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Abstract — In this paper, an optimized complex nonnegative tensor factor 2D deconvolution (CNTF2D) is 

proposed to separate the sources that have been mixed in an underdetermined reverberant environment. Unlike 

conventional methods, the proposed model decomposition is performed directly on the statistics in the form of 

spectral covariance matrix instead of the data itself (i.e. the mixed signal). For faster convergence the model is 

adapted under the hybrid framework of the generalized expectation maximization and multiplicative update 

algorithms. This paper also proposes a solution to the issue of optimizing the model order i.e., number of 

components and convolutive parameters in the CNTF2D model. To this end, a latent-observation model based 

on Gamma-Exponential process is developed. In addition, the proposed Gamma-Exponential process can be 

used to initialize the parameterization of the CNTF2D. The proposed algorithm encodes a set of variable 

sparsity parameters derived from the Gibbs distribution. This permits a stable update and optimizes the 

CNTF2D with the correct degree of sparseness in the time-frequency domain. Experimental results on the 

underdetermined reverberant mixing environment have shown that the proposed algorithm is effective at 

separating the mixture with an average signal-to-distortion ratio of 2.5dB.  

 

Index Terms — blind source separation, audio processing and analysis, spectral covariance, matrix 

factorization 
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1. INTRODUCTION 

In source separation it is more realistic to consider the effect of the surrounding environment such as reflection 

of the sources. To address this issue, researchers have considered convolutive mixtures [1-7] instead of the 

instantaneous mixture [8-11]. However, the convolutive mixture is modeled under the narrowband 

approximation [4] that is not valid when the mixing filter length is greater than the Short-Time Fourier 

Transform (STFT) windows length, which is the case of the reverberant environment. Duong et al. [4] address 

this problem by considering the full rank spatial covariance matrix instead of the rank one. Arberet et al. [12] 

show that under the oracle initialization (where all the parameters are known) better results can be achieved if 

the nonnegative matrix factorization (NMF) is considered as a source variance as done by Duong et al. [4]. The 

NMF is too simplistic and does not efficiently model more complex sources such as polyphonic music. In 

addition, it is not always possible to adopt the oracle initialization approach. Furthermore, most NMF-based 

methods do not utilize the phase information of the channel. It was shown in [13] that incorporating the phase 

information into the NMF has the potential to increase the separation performance. In this paper, we propose a 

full rank Complex Nonnegative Tensor Factor 2D Deconvolution (CNTF2D) to model the spectral covariance 

matrix of the source image, taking into account the phase information and the model of the spatial covariance 

matrix. The Nonnegative Tensor Factorization (NTF) [14-17] has been previously shown to benefit from the 

complementary information in stereo channels. Contrary to NTF methods, the proposed CNTF2D will be 

optimized using the Generalized Expectation-Maximization and Multiplicative Update (GEM-MU) algorithm. 

It provides a probabilistic platform for joint estimation of the sources and the parameters as well as preserving 

the non-negativity constraints of the model. In addition, the GEM-MU algorithm accelerates the convergence 

speed of the parameters update. Concurrently, we allow variable sparsity to be encoded into the CNTF2D 

instead of using some heuristics approaches to fix them to a constant value. This variable sparsity will be 

developed based on the Gibbs distribution framework and optimized under the Itakura-Saito divergence. This 

will be contrasted with the uniform sparsity which assigns a fixed sparsity over all the temporal code of the 

factorization model [18]. Since acoustic sources such as speech change dynamically over time, uniform 
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sparsity will invariably lead to either over-sparseness (resulting in too many temporal code set to zero), or 

under-sparseness (too many ineffective temporal code). The proposed variable sparsity relieves this problem 

by optimizing the sparsity for each individual temporal code. 

Furthermore, the issues of determining the required number of parameters in the model, that is, the 

number of components and convolutive parameters in the CNTF2D, as well as to initialize these parameters 

remain as challenges. A probabilistic method has been developed to meet these challenges. The Itakura-Saito 

(IS) divergence will be considered due to its scale invariant property [19]. Compared with the Least Square 

(LS) distance and Kullback-Leibler (KL) divergence cost functions, IS divergence deals with both low and 

high energy components with equal emphasis. Since both speech and music signals have large magnitude 

dynamic ranges, IS divergence provides a faithful measure between the observed data and the output generated 

from the adapted CNTF2D model. Furthermore, as each source has its own characteristics regarding the 

spectral and temporal features; such as the drum that has a high pitch with low temporal features and the 

opposite thing for the piano; then different convolutive parameters with different number of components are 

needed for each source. This variation in the number of components and convolutive parameters will be 

optimized using the variational Bayesian inference procedure. In addition, the proposed inference procedure 

will be used to initialize the CNTF2D model.  

