Reusable Inline Caching for JavaScript Performance

Jiho Choi
University of Illinois at
Urbana-Champaign
USA
jchoi42@illinois.edu

Abstract

JavaScript performance is paramount to a user’s browsing
experience. Browser vendors have gone to great lengths
to improve JavaScript’s steady-state performance. This has
led to sophisticated web applications. However, as users
increasingly expect instantaneous page load times, another
important goal for JavaScript engines is to attain minimal
startup times.

In this paper, we reduce the startup time of JavaScript pro-
grams by enhancing the reuse of compilation and optimiza-
tion information across different executions. Specifically, we
propose a new scheme to increase the startup performance
of Inline Caching (IC), a key optimization for dynamic type
systems. The idea is to represent a substantial portion of
the IC information in an execution in a context-independent
way, and reuse it in subsequent executions. We call our en-
hanced IC design Reusable Inline Caching (RIC). We integrate
RIC into the state-of-the-art Google V8 JavaScript engine
and measure its impact on the initialization time of popular
JavaScript libraries. By recycling IC information collected
from a previous execution, RIC reduces the average initial-
ization time per library by 17%.

CCS Concepts -« Software and its engineering — Just-
in-time compilers; Scripting languages; Polymorphism;
Classes and objects.

Keywords Inline Caching, JavaScript, Scripting Language,
Dynamic Typing

ACM Reference Format:

Jiho Choi, Thomas Shull, and Josep Torrellas. 2019. Reusable Inline
Caching for JavaScript Performance. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI °19), June 22-26, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3314221.3314587

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI °19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6712-7/19/06...$15.00
https://doi.org/10.1145/3314221.3314587

Thomas Shull
University of Illinois at
Urbana-Champaign

USA

shull1@illinois.edu

Josep Torrellas
University of Illinois at
Urbana-Champaign
USA
torrella@illinois.edu

1 Introduction

In recent years, JavaScript has become a very popular pro-
gramming language. Because JavaScript is the only program-
ming language supported by all browsers, it is widely used
for web development, and is known as the de facto program-
ming language of the web.

Achieving efficient execution of JavaScript is a challeng-
ing task. A primary reason for this is the dynamic nature
of JavaScript. JavaScript is a dynamically-typed program-
ming language which supports dynamic properties. This
means that properties can be added and removed from ob-
jects dynamically throughout execution. In addition, since
JavaScript is a scripting language, code is compiled dynam-
ically using Just-In-Time (JIT) compilation. Despite all of
these difficulties, JavaScript’s importance means that vast in-
dustrial resources have been spent to ensure that JavaScript
performs well in browser implementations.

JavaScript’s performance improvements have coincided
with the development of advanced, immersive web appli-
cations. Better JavaScript performance has enabled increas-
ingly complicated applications to be web-based, such as of-
fice productivity suites, map services, and interactive games.
However, another important metric when evaluating web
applications is their page load time. According to a series
of user surveys [3, 19, 28, 33], while the majority of users
waited up to eight seconds for a page load in 1999, acceptable
wait time shrunk to two seconds by 2014. Furthermore, the
industry is pushing the bar even higher, by advocating a
sub-second wait time so as not to interrupt a user’s flow of
thoughts [23].

Reducing wait times is complicated by the fact that web-
sites are continuing to grow in size and complexity. Figure 1
shows these conflicting trends. As shown in the figure, the
average number of JavaScript requests in the top 1000 web-
sites has gone up from 12 in 2010 to 28 in 2015. Considering
that the initialization of each JavaScript library takes tens to
hundreds of milliseconds [24], it will be challenging to meet
the ever increasing user expectations.

The goal of this paper is to reduce user wait times by im-
proving JavaScript’s startup performance. Current JavaScript
implementations use online profiling techniques to improve
steady-state performance. However, they do not attempt
to reuse this profiling information across different execu-
tions. There are some techniques that reuse compilation
and optimization information across different executions in

https://doi.org/10.1145/3314221.3314587
https://doi.org/10.1145/3314221.3314587

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

28
—— Expected Page Load Time /L 26
-+ -# of JavaScript Requests

L 24
L 22
L 20
L 18
L 16
L 14
- - - - LA - 12

1999 2001 2003 2005 2007 2009 2011 2013 2015
Year

Expected Page Load Time (s)
of JavaScript Requests

O B N W b~ U1 O N 0 O
1

Figure 1. Conflicting trends of user expectation for page
load time and website complexity.

PHP [1, 25] and Java [21, 31]. However, such techniques are
not directly applicable to or are unsuitable for JavaScript due
to JavaScript’s highly dynamic nature.

To enable program information reuse across executions,
we focus on Inline Caching (IC) [11] — a technique used in
dynamically-typed languages to specialize sites in the pro-
gram that access objects. The IC structures are dynamically
built with profile information gathered during execution,
and they help improve performance. Unfortunately, in cur-
rent JavaScript implementations, such structures are cleared
and repopulated at each execution. This is because they con-
tain context-dependent information, such as the memory
addresses of heap objects, which are not consistent across
runs.

In our analysis of IC in JavaScript, we find that, while
IC structures have context-dependent information, many
facets of their internals are in fact context-independent. In
particular, we make two observations. First, many of the
code routines invoked by the IC are context-independent
and can be reused across executions. Second, sets of program
sites that access the same program objects, often update
the IC structures in similar ways. This property, which is
retained across executions, allows us to expedite the process
of repopulating IC structures in subsequent executions.

Based on these insights, in this paper we propose a new
IC design called Reusable Inline Caching (RIC), which en-
ables information reuse across executions. RIC extracts the
context-independent portion of the IC information from the
initial execution, and reuses it in subsequent executions to
significantly reduce JavaScript startup time.

We integrate RIC into the state of the art Google V8
JavaScript compiler [8] and measure its impact on the ini-
tialization time of popular JavaScript libraries. By recycling
the IC information collected from a previous execution, RIC
improves the initialization of libraries: it reduces the average
dynamic instruction count by 15%, and the average execution
time by 17%. The contributions of this paper are as follows:

Jiho Choi, Thomas Shull, and Josep Torrellas

e Characterize the IC overheads of popular JavaScript
libraries during initialization.

o Identify opportunities to reuse IC information across
executions.

e Propose RIC, a new IC design to enable the reuse of IC
information across executions.

e Implement RIC in the state of the art Google V8 JavaScript
compiler.

e Provide a detailed evaluation of RIC’s performance.

2 Background
2.1 JavaScript Execution

As JavaScript was initially designed to be embedded within
browsers, JavaScript implementations commonly provide
APIs to control execution. The host system in which a JavaSc-
ript runtime is embedded, such as a web browser or Node.js,
is responsible for scheduling JavaScript execution. Normally,
the host system can drive JavaScript execution through two
means: loading new scripts (i.e., initialization) and adding
new events (i.e., event handling).

Initialization occurs when the host system first loads a
JavaScript source file into the JavaScript runtime. For ex-
ample, when a browser encounters a script element during
HTML parsing, it passes the JavaScript source code in the
tag to the JavaScript runtime. Alternatively, the host sys-
tem can register JavaScript functions to handle events, such
as user input. These functions are then executed when the
corresponding events are triggered.

In this paper, we focus on JavaScript initialization, as it
directly affects page load performance. The page cannot be
fully loaded until all included JavaScript source code has
initialized. For example, the initialization can block DOM
object construction and page rendering. In addition, user in-
teraction is typically disabled until initialization is complete.

2.2 Hidden Classes

JavaScript is a dynamically-typed programming language,
where objects can have properties added to, and deleted from
at runtime. Such dynamism prevents JavaScript compilers
from constructing a fixed object layout before execution.
However, to generate efficient code, it is crucial for the com-
piler to have some notion of object type. To resolve this
conflict, JavaScript implementations dynamically create Hid-
den Classes for objects. This concept was first introduced in
Self [10]. The basic idea is to assign each object a hidden
class, which contains information about the current layout
of the object. Objects created in the same way are assigned
the same hidden class. Grouping objects in this manner helps
to enable optimizations. Throughout this paper, we will use
the terms “type” and “hidden class” interchangeably.
Figure 2(a) shows the general structure of a hidden class
used by V8. The Object Layout field points to a table that
keeps the object layout, with a list of (property, offset) pairs.

