Floor	22mm flooring on solid joists, un-insulated between joists					
Separating Wall	Un-insulated Cavity Wall Construction with existing parge coats					
Roof	Cold roof with 100mm insulation					
Space Heating	Storage / Panel Radiators.					
Hot Water	70 Litre Single Immersion Cylinder					
Ventilation	Individual Intermittent Fans / Sealed Hearth Chimney					
Airtightness	15q50 (backstop assumed)					

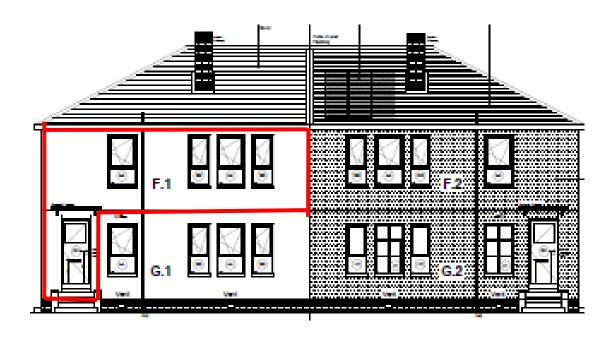




Flat G1 – Occupied - From SAP 50 to 76

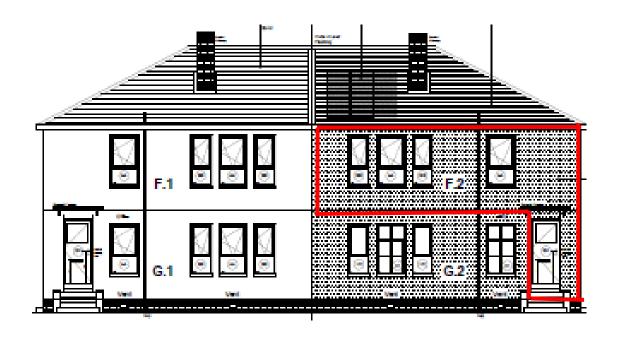
Flat G1 – from SAP 50 to 76 using traditional technologies – based on minimum disruption in occupied flat

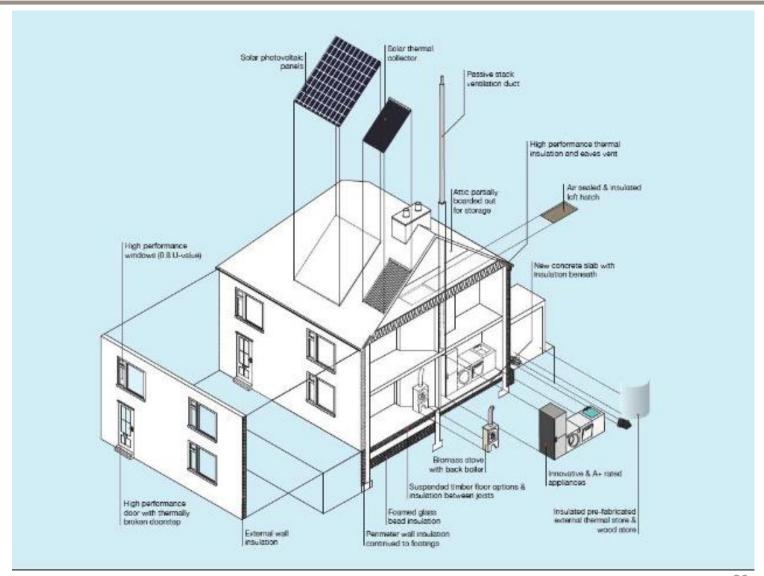
G1	Ground Floor Flat LHS				
Scenario	Occupied / Minimal Disruption				
Target	SAP 76C				
Approach	External Fabric Improvements / Basic Heating Upgrade				
Measures	Gas Combi Boiler with Gas Flue Saver Technology				
	Cavity Fill / EWI Insulation				
	Low Energy Individual Mechanical Extract Fans				
	6.53 q50 Air Tightness				
	Low Energy Timber Windows & Door				
	Independent Living / Adaptations				



Flat F1 – to Bronze Standard (2010) – based on minimum disruption in occupied flat