Reusable Inline Caching for JavaScript Performance

/
;o
’ l’
o ®,‘ HC1

\
\
NS Next Hidden Class X 0
/
,
. \
N Next
1 1’ N
;

Property
@ y HC2
A o HC2 4_/

Objects
Hidden Class Point
Object Layout Hidden Class
Next Hidden Class Constructor HC
(a) Hidden class structure.
pl
- X Hidden Class
1: function Point(x, y) {
2: this.x = x;
3: this.y = y;
4: }
5: pl = new Point (10, 20); 02
6: p2 = new Point (30, 40);
P ¢ ! i Hidden Class
(b) Example JavaScript code.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Hidden Classes

HCO

/) Object Layout
/]

@ ;) Next Hidden Class » Property Next
d ’I

fo X HC1

7 ,’l Object Layout Property Offset

Object Layout > Property Offset

Next Hidden Class X 0

y 1

(c) Hidden class transition example.

Figure 2. Hidden class structure and example of hidden class transition.

The Next Hidden Class field points to a table that keeps a
list of (property, hidden class) pairs. The table tells the next
hidden class to transition to, when the new property is added.

To understand the operation of objects and hidden classes,
consider the simple code example of Figure 2(b). The code
declares function Point, which sets coordinates x and y of a
point. Then, the code creates and sets points p1 and p2.

When a function is declared, as in Line 1, the runtime
allocates an object for the function (Point, at the top left of
Figure 2(c)) and a hidden class for the object to be constructed
by the function (HCO, at the top center of Figure 2(c)). The
Constructor Hidden Class (HC) of the function object points
to the hidden class, whose fields are initially empty.

In Line 5, when the code calls the Point function to create
p1, the runtime creates an object (p1, at the center left of
Figure 2(c)). The object initially points to hidden class HC®
(®). As the function Point executes and adds properties to
the point in Lines 2 and 3, new hidden classes are created,
and the Hidden Class field of object p1 changes (@ and ®).

Specifically, in Line 2, a new property x is added to p1. At
this point, the runtime creates a new hidden class HC1, with
an Object Layout that has property x at offset 0 (center right
of Figure 2(c)). At the same time, HC®’s Next Hidden Class is
set to point to HC1 (top right of Figure 2(c)), and p1’s Hidden
Class is set to point to HC1 (@).

Similarly, when the new property y is added to p1 in Line
3, the runtime creates a new hidden class HC2, with an Object
Layout with x at offset 0 and y at offset 1 (lower right of
Figure 2(c)). At the same time, HC1’s Next Hidden Class and
p1’s Hidden Class pointers are set to point to HC2 (®).

These hidden classes are created only for a new transition.
When point p2 is created in Line 6, only object p2 is allocated
(lower left of Figure 2(c)). As execution proceeds, this object’s

Hidden Class pointer will successively point to hidden classes
HCO, HC1, and HC2.

2.3 Inline Caching

One of the fundamental optimization techniques enabled
by hidden classes is Inline Caching (IC) [11]. To understand
IC, we call Object Access Site any location in the program
where an object property is read or written. IC is based on the
empirical evidence that the objects accessed at a particular
object access site often have the same hidden class or classes.

Without IC, the runtime system would be invoked at every
object access site and, after identifying the type of the in-
coming object, would perform the appropriate load or store
operation at the appropriate offset. The incoming object is
the object whose property is being read or written at the site.
Unfortunately, this operation has substantial overhead.

The idea behind IC is that, at each site, every time that
the runtime encounters a new hidden class for the site, it
generates a handler routine with the operation that needs
to be performed for that hidden class. Then, the runtime
specializes the code at the site so that it checks the hidden
class of each incoming object and, if the hidden class has been
seen before, it calls the corresponding handler. Hence, when
a site encounters a hidden class seen before, the execution is
highly efficient.

V8 uses an out-of-line approach to IC. Instead of directly
specializing the machine code, it creates a per-function data
structure called ICVector (Figure 3). For each object access
site in the function, the ICVector contains one or more
slots. Each slot corresponds to one different hidden class
encountered at this site in the past. A slot contains a tuple
(HCag44r, Handler). HC 444, is a pointer to the hidden class;
Handler is a pointer to the handler routine that performs the

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

operation for the hidden class. For example, Figure 3 shows
an ICVector with three access sites, each with two slots.

Site Object Access Site 1

HCpqar (HCyy)(HCy,) (HCyy)(HCy,) (HC3q)(HCs,)
Handler Handler,,/ \Handler, Handler,,/ \Handler,, Handler;;/ \Handler,

Object Access Site 2 Object Access Site 3

Figure 3. ICVector data structure.

The information stored in the ICVector helps speed up
accesses to objects at these sites. If the incoming object’s hid-
den class matches one of the HC 444, for the site, execution
directly transfers to the handler routine stored in Handler,
without having to call the runtime. Otherwise, an IC Miss
has occurred. At this point, the runtime is invoked to per-
form the load or store, and to augment the ICVector with
an additional slot for the site.

At the start of execution, the ICVector is empty. As execu-
tion progresses, the ICVector is filled with (HC 444,, Handler)
pairs for each object access site. An object access site that
only encounters objects of a single hidden class is called
monomorphic; if it encounters objects of multiple hidden
classes, it is called polymorphic.

2.4 Putting It All Together

Based on the previous discussion, we now show an example
of how the IC information is generated during execution.

Figure 4(a) shows a JavaScript source code example that
creates an empty object o (Line 1), adds property x if a branch
is taken, adds property y, and finally prints out the value of
property y. There are three object access sites in the example.
Those in Lines 2 and 3 add a property and store a value to it.
We call them sites S1 and S2, respectively. The one in Line 4
loads the value of a property. We call it site L1.

: var o = {};

: if (.) o.x =1; // s1
: 0.y =2; // s2

: print(o.y); // L1

s W N e

(a) Example JavaScript code.

Status ICVector Hidden Class Handler
Site S1 S2 L1 Address: A
Linel HCpu Property | Offset
r
Handler
Site S1 S2 L1 Address: B Address: H1
Line 3 HCaggr (A) Property | Offset obj.HC = B
obj[0] = 2
Handler H1 v 0 3o}
Site S1 S2 L1 Address: H2
Line 4 HCger A B ret obj[0]
Handler (Hl) (HZ)

(b) Structures created by V8.

Figure 4. Example of V8 structures.

Jiho Choi, Thomas Shull, and Josep Torrellas

Figure 4(b) shows the ICVector structure for the code, as
well as a simplified representation for the hidden classes and
handler routines that V8 creates as the code executes. The
ICVector has a column for each of the object access sites in
the code (S1, S2, and L1). Figure 4(b) shows the state of the
data structures after a given line of code from Figure 4(a) is
executed. Specifically, after Line 1 is executed, the ICVector
is empty, and there is an empty hidden class for object o.
Let us call this hidden class A, as it is allocated at memory
address A.

Let us now assume that the branch on Line 2 is not taken,
and S1 is not accessed. As Line 3 executes, ICVector’s col-
umn for S2 is checked to see if it has information that can be
used to avoid a runtime call. However, at this point, this col-
umn is empty. Therefore, an IC miss occurs and the runtime
is invoked. The runtime creates: (i) the appropriate handler
routine and (ii) a new hidden class, since the hidden class A
of the incoming object does not contain information about
property y. This is shown in Line 3 of Figure 4(b). Let us
assume that the handler is located at address H1, and the new
hidden class at address B. The property y is placed at offset @.
Next, the runtime adds a slot to the column corresponding
to this object access site with the addresses of the hidden
class A of the incoming object and the handler H1. Finally, it
invokes the handler, which fills the object with its hidden
class and the value 2 at offset @. From now on, if this site is
used again and the incoming hidden class is A, the runtime
will not be called. Throughout the remainder of the paper,
we call object access sites that create new hidden classes
transitioning object access sites.

The execution of Line 4 also causes an IC miss, since
ICVector’s L1 column is empty. As before, the runtime is
called to create a new handler. Let us assume that this handler
is placed at address H2. Since the incoming object’s hidden
class B already contains property y, the runtime does not
create a new hidden class. It simply adds a slot in column L1
of the ICVector with the addresses of the incoming object’s
hidden class B and the new handler H2, and invokes the
handler. The handler returns the value of y at offset 0.

If sites S2 and L1 are later accessed by an object with a
different hidden class than in the example, another slot is
added to the corresponding column.

3 Characterizing Inline Caching

While IC improves the performance of JavaScript programs,
IC misses still induce significant overhead during the initial
sections of programs. Importantly, this overhead does not
disappear as a program is re-executed. Indeed, V8 discards
the ICVector data at the end of every execution, and recre-
ates it from scratch at the beginning of each new execution.
In this section, we estimate the overhead of IC misses, ex-
plain why IC state is difficult to reuse across executions, and
provide some motivation for attempting to reuse it.

Reusable Inline Caching for JavaScript Performance

3.1 Overhead of IC Miss Handling

To estimate the overhead of IC misses, we take a set of seven
popular JavaScript libraries and profile their initialization.
Specifically, we count the number of instructions that exe-
cute during IC misses. Such instructions, which are executed
by the runtime, look up the incoming object’s layout to find
the property requested by the object access site, generate
a specialized handler routine, and update the ICVector for
future accesses to this site.

Figure 5 breaks down the instructions executed by the
libraries during initialization into those used to handle IC
misses and the rest of instructions. The latter include JavaScript
code execution and the rest of runtime. The libraries used
are discussed in Section 6. The figure shows that IC miss han-
dling accounts for a substantial fraction of the instructions
executed during initialization in all libraries. On average, it
accounts for 36% of the instructions.

Instruction Breakdown
o
[%,]

W IC Miss Handling @ Rest of the Work

Figure 5. Instruction breakdown during the initialization of
JavaScript libraries.

3.2 Context-Dependence of IC

The previous data suggests that if one could reuse IC state
across program executions such that IC misses were avoided,
the initialization of JavaScript programs would likely speed
up substantially.

However, only context-independent state can typically be
reused across executions. We say that information is context-
independent if it is not tied to any memory addresses other
than the addresses of Built-in objects. Built-in objects are
defined by the language standard, and include fundamental
objects (e.g., Object and Function) and utility functions
(e.g., Math and String) [12].

Unfortunately, hidden classes are context-dependent. Fig-
ure 2(a) shows the structure of a hidden class used by V8.
While the Object Layout field is context-independent, the
rest of the fields are context-dependent. For example, the
Next Hidden Class field points to various hidden classes that
are created as new properties are added. The values of such
pointers vary across executions. Moreover, one of the fields
not shown in Figure 2(a) is the Prototype field, which points to

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

the prototype object. Note that JavaScript uses prototyping
to emulate the class inheritance of statically-typed languages
such as C++ and Java. Every JavaScript function has a proto-
type object, and all the objects created by the same function
inherit from the function’s prototype object. Since prototype
objects are dynamically allocated on the heap, the Prototype
field of hidden classes is also context-dependent.

In addition, some handlers are context-dependent and,
therefore, cannot be reused across executions. For example,
when accessing an inherited property, the handler traverses
the chain of prototype objects to locate the property. It com-
pares the hidden classes of the prototype objects of the in-
coming object to those embedded in the handler code. The
result is context-dependent state. Another common example
is a handler adding a new property to an object (e.g., handler
H1 in Figure 4(b)). The addition of a new property triggers
the hidden class transition of the incoming object. The han-
dler embeds the hidden class to which the incoming object
transitions (e.g., B in Figure 4(b)). Such handlers are context-
dependent, since they embed hidden class information.

On the other hand, there are some context-independent
handlers. One example is handler H2 in Figure 4(b). The
handler simply accesses a property at a fixed offset within
the incoming object.

3.3 Opportunities for Reuse

Despite these difficulties, there are opportunities for reuse.
For example, the interaction with many websites starts by
initializing a set of popular JavaScript libraries. Their execu-
tion is fairly deterministic and context-independent. Some
of the IC state created by initializing these libraries could be
reused across executions.

To investigate the potential of this idea, we instrument
the libraries of Section 3.1 to collect various statistics related
to IC. Table 1 shows the results. The first column shows the
number of different hidden classes encountered during the
initialization of the libraries. The second column shows the
number of IC misses. In all the libraries, the number of IC
misses is much higher than the number of different hidden

Table 1. Statistics related to IC use during the initialization
of JavaScript libraries.

of Diff. #of # of IC || % of Context
Library Hidden IC Misses || Independent

Classes | Misses | per HC Handlers
AngularJS 138 799 5.8 62.5
Caman]S 99 383 3.9 61.8
Handlebars 88 541 6.2 63.2
jQuery 271 1547 5.7 57.3
JSFeat 116 323 2.8 51.7
React 360 2356 6.5 82.3
Underscore 123 295 2.4 38.1
Average 171 892 4.8 59.6

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Jiho Choi, Thomas Shull, and Josep Torrellas

Table 2. Main ideas in Reusable Inline Caching (RIC).

Linking of object access sites

An IC miss in the Triggering site causes all of its Dependent sites to populate their ICs.

Reusing handlers

Context-independent handlers from the Initial run are reused in the Reuse run.

Hidden class validation

Incrementally certify that hidden classes in the Reuse run match those in the Initial run.

classes. The third column shows the ratio of the first two
columns. Since a given hidden class does not miss more than
once in a given object access site, this means that the same
hidden class is encountered in several different object access
sites. On average, a hidden class is encountered in about 5
object access sites. The last column shows the fraction of
handlers that are context-independent and reusable across
executions. On average, about 60% of the handlers generated
in the libraries are context-independent.

Overall, this characterization shows that there may be op-
portunities to minimize the overhead of IC misses by reusing
IC information across executions. First, the fact that the
same hidden class causes misses in multiple object access
sites opens up an opportunity to handle multiple IC misses
at the same time. Given that the workloads that we consider
execute in a fairly deterministic way, this information can
be shared across executions. Second, the majority of the han-
dlers are context-independent and, therefore, can be reused
across executions.

4 Reusable Inline Caching

The goal of this paper is to reduce IC misses by reusing
IC information across program executions. In an Initial ex-
ecution of the program, the IC is built as usual. After the
execution completes, in an off-line Extraction Phase, our run-
time extracts context-independent IC information from the
ICVector generated by the program. Later, in a subsequent
execution of the program that we call Reuse execution, the
extracted IC information is dynamically used to avert some
IC misses and the generation of some handler routines. We
call this scheme Reusable Inline Caching (RIC). RIC is based
on the three ideas of Table 2.

Linking of object access sites. The firstidea is to link object
access sites. The proposal is based on our observation that
a hidden class created in an object access site is often later
encountered in multiple other object access sites, creating an
IC miss in each of these sites. This observation was hinted
at by the data in Section 3.3. We call the object access site
where the new hidden class is created the Triggering site,
and the subsequent sites that encounter the hidden class and
miss on it the Dependent sites.

In the extraction phase, the runtime examines the ICVector
of the program, and identifies individual Triggering sites and
their corresponding Dependent ones. In the Reuse execu-
tion, as soon as an IC miss occurs and a new hidden class
is created, the runtime checks whether this is a Triggering

site and, if so, if this site has Dependent ones. If so, after
it has created an ICVector slot for the Triggering site, it
also creates ICVector slots for the Dependent ones. Each
Dependent’s slot receives the hidden class and a handler.
Note that the IC miss in the Triggering site is not averted,
but when execution reaches a Dependent site, the IC miss
there is averted.