F1	Upper Cottage Flat LHS					
Scenario	Occupied / Minimum Disruption					
Performance	SAP 82 / Bronze (2010 Pass)					
Approach	External Fabric Improvements / Full Heating Upgrade					
Measures	SedBUK A GAS System Boiler					
	4m ² Solar Thermal System & 210 Litre Cylinder					
	Cavity Fill / External Insulation					
	Basic Additional Loft Insulation					
	Positive Input Ventilaton (Loft)					
	7.53 q50 Air Tightness					
	Low Energy Timber Windows & Door					




Flat F2 – Occupied - From SAP 50 to 83

Flat F2 – to Silver Standard (2015) – based on ability to de-cant occupants – unoccupied flat

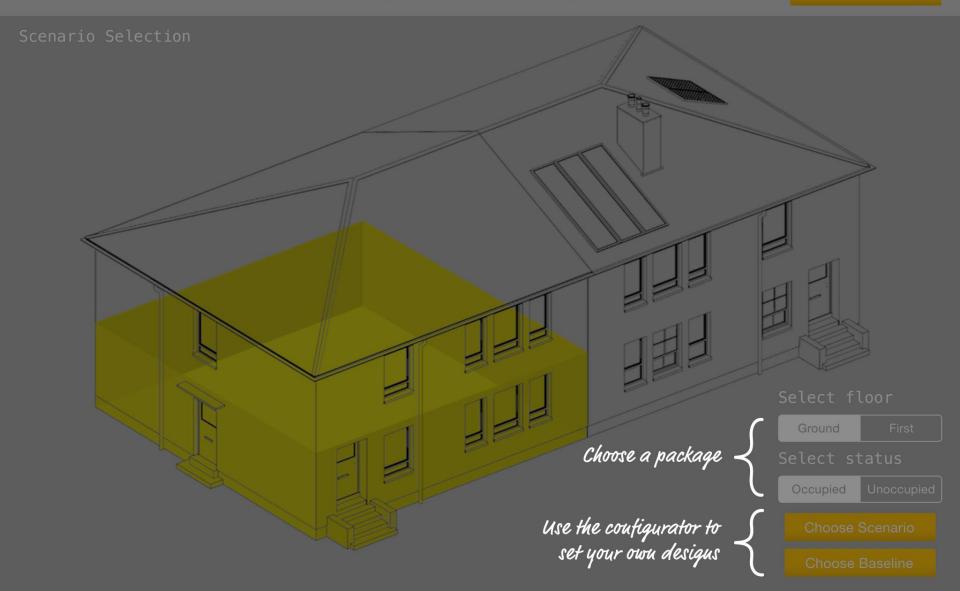
Flat F2 Technologies applied

F2	Upper Cottage Flat RHS				
Scenario	Decant / Void				
Target	SAP 83 / Silver (2015 Pass)				
Approach	Internal Fabric Improvements / No Gas Scenario				
	Air Source Heat Pump with Radiators				
SILVER	2kW Solar PV Array and Solar Thermal panels				
Domestic Syling Domestic	Cavity Fill, Moisture Buffering Internal Insulation & Lining, Loft Insulation				
SUSTAINABLES	6.04 q50 Air Tightness				
	MVHR System				
	Super Low Energy Windows & Door				
	Feed in Tariff Income				

Flat G2 – Un-occupied - From SAP 50 to 85

Flat G2 – from SAP 50 to SAP 85 – Highest Standard achieved - based on ability to de-cant occupants supported by HES

G2	Ground Floor Flat RHS					
Scenario	Decant / Void					
Target	SAP 85					
Approach	Internal Fabric Improvements / Heritage / No Gas Scenario					
Measures	Electric Combi Heat Store / Underfloor Heating					
	Cavity Fill / Moisture Buffering Internal Insulation & Lining					
	Insulating Ground Floor					
	New Acoustic Ceiling & Separating Wall Treatments					
	6.11 q50 Air Tightness					
	Heritage Timber Windows & Door					
	Intermittent Room Only Heat Recovery					



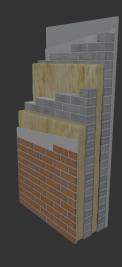
About this scenario:

Occupied flat with measures chosen to minimise disruption and maximising a fabric first performance approach using external wall insulation to reduce cold bridging, new high performance windows to improve thermal performance, thermal comfort and reduce maintenance requirements. A new efficient gas combi heating system with Gas Flue Saver technology and examples of adaptations for an ageing population.