Reusing handlers. The second insight is that many han-
dlers are context-independent and, therefore, can be reused
across executions. This insight is backed up by data in Sec-
tion 3.3. Consequently, in the extraction phase, as the run-
time examines the ICVector, it identifies and saves context-
independent handlers. As indicated above, during the Reuse
execution, when an ICVector slot for a Dependent site is
filled, it receives a pointer to the saved handler. This averts
a future IC miss. If the handler for a would-be Dependent
site is not context-independent, the site is not added to the
Dependent list in the extraction phase. Note that RIC does
not attempt to save hidden classes, since they are context-
dependent.

Hidden class validation. The third idea is to incrementally
and dynamically certify that hidden classes in the Reuse
run match those in the Initial run. This process is called
validation, and ensures that reusing IC information maintains
correct execution. Built-in objects are immediately marked
as validated at the startup of the JavaScript runtime, since
their creation is deterministic in every execution. Further, if
we reach a Triggering site and the incoming hidden class is
marked as validated, then RIC validates the outgoing hidden
class, as the new hidden class also matches in both runs.
In addition to marking this hidden class as validated, this is
when RIC preloads ICVector slots for the Dependent sites. If
ahidden class created in a Triggering site cannot be validated,
then its Dependent sites cannot preload an ICVector slot
and will therefore suffer an IC miss. Conceptually, validation
confirms that the Reuse run does not diverge from the Initial
run at this point. Validation often succeeds if the execution
is largely deterministic, like in library initialization.

5 Implementation

RIC is implemented in two steps. First, during the extraction
phase after the Initial execution, the RIC runtime analyzes
the ICVector generated by the completed program, and cre-
ates a new structure that we call ICRecord. Then, during the
Reuse execution, the RIC runtime uses the ICRecord to ea-
gerly preload the ICVector of the program dynamically, and

Reusable Inline Caching for JavaScript Performance

save IC misses. In the following subsections, we first describe
the layout of ICRecord’s components. Next, we describe the
RIC operations during the extraction phase and the Reuse
execution. Finally, we provide an example walk-through to
demonstrate RIC’s operation.

5.1 ICRecord Layout

As shown in Figure 6, the ICRecord is a simple data structure
with three components: the Hidden Class Validation Table
(HCVT), the Triggering Object Access Site Table (TOAST), and
the set of context-independent handlers generated in the

Initial run.
Handler

(c) Context-independent
Handlers

HCp | HCpyqr V | Listof Site or List of
(Dependent Site, Built-in | (Incoming HC,p,
Handler) Object Outgoing HCp)

(a) Hidden Class Validation Table (HCVT) (b) Triggering Object

Access Site Table (TOAST)

Figure 6. ICRecord structure.

The HCVT serves two purposes. First, it tracks which hid-
den classes are validated. Second, it provides the data needed
by RIC to preload the ICVector slots of Dependent sites for
a given Triggering site. The HCVT has as many entries as
the number of different hidden classes created during the
execution of the Initial run — including hidden classes for
built-in objects such as Object and Array. For each entry,
the HCVT contains four fields: an integer hidden class iden-
tifier (HCp), the address of the hidden class in the Reuse
execution (HC aqq4,), a Validated (V) bit, and a list of the De-
pendent sites for the Triggering site of this hidden class. For
each Dependent site, the table also includes the handler to
use. Recall that only sites with context-independent han-
dlers can be considered Dependent. The HCVT is indexed by
the HCrp. HCyps are assigned by RIC during the extraction
phase and act as primary keys for the HCVT entries.

The TOAST is used to initiate the process of reusing IC
information in the Reuse execution. This table has as many
entries as the number of Triggering object access sites in the
Initial run plus the number of built-in objects in the Initial
run. We include the latter because built-in objects are not
created by any object access site. Recall that Triggering ob-
ject access sites are object access sites that cause a hidden
class transition. An entry in the TOAST table has two fields:
one that contains the object access site ID or built-in object’s
name, and a second one with a list of (incoming HC;p, out-
going HCrp) pairs. TOAST is indexed by a hash generated
by either the object access site ID (determined by file name,
line number and position in the line) or the built-in object
name string. Both are invariant across executions. In TOAST
entries, monomorphic sites only have one incoming and one
outgoing hidden class pair; polymorphic ones have multiple
pairs. Entries for built-in objects have no incoming hidden
class and only one outgoing hidden class.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Finally, the context-independent handlers are stored sepa-
rately within the ICRecord. The addresses of these handlers
will be stored in the HCVT as the HCVT is filled during the
Reuse execution.

5.2 RIC Operation
5.2.1 Extraction Phase

During the extraction phase, RIC creates the ICRecord and
populates its data structures by processing the ICVector
and hidden classes created in the Initial execution. First, RIC
creates the HCVT and adds an HCVT entry for each hidden class
created in the Initial execution. Monotonically increasing
integers are assigned as HCrps to HCVT entries. The HC g 44,
field is left empty and the Validated bit is 0, as they are to be
set in the Reuse execution. The Dependent site information
is filled when the TOAST is created, as explained next.

Second, RIC scans the ICVector to find all Triggering sites
and their corresponding Dependent sites. Then, it creates the
TOAST and adds a TOAST entry for each Triggering site and
for each built-in object observed in the Initial run. In each
TOAST entry, RIC also adds one or more (incoming HCjp,
outgoing HCrp) pairs. Then, for each TOAST entry, RIC takes
each outgoing HCjp, locates the HCVT entry for the outgoing
HCip, and adds the list of (Dependent site, handler) tuples
to it. Lastly, RIC also saves all context-independent handlers,
which are referred to by the HCVT.

5.2.2 Reuse Execution

In the Reuse execution, every time that a built-in object is
created at the startup of the JavaScript runtime, or every time
that execution encounters a Triggering object access site, the
runtime checks the TOAST and finds the corresponding entry.
If this is a built-in object, the outgoing HCp is read and
used to index the HCVT. In the corresponding HCVT entry,
RIC saves the address of the hidden class (HC444,) and sets
the V bit. Further, it reads the entry’s list of (Dependent site,
handler) tuples. Next, for each tuple, it creates a new slot
in the ICVector structure of the Reuse execution for the
Dependent site. The slot is set to the built-in object hidden
class and the handler. By filling one or more slots this way,
we will avoid one IC miss in each of the Dependent sites.
If, instead, the access to the TOAST is for a Triggering object
access site, RIC reads the list of (incoming HCyp, outgoing
HCpp) pairs. At most, only one of these pairs is relevant,
namely the one whose incoming HCrp matches the current
incoming object’s hidden class at this site. Hence, for each
incoming HCyp, RIC accesses the HCVT with HCyp, reads
the entry’s HC 444, and compares it to the current incoming
object’s hidden class. If there is a match, then we are certain
that the pair’s outgoing HCyp is the hidden class that will
be generated at this Triggering site. Hence, RIC accesses the
HCVT with the outgoing HCjp. In the corresponding entry, it
saves the outgoing hidden class address in HC 444,, sets the

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

l: var o = {};

2: if (..) o.x =1; // s1
3: o.y = 2; // 82

4: print(o.y); // L1

(a) Example JavaScript code.

Status ICVector Hidden Class Handler
Site s1 S2 L1 Address: A
tine 1 HChdar Property | Offset
Handler
Site s1 S2 L1 Address: B Address: H1
Line 3 HCagar (A) Property | Offset obj.HC = B
bj[0] = 2
Handler H1 v 0 obj[0]
Site S1 S2 L1 Address: H2
Line 4 HCpuar A B ret obj[0]
Handler (Hl) (HZ)

(b) Structures created in the Initial run.

HCp | HCagqr V | List of Site or List of
(Dependent Site, Built-in | (Incoming HCyp,
Handler) Object Outgoing HCpp)
0 — 0 — Empty Obj.[(—, 0) Address: H2
1 — 0 | (L1,H2) s2 (0,1) ret obj[0]

Hidden Class Validation Table (HCVT) Triggering Object
Access Site Table (TOAST)

(c) ICRecord generated in the extraction phase after the Initial run.

Handlers

Context-independent

Jiho Choi, Thomas Shull, and Josep Torrellas

Status ICVector Hidden Class Handler
Site S1|s2 (L1 Address: C
Line 1 HCaaar Property | Offset
Handler
Site s1|s2 |11 Address: D Address: H3
Line 3 HCagar ch\l/ b Property | Offset obj.HC = D
Handler (HS) (HZ) 0 obj[0] = 2
Yy
(d) Structures during the Reuse run if branch not taken.
Status ICVector Hidden Class Handler
Site st s2 |11 Address: E
Line 1 HCpgr Property | Offset
Handler
Site S1|s2| L1 Address: F Address: H4
Line 2 HCpgar E Property | Offset obj.HC = F
Handler (H4) X 0 obj[0] =1
Site S1|s2| L1 Address: G Address: H5
Line 3 HCpaar E F Property | Offset obj.HC = G
Handler (H4) (HS) X 0 obj[l] = 2
y 1
Site S1|s2 |11 Address: H6
Line 4 HCpgqr ENl/F\|/ G ret obj[1]
Handler (H4) (HS) (H6)

(e) Structures during the Reuse run if branch taken.

Figure 7. Example of how RIC extracts and utilizes the context-independent portion of the IC information.

V bit, and reads the list of (Dependent site, handler) tuples.
Then, it uses the list of tuples to fill slots in the ICVector
structure as in the case above for built-in objects. Again, the
result is the elimination of IC misses.

If no match occurs for any of the incoming HC;p in the
TOAST entry, it means that the Reuse execution has diverged
from the Initial execution. Consequently, RIC is unable to
validate the outgoing hidden class of the Triggering site,
and its Dependent sites will not get their ICVector slots
preloaded.

5.3 Example of RIC

In this section, we build on the example of Section 2.4, and
show how RIC extracts the context-independent IC informa-
tion after the Initial run, and how it uses this information to
avoid IC misses in the Reuse run.

5.3.1 Extraction Phase Generates ICRecord

Figures 7(a) and (b) repeat Figures 4(a) and (b) to provide the
context. Figure 7(c) shows the ICRecord structure generated
by RIC during the extraction phase by collecting all the
context-independent information in the IC.

In the Initial execution, there are two hidden classes of
interest: a hidden class for the built-in empty object and a
hidden class with the y property. As shown in Figure 7(b),
these hidden classes are allocated at addresses A and B, re-
spectively. Let us assume that, during the extraction phase,
RIC assigned them HCjp 0 and 1, respectively.

Figure 7(c) shows that the HCVT contains an entry for each
of these hidden classes. In each entry of the table, the address
field (HCq44,) is initially empty and the Vbit is cleared. For
HCrp 0, the list of (Dependent site, handler) is empty. The
reason is that the potential Dependent site observed during
the Initial run for this Triggering site is S2. However, the
handler for that site is HI (Figure 7(b)), which is not context-
independent because it has address B. For HCyp 1, the list
of (Dependent site, handler) contains (L1, H2). L1 is the only
Dependent site seen during the Initial run; its handler (H2)
is context-independent. RIC stores H2 in the ICRecord.

TOAST also contains two entries, one for the built-in empty
object, and one for an object access site (52) — both seen
during the Initial run. The former has no incoming HCjp
because it is a built-in object, and its outgoing HCyp is 0.
The latter was a monomorphic site during the Initial run,

Reusable Inline Caching for JavaScript Performance

which encountered the incoming HC;p 0 and produced the
outgoing HCyp 1.

5.3.2 Reuse Run Is Able to Reuse State

Figure 7(d) shows the data structures in a Reuse run when
the execution follows the same control flow as in the Initial
run (i.e., the branch in Line 2 is not taken). In this case, RIC
can use data from the ICRecord.

Initially, the ICVector is empty. When the built-in empty
object is created at the startup of the JavaScript runtime, the
RIC uses a hash of the built-in object name string to access
the TOAST. It finds the first entry of the table. The outgoing
HCp of this entry shows that this built-in object has HCyp
0. Hence, RIC accesses the HCVT and finds the first entry. In
the entry, it sets HCaq44r to C, which is the address of the
built-in object’s hidden class in the Reuse run (Figure 7(d)),
sets Vto 1, but does not find any Dependent sites. Hence, it
does not update the ICVector.

In Line 2, the branch is not taken, as in the Initial execu-
tion. Then, on Line 3, the code suffers an IC miss in S2, and
the runtime creates a new hidden class at address D and a
new handler H3 (Figure 7(d)). This IC miss cannot be avoided
because handler H3 is context-dependent. The runtime up-
dates S2’s ICVector slot with a tuple of incoming hidden
class C and handler H3 (Figure 7(d)).

In addition, RIC checks the TOAST for S2 and finds the (in-
coming HCrp, outgoing HCyp) pair of (0, 1). RIC then looks
up the HCVT with HC;p 0 and confirms that the correspond-
ing entry’s HC 44, matches its incoming object’s hidden
class, and that the entry’s V'is set. Since the incoming hid-
den class is already validated, RIC proceeds to validate the
outgoing hidden class. Specifically, RIC accesses the entry
for HCjp 1, stores address D in the entry’s HC g44y, sets the
entry’s V, and reads the (Dependent site, handler) tuples. In
this case, there is a single dependent site, namely L1, with
context-independent handler H2. Hence, RIC updates L1’s
ICVector entry with a tuple of hidden class D and handler
H2 (Figure 7(d)). As a result, when the Reuse execution finally
reaches L1 in Line 4, an IC miss will be avoided.

5.3.3 Reuse Run Is Unable to Reuse State

Figure 7(e) shows the data structures in a Reuse run when
the execution follows a different control flow than in the
Initial run (i.e., the branch in Line 2 is taken). In this case,
RIC cannot use data from the ICRecord.

The structures start as in Figure 7(d), except that the hid-
den class for the built-in object is allocated at address E. As
in the previous example, when the RIC runtime accesses the
HCVT entry of HCyp 0, it sets the entry’s HC g4, to Eand V
to 1.

In Line 2, the branch is taken, and object access site S1
is reached. The code suffers an IC miss, and the runtime
creates a new hidden class at address F with property x and a
new context-dependent handler H4 (Figure 7(e)). The runtime

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

updates S1°s ICVector slot with a tuple of incoming hidden
class E and handler H4. As RIC accesses the TOAST with a hash
of the object access site ID, it does not find any matching
entry.

In Line 3, the code suffers an IC miss at object access site S2,
and the runtime creates a new hidden class at address G with
properties x and y, and a new context-dependent handler
H5 (Figure 7(e)). RIC accesses the TOAST with a hash of the
object access site ID, and finds the entry for S2. The entry
only has one (incoming HC;p, outgoing HCp) pair, which
is (0, 1). As RIC accesses the HCVT entry of HCyp 0, it finds
that the address in HC 444, is E. This is different from the
address of the incoming object’s hidden class in S2, which is
F. As a result, RIC cannot validate the outgoing hidden class
G, and the ICVector is not updated.

Finally, on Line 4 of Figure 7(e), object access site L1 is
reached and an IC miss occurs. RIC is unable to avoid this
IC miss. RIC fills the ICVector entry with G and Hé6. No
information from the Initial run has been used in this site.

The example in this section has not used polymorphic
object access sites for simplicity. Such sites are equally well-
supported by RIC.

6 Experimental Setup

We evaluate RIC using Google’s V8 JavaScript engine version
6.8 [8]. We gather execution times for different parts of the
Initial and Reuse runs using the high precision timer avail-
able in the V8 runtime. We also instrument the V8 runtime to
collect statistics on different aspects of IC operation. Further-
more, we perform some runs where we instrument the V8
runtime with Pin [22] to count the number of instructions.