Floor: Ground Status: Occupied

Scenario Summary

£ Capital


About this scenario:

Occupied flat with measures chosen to minimise disruption and maximising a fabric first performance approach using external wall insulation to reduce cold bridging, new high performance windows to improve thermal performance, thermal comfort and reduce maintenance requirements. A new efficient gas combi heating system with Gas Flue Saver technology and examples of adaptations for an ageing population.

Floor: **Ground**Status: **Occupied**

Different scenario

External Insulation	Cavity Insulation	Internal Insulation	Loft Insulation	Windows	Ground Floor	Heating	Ventilation	Renewables
No measure	No measure	No measure	No measure	No measure	No measure	No measure	No measure	No measure

£ Annual Cost

Semi-rigid Batt

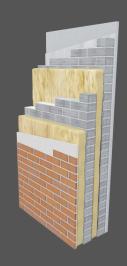
100mm Mineral Fibre 0.035W/mk applied & fixed to existing masonry leaf and finished with a proprietary silicone based render system or brick slip finish. Care should be taken to ensure that if a masonry cavity construction, this has been properly treated to avoid thermal bypass of the external insulation.

Remove measure

kg/m2/yr

EWI should only be considered after ventilated wall cavities have been fully treated with either cavity fill and/or full sealing of cavity edges to prevent thermal bypass and heat loss.

kWh/yr



About this scenario:

Occupied flat with measures chosen to minimise disruption and maximising a fabric first performance approach using external wall insulation to reduce cold bridging, new high performance windows to improve thermal performance, thermal comfort and reduce maintenance requirements. A new efficient gas combi heating system with Gas Flue Saver technology and examples of adaptations for an ageing population.

Floor: Ground Status: Occupied

External Insulation	Cavity Insulation	Internal Insulation	Loft Insulation	Windows	Ground Floor	Heating	Ventilation	Renewables
Semi-rigid Batt	Cavity Fill Blown Bead	No measure	No measure	Double Glazed Timber or Aluclad Windows	No measure	Gas Combi Boiler with Gas Flu Saver Technology	DMEV Decentralised Mechanical Extract Ventilation	No measure

Semi-rigid Batt

100mm Mineral Fibre 0.035W/mk applied & fixed to existing masonry leaf and finished with a proprietary silicone based render system or brick slip finish. Care should be taken to ensure that if a masonry cavity construction, this has been properly treated to avoid thermal bypass of the external insulation.

EWI should only be considered after ventilated wall cavities have been fully treated with either cavity fill and/or full sealing of cavity edges to prevent thermal bypass and heat loss.

Energy Use Capital Costs **Running Costs DER** SAP £24,462 £564 7663 200 20000

Reset

£ Capital

£ Annual Cost

kg/m2/yr

kWh/yr

About this scenario:

Occupied flat with measures chosen to minimise disruption and maximising a fabric first performance approach using external wall insulation to reduce cold bridging, new high performance windows to improve thermal performance, thermal comfort and reduce maintenance requirements. A new efficient gas combi heating system with Gas Flue Saver technology and examples of adaptations for an ageing population.

Floor: Ground Status: Occupied

£24,462

£ Capital

£564

£ Annual Cost

200

kg/m2/yr

7663 20000 kWh/yr

Test

Set as Baseline

£12,195

£ Capital

£766

£ Annual Cost

200 kg/m2/yr

0 20000 kWh/yr

Test1

Test1

Test1

Set as Baseline

£24,462

£ Capital

£564

£ Annual Cost

kg/m2/yr

20000 kWh/yr

£24,462

£ Capital

£564

£ Annual Cost

200 kg/m2/yr

DER

7663 20000 kWh/yr

SAP

Capital Costs

Running Costs

200

Energy Use 7663 20000 kWh/yr

Full Package Improvement

£24,462

£ Capital

f Annual Cost

£564

kg/m2/yr

building a better world together