In the Initial run of an application, the V8 compiler gener-
ates bytecodes from the source code and stores them in the
code cache. The Reuse run uses the bytecodes from the code
cache. We measure two Reuse runs: one with the original V8
runtime (Conventional) and one with RIC.

To evaluate RIC, we select 7 popular JavaScript libraries
from various domains and measure their initialization per-
formance. The libraries are shown in Table 3. They are writ-
ten assuming that they run inside a browser, and need a
global window object. Consequently, we insert a fake win-
dow object in the original source code to mimic a browser
environment, and run the benchmarks in the standalone V8
shell. The Octane benchmark suite [13] handles the library
execution in a standalone JavaScript shell in a similar way.

Lastly, to mimic real websites and evaluate the robustness
of RIC, we create two synthetic websites that load the seven
libraries in different orders. We use the first one for the Ini-
tial run and the second one for the Reuse run. This setup
emulates the common scenario where RIC information is
generated and utilized in different websites. In our experi-
ments, we disable RIC for global objects, since IC information
for global objects varies depending on the order in which

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 3. Popular JavaScript libraries measured.

H Library ‘ What It Does H
Angular]S [4] Web application frameworks to support
React [27] the development of single-page applications

Caman]S [9]
Handlebars [15]
Underscore [29]
jQuery [17]
JSFeat [18]

Library for image manipulation
Client-side template engines

Library for DOM manipulation
Library for computer vision

the libraries are loaded. Enabling RIC for global objects adds
only negligible performance overhead.

7 Evaluation

To evaluate RIC, we characterize the use of the IC, analyze
RIC’s performance improvements, and examine RIC’s over-

heads.

7.1 Characterizing IC Usage

Table 1 from Section 3 hinted at the potential of RIC. It
showed that, on average, a hidden class is encountered in
about 5 object access sites. Hence, in the best case, RIC could
avoid the misses in 4 out of these sites, since RIC does not
target the first of such accesses. Table 1 also showed that, on
average, about 60% of the handlers generated in the libraries
are context-independent. Hence, RIC could reuse them in
the Reuse run.

Table 4 shows the actual impact of RIC on the IC accesses
in the Reuse run in each of the libraries. Columns 2 and 3
show the IC miss rates in the Initial and Reuse runs. We see
that, thanks to the reuse enabled by RIC, the average IC miss
rate drops from 49.19% in the Initial run to 24.08% in the
Reuse run. This is a substantial reduction.

Table 4. IC miss rate in the Initial and Reuse runs.

Initial Reuse
Run Run
Library IC Miss || IC Miss Contribution
Rate (%) || Rate (%) To Miss Rate (%)

Handler [Global [Other

Angular]S 68.94 32.79 8.63 2.85 21.31

CamanJS 87.64 43.94 1.14 3.43 39.36

Handlebars 57.92 20.34 4.82 1.07 14.45

jQuery 48.50 29.28 6.49 1.13 21.66

JSFeat 18.96 8.16 0.18 1.82 6.16

React 18.67 3.83 1.90 0.31 1.62

Underscore 43.70 30.22 1.48 1.78 26.96

Average 49.19 24.08 3.52 1.77 18.79

The next three columns break down the IC miss rate in
the Reuse run into three components. The sum of these three

Jiho Choi, Thomas Shull, and Josep Torrellas

components is equal to the IC miss rate. The first one (Han-
dler) is misses due to context-dependent handlers. Recall that
RIC cannot reuse such handlers. We see that this has a rela-
tively small effect. The second component (Global) is misses
due to incoming hidden classes corresponding to global ob-
jects. Recall from Section 6 that RIC is disabled for global
objects because they are context-dependent. This effect is
very small. The last component (Other) is misses due to other
effects. Many of these misses occur in Triggering sites, which
RIC does not address by construction. This component is the
dominant one.

7.2 Initialization Performance Improvements

Since every IC miss triggers the invocation of the V8 runtime,
RIC’s ability to reduce the IC miss rate results in a reduction
in the number of instructions executed. Figure 8 compares
the number of dynamic instructions executed in the Reuse
runs of the Conventional and the RIC configurations. For
each library, the bars are normalized to Conventional. The
figure shows that, on average, RIC saves 15% of the instruc-
tions. Across libraries, the instruction count reduction is
roughly correlated with the reduction in IC miss rate at-
tained by RIC. The latter can be computed by subtracting
Column 2 in Table 4 from Column 1. For example, jQuery,
JSFeat, and Underscore have modest instruction count reduc-
tions because the reductions in IC miss rate attained by RIC
are relatively small.

120%
100%
80%
60%
40%
20%

0%

Normalized Instruction Count

S S Gy X o < (2
& > @ &d & &S ®
& A\ O O <& N
S N &
mConventional ORIC

Figure 8. Instruction count in the Reuse runs for Conven-
tional and RIC. The bars are normalized to Conventional.

This reduction in instructions executed results in a reduc-
tion in the execution time of the libraries. Figure 9 compares
the execution time of the Reuse runs in the Conventional
and the RIC configurations. For each library, the bars are
normalized to Conventional. On top of each Conventional
bar, we place the absolute time taken by the Conventional
Reuse run in milliseconds.

The figure shows that the Conventional Reuse runs take
between 21 and 216 ms to execute. On average, RIC reduces
the execution time per workload by 17%. The largest absolute
reduction is 56 ms for React. This reduction in initialization

Reusable Inline Caching for JavaScript Performance

120%

v 67 21 66 138 29 216 35 82

£ 100%

=

§ 80%

S

3 60%

2

X a0%

ael

g 0%

TEU 0%

S) S S X, X < (3

S &SP de & S P
(@) 0@ ¢ & o <& 6& V:\e,
e Q(b 00

@ Conventional ORIC

Figure 9. Execution time of the Reuse runs normalized to
Conventional. On top of the Conventional bars, we show
the absolute time taken by the Conventional Reuse run in
milliseconds.

time is significant, as it has an impact on the experience of
the user. Furthermore, as indicated in Section 1, the average
number of JavaScript requests per website is increasing, and
several of such requests are likely to be for libraries. In the
hypothetical case that all of our seven libraries were called,
RIC would reduce the initialization time by 117 ms.

Across libraries, the reduction in execution time roughly
follows the reduction in instruction count in Figure 8. The
time reduction is slightly higher than the instruction count
reduction because the instructions eliminated involve cache
misses. Hence, they are, on average, slightly more costly than
the average instruction. Overall, RIC speeds-up the startup
time of JavaScript codes.

7.3 Overheads of RIC

While RIC does not affect the Initial execution at all, it in-
troduces additional computation in the extraction phase and
the memory overhead of ICRecord in the Reuse execution.
The execution time overhead of RIC’s additional operations
in the Reuse execution is negligible.

For our workloads, the extraction phase takes between 6
and 30 ms, with an average of 13 ms. However, it is not on
the critical path, as it is executed in the background after the
Initial run. Also, the current implementation of the extraction
phase is naive and can be optimized.

RIC’s memory overhead due to ICRecord in the Reuse
execution ranges from 11 to 118 KB, with an average of
39 KB. For comparison, the heap usage of our libraries in
the Conventional configuration is between 2.6 and 5.6 MB,
with an average of 3.7 MB. Thus, RIC’s memory overhead is
minimal, as it accounts for only about 1% on average.

8 Discussion

In this section, we place RIC in the context of other related
efforts to speed-up scripting language programs.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

8.1 Reducing JavaScript Startup Overhead

Since there is no standard bytecode for JavaScript and every
JavaScript compiler generates code differently, a JavaScript
program is delivered in source code format. This means that,
before execution can start, the program must be parsed and
compiled. This can take about 30% of the total execution time
in real-world websites [30].

To reduce this overhead, after a program has executed,
current browsers cache its bytecode for subsequent execu-
tions. This is possible because, within a given implementa-
tion, parsing source code to its internal bytecode representa-
tion is deterministic. This technique relies on some caching
APIs provided by JavaScript implementations. In particular,
Google’s V8 JavaScript engine provides APIs to enable host
systems (e.g., web browsers) to cache the bytecode result for
frequently executed JavaScript files [5]. Previously, only a
limited subset of the source code’s parsing result could be
cached. However, recent improvements [7] have allowed the
majority of the bytecode results to be reused across execu-
tions.

In the past, compilers would generate and keep the byte-
code of the entire JavaScript program, in what is called Eager
compilation. However, since only a small fraction of the
program is usually executed, eager compilation is undesir-
able [26]. It increases memory pressure by keeping code
objects for functions that are ultimately never executed.
Hence, every major JavaScript compiler currently imple-
ments Lazy compilation. The idea is to generate and keep
bytecode for only some parts of the program. Specifically,
current browsers keep bytecode for the parts of the program
that have been executed in a previous execution. This is rea-
sonable since, typically, only a fraction of the functions are
executed [26], and they often are the same across runs. We
use this approach by default in all of our experiments.

8.2 Reusing Compilation Efforts across Executions

In programming languages other than JavaScript, there are
a few advanced techniques that reuse compilation results
across executions, reducing the time taken by re-executions.
Most notably, HHVM [1, 25] has pioneered such efforts in
PHP. HHVM is a region-based JIT compiler that uses a com-
bination of profiling and on-stack replacement [16] to ag-
gressively optimize a very long trace with techniques like
type specialization and IC. Furthermore, it enables the reuse
of the optimized traces across multiple web requests. Hence,
HHVM reuses JITed code across runs.

The full potential of HHVM is achieved when running
programs written in Hack, which is a dialect of PHP. One of
the features not supported in Hack is the ability to add or
remove properties to an object dynamically. Such restriction
makes it possible to know all object type information ahead
of execution. This in turn simplifies code generation for
object access sites, and enhances the reuse of IC information

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

across executions. Still, Hack does support dynamic method
dispatch, and HHVM optimizes it with IC and reuses this
information across executions.

When running programs written in the original PHP lan-
guage, HHVM does support dynamic properties. However, it
relies on expensive hash table lookups every time a dynamic
property is read or written [32]. In JavaScript, every prop-
erty is a dynamic property, and it would be prohibitively
expensive to use a hash table lookup like HHVM for every
object access.

For Java, in the context of the Android runtime, ShareJIT
by Xu et al. [31] proposes a global code cache for JIT com-
pilers that can share optimized code across multiple applica-
tions and multiple processes. ShareJIT constrains the level
of context-specific optimization (e.g., the scope of inlining)
to make it feasible to share optimized code between execu-
tions. Also, in the context of data-parallel systems based on
the Java Virtual Machine (JVM), Lion et al. [21] propose a
technique to reuse a pool of JVMs across multiple applica-
tions to avoid startup overhead such as class loading and
bytecode interpretation. Java does have dynamic method
dispatch, and a VM like ShareJIT optimizes it with IC and
reuses IC information across executions. However, similar to
Hack, Java does not support dynamic properties. RIC mainly
focuses on the overhead stemming from supporting dynamic
properties.

9 Related Work

Ahn et al. [2] propose a modified type system that decouples
the prototype pointer from hidden classes, and enables the
hidden class and IC information to be reused when refresh-
ing the same website. Its applicability, however, is somewhat
limited, as it lacks a mechanism to make the information per-
sistent, and improves the performance only under specific
conditions (e.g., reloading the same website before garbage
collection and without restarting the browser). In addition,
changing the hidden class structure may hurt other optimiza-
tion techniques, which require the stronger type guarantee
provided by the prototype pointer. Our proposal is more
generally applicable and does not interfere with other opti-
mization techniques, as it does not change the hidden class
structure.

Oh and Moon [24] propose a snapshot technique to ac-
celerate JavaScript initialization for mobile applications. V8
also has a similar API to create a custom startup snapshot [6].
Such approaches take a snapshot of the heap after the ini-
tialization of JavaScript frameworks and libraries. When
the same application is invoked later, the runtime restores
the objects from the snapshot to the heap, instead of recre-
ating them by executing JavaScript code for initialization.
While the snapshot technique may greatly reduce the startup
time by completely avoiding JavaScript initialization, it has

Jiho Choi, Thomas Shull, and Josep Torrellas

several limitations. First, it is too rigid for different appli-
cations to share information. Given two applications that
use the same JavaScript library, a snapshot is application-
specific, and each application has to create its own snapshot.
In contrast, in RIC, the information is maintained for each
JavaScript file. Therefore, the IC information for a library
can be shared by different applications. Second, the snapshot
technique can be incorrect if the initialization involves any
non-deterministic behavior, such as the use of the date func-
tion or I/O operations. Again, in RIC, the initialization code
is still fully executed, but is accelerated with the hints from
the previous execution. It produces correct results even if
the initialization has non-deterministic behavior.

There are some server-side techniques to reduce page load
time [14, 20]. Kedlaya et al. [20] propose server-side type
profiling to optimize client-side JavaScript engines. They
use server-side profiling to identify functions with dynamic
behavior that are frequently deoptimized and waste com-
puting power. Then, they mark such functions so that the
client-side JavaScript engine does not attempt to optimize
them. Compared to our proposal, their technique conveys
its information as source code comments, and is orthogo-
nal to our approach. Google’s PageSpeed [14] is an open-
source Apache HTTP Server module which automatically
applies best practices to website source code, including CSS,
JavaScript, and images. It has more than 40 available opti-
mization techniques, including CSS and JavaScript concate-
nation, inlining, image optimization, and resizing. PageSpeed
can be used to complement our approach to reduce page load
time.

10 Conclusion

In this paper, we reduced the startup time of JavaScript pro-
grams by enhancing the reuse of compilation and optimiza-
tion information across different executions. We call our
scheme Reusable Inline Caching (RIC). RIC is based on two
observations: (i) a hidden class created in an object access
site is often later encountered in multiple other object ac-
cess sites, creating an IC miss in each of these sites, and (ii)
the majority of handler routines are context-independent.
RIC uses these observations to extract context-independent
information from the IC and reuse it in subsequent runs.
As a result, RIC minimizes the number of IC misses, which
reduces the startup time of the program. We integrated RIC
into the state-of-the-art Google V8 JavaScript engine and
measured its impact on the initialization time of popular
JavaScript libraries. On average per library, RIC reduced the
instruction count by 15%, and the execution time by 17%.

Acknowledgments

This work was funded by NSF under grant NSF CCF 15-27223.
We thank Martin Maas for his extensive feedback.

Reusable Inline Caching for JavaScript Performance PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

References [20] Madhukar N. Kedlaya, Behnam Robatmili, and Ben Hardekopf. 2015.
[1] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Svlsr ver-side Type.P rofiling for Optimizing Client-side J: a.vaScript En-
Paroski, Brett Simmers, Edwin Smith, and Owen Yamauchi. 2014. The gines. In Proceedings of the 11th Symposium on Dynamic Languages
Hiphop Virtual Machine. In Proceedings of the 2014 ACM International (DLS 2015). ACM, New York, NY, USA, 140-153. https://doi.org/10.
Conference on Object Oriented Programming, Systems, Languages & 1145/2816707.2816719
Applications (OOPSLA *14). ACM, New York, NY, USA, 777-790. https: [21] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski,
//doi.org/10.1145/2714064.2660199 and Ding Yuan. 2016. Don’t Get Caught in the Cold, Warm-up Your
[2] Wonsun Ahn, Jiho Choi, Thomas Shull, Maria J. Garzaran, and Josep JVM: Understand and Eliminate JVM Wa.rm—up Overhe‘ad in Data-
Torrellas. 2014. Improving JavaScript Performance by Deconstructing Parallel Systems. In 12th USENIX Symposium on Operating Systems

the Type System. In Proceedings of the 35th ACM SIGPLAN Conference Design and Implementation (OSDI ’16). USENIX Association, Savannah,

on Programming Language Design and Implementation (PLDI '14). ACM, 8}?513(83_401(,).kR bert Cohn. Robert Muth. Harish Patil. Artur Kl
New York, NY, USA, 496-507. https://doi.org/10.1145/2594291.2594332 [22] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

[3] Akamai Technologies. 2014. Performance Matters: 9 Key Consumer Geoff Lowney, Ste\'rer} Wallace, Yijay Janapa Reddi, .and Kim Hazel—
wood. 2005. Pin: Building Customized Program Analysis Tools with Dy-

Insights.
(4] Anggular]S 2019. https:/angularjs.org/ namic Instrumentation. In Proceedings of the ACM SIGPLAN Conference
[5] Chromium Blog. 2015. New JavaScript techniques for on Programming Language Design and Implementation (PLDI '05). ACM,
rapid page loads https://blog.chromium.org/2015/03/ New York, NY, USA, 190-200. https://doi.org/10.1145/1065010.1065034

[23] Bryan McQuade, Doantam Phan, and Mona Vajihollahi. 2013. Instant
Mobile Websites: Techniques and Best Practices. Google I/0 *13.

[24] JinSeok Oh and Soo-Mook Moon. 2015. Snapshot-based Loading-
time Acceleration for Web Applications. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO ’15). IEEE Computer Society, Washington, DC,
USA, 179-189. https://doi.org/10.1109/CG0.2015.7054198

[25] Guilherme Ottoni. 2018. HHVM JIT: A Profile-guided, Region-based
Compiler for PHP and Hack. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2018). ACM, New York, NY, USA, 151-165. https:
//doi.org/10.1145/3192366.3192374

[26] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn.
2010. JSMeter: Comparing the Behavior of JavaScript Benchmarks
with Real Web Applications. In Proceedings of the USENIX Conference
on Web Application Development (WebApps’10). USENIX Association,
Berkeley, CA, USA, 3-3.

[27] React. 2019. https://facebook.github.io/react/

[28] Carroll Rheem. 2010. Consumer Response to Travel Site Perfor-
mance. https://www.phocuswright.com/Free-Travel-Research/
Consumer-Response-to-Travel-Site-Performance. PhoCusWright.

[29] Underscore. 2018. http://underscorejs.org/

[30] Toon Verwaest and Camillo Bruni. 2016. Real-world JavaScript
Performance. https://docs.google.com/presentation/d/
14WZkWbkvtmZDEIBYP5H1GrbC9H-W3n)Sg3nvpHwfG5U/
edit?usp=sharing

[31] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and Handong
Ye. 2018. ShareJIT: JIT Code Cache Sharing Across Processes and
Its Practical Implementation. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA ’18). ACM, New York, NY, USA, 124:1-124:23.
https://doi.org/10.1145/3276494

[32] Owen Yamauchi. 2015. Hack and HHVM: Programming Productivity
Without Breaking Things (1st ed.). O’Reilly Media, Inc.

[33] Zona Research. 1999. The Economic Impacts of Unacceptable Web-Site
Download Speeds. www.webperf.net/info/wp_downloadspeed.pdf

new-javascript-techniques-for-rapid.html

[6] V8 Blog. 2015. Custom startup snapshots. https://v8.dev/blog/
custom-startup-snapshots

[7] V8 Blog. 2018. Improved code caching. https://v8.dev/blog/
improved-code-caching

[8] V8 Blog. 2019. V8 JavaScript Engine. https://v8.dev/

[9] Caman]S. 2016. http://camanjs.com/

[10] Craig Chambers, David Ungar, and Elgin Lee. 1989. An Efficient Im-
plementation of SELF, a Dynamically-typed Object-oriented Language
Based on Prototypes. In Conference Proceedings on Object-oriented Pro-
gramming Systems, Languages and Applications (OOPSLA ’89). ACM,
New York, NY, USA, 49-70. https://doi.org/10.1145/74877.74884

[11] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implemen-
tation of the Smalltalk-80 System. In Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL °84). ACM, New York, NY, USA, 297-302. https://doi.org/10.
1145/800017.800542

[12] MDN Web Docs. 2019. Standard built-in objects. https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

[13] Google. 2017. Octane Benchmark. https://developers.google.com/
octane/

[14] Google. 2018. PageSpeed Module. https://developers.google.com/
speed/pagespeed/module/

[15] Handlebars. 2019. http://handlebarsjs.com/

[16] Urs Holzle, Craig Chambers, and David Ungar. 1992. Debugging
Optimized Code with Dynamic Deoptimization. In Proceedings of the
ACM SIGPLAN 1992 Conference on Programming Language Design and
Implementation (PLDI *92). ACM, New York, NY, USA, 32-43. https:
//doi.org/10.1145/143095.143114

[17] jQuery. 2019. http://jquery.com

[18] JSFeat. 2018. http://inspirit.github.io/jsfeat/

[19] Jupiter Research. 2006. Retail web site performance: Consumer reac-
tion to a poor online shopping experience.

https://doi.org/10.1145/2714064.2660199
https://doi.org/10.1145/2714064.2660199
https://doi.org/10.1145/2594291.2594332
https://angularjs.org/
https://blog.chromium.org/2015/03/new-javascript-techniques-for-rapid.html
https://blog.chromium.org/2015/03/new-javascript-techniques-for-rapid.html
https://v8.dev/blog/custom-startup-snapshots
https://v8.dev/blog/custom-startup-snapshots
https://v8.dev/blog/improved-code-caching
https://v8.dev/blog/improved-code-caching
https://v8.dev/
http://camanjs.com/
https://doi.org/10.1145/74877.74884
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developers.google.com/octane/
https://developers.google.com/octane/
https://developers.google.com/speed/pagespeed/module/
https://developers.google.com/speed/pagespeed/module/
http://handlebarsjs.com/
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/143095.143114
http://jquery.com
http://inspirit.github.io/jsfeat/
https://doi.org/10.1145/2816707.2816719
https://doi.org/10.1145/2816707.2816719
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/CGO.2015.7054198
https://doi.org/10.1145/3192366.3192374
https://doi.org/10.1145/3192366.3192374
https://facebook.github.io/react/
https://www.phocuswright.com/Free-Travel-Research/Consumer-Response-to-Travel-Site-Performance.
https://www.phocuswright.com/Free-Travel-Research/Consumer-Response-to-Travel-Site-Performance.
http://underscorejs.org/
https://docs.google.com/presentation/d/14WZkWbkvtmZDEIBYP5H1GrbC9H-W3nJSg3nvpHwfG5U/edit?usp=sharing
https://docs.google.com/presentation/d/14WZkWbkvtmZDEIBYP5H1GrbC9H-W3nJSg3nvpHwfG5U/edit?usp=sharing
https://docs.google.com/presentation/d/14WZkWbkvtmZDEIBYP5H1GrbC9H-W3nJSg3nvpHwfG5U/edit?usp=sharing
https://doi.org/10.1145/3276494
www.webperf.net/info/wp_downloadspeed.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 JavaScript Execution
	2.2 Hidden Classes
	2.3 Inline Caching
	2.4 Putting It All Together

	3 Characterizing Inline Caching
	3.1 Overhead of IC Miss Handling
	3.2 Context-Dependence of IC
	3.3 Opportunities for Reuse

	4 Reusable Inline Caching
	5 Implementation
	5.1 ICRecord Layout
	5.2 RIC Operation
	5.3 Example of RIC

	6 Experimental Setup
	7 Evaluation
	7.1 Characterizing IC Usage
	7.2 Initialization Performance Improvements
	7.3 Overheads of RIC

	8 Discussion
	8.1 Reducing JavaScript Startup Overhead
	8.2 Reusing Compilation Efforts across Executions

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