The novelty of this paper can be summarized as follows: Firstly, a complex NTF2D (CNTF2D) 

Gaussian model with full-rank spatial covariance matrix is developed to model the spectral covariance matrix 

of the source images in the STFT domain. Secondly, the parameters of the model are adapted using the hybrid 

GEM-MU algorithm for faster convergence and ensuring the preservation of non-negativity of the parameters. 

Thirdly, a variational Bayesian inference method is developed to estimate the number of components and 

number of convolutive parameters of the CNTF2D. Finally, to the best of authors’ knowledge, the present 

work is the first to propose and investigate a CNTF2D for solving the underdetermined convolutive mixture 

separation instead of instantaneous mixture [20-24]. Furthermore, the proposed method is different from [21] 

that is also based on NMF2D, in that it considers the reverberations of the surrounding environment, it 
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considers both the temporal and pitch change of the sources through the NTF2D, and finally it considers the 

phase of the sources. The high level presentation of the proposed algorithm is shown in Fig. 1. 

This paper is organized as follows: Section 2 is dedicated to the formulation of problem. The derivation of 

variable sparsity and the development of GEM-MU algorithm to work with the proposed CNTF2D model is 

presented in Section 3. In Section 4, the issue of model order estimation of the CNTF2D is considered. The 

Gamma-Exponential latent-observation model is used as a platform to develop a probabilistic framework for 

estimating the optimum model order for CNTF2D. Experimental results using the SiSEC’18 real datasets and 

comparison with a recent method will be presented in Section 5. Finally, Section 6 draws the conclusions. 

2. PROBLEM FORMULATION 

Let 𝑥𝑖(𝑡) be the observed multichannel signal that can be expressed in time domain as 

𝑥𝑖(𝑡) = ∑ 𝑐𝑖,𝑗(𝑡)

𝐽

𝑗=1

+ 𝑏𝑖(𝑡), 𝑖 = 1,2, … 𝐼 ,   𝑡 = 1, … , 𝑇.                                  (1) 

where 𝑥𝑖(𝑡)  ∈ ℝ is the receiving signal from the i-th microphone (or channel), 𝑡 and 𝑇 are the time index and 

number of samples, respectively,  𝑐𝑖,𝑗(𝑡) ∈ ℝ  is the spatial image of the j-th source signal from the i-th 

microphone, 𝐽 is the number of sources, I is the number of microphones, and 𝑏𝑖(𝑡) ∈ ℝ is some additive noise. 

The spatial image of the source 𝑐𝑖,𝑗(𝑡) can be expressed as  

𝑐𝑖,𝑗(𝑡) = ∑ 𝑎𝑖,𝑗(𝑙)𝑠𝑗(𝑡 − 𝑙)

𝐿−1

𝑙=0

.                                                                (2) 

where 𝑎𝑖,𝑗(𝑙) ∈ ℝ  is the finite-impulse response of some (causal) filter, 𝐿 is the filter length, and 𝑠𝑗(𝑡) ∈ ℝ is 

the j-th original source signal. By substituting eqn. (2) into eqn. (1), and assuming that the mixing channel is 

time-invariant, the STFT of (1) becomes 

𝒙𝑓,𝑛 = ∑ 𝒄𝑗,𝑓,𝑛 + 𝒃𝑓,𝑛

𝐽

𝑗=1

.                                                                     (3) 
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where 𝒙𝑓,𝑛 = [𝑥1,𝑓,𝑛 ⋯ 𝑥𝐼,𝑓,𝑛]𝐻, and 𝑥𝑖,𝑓,𝑛, 𝑐𝑖,𝑗,𝑓,𝑛, 𝑏𝑖,𝑓,𝑛 are the complex-valued STFT of 𝑥𝑖(𝑡), 𝑐𝑖,𝑗(𝑡), 

and 𝑏𝑖(𝑡), respectively. The term 𝑓 = 1, 2, … , 𝐹 is the frequency bin index, and 𝑛 = 1, 2, … , 𝑁 is the time 

frame index in the STFT. The spectral covariance matrix of 𝑐𝑖,𝑗,𝑓,𝑛 (the complex-valued STFT of 𝑐𝑖,𝑗(𝑡)) 

defined as 𝜮𝑗,𝑓,𝑛
(𝑐)

= 𝐸[𝒄𝑗,𝑓,𝑛𝒄𝑗,𝑓,𝑛
𝐻 ] where 𝐸[∙] is the expectation can be expressed as  

𝜮𝑗,𝑓,𝑛
(𝑐)

= 𝜮𝑗,𝑓
(𝑎)

 𝑣𝑗,𝑓,𝑛.                                                                     (4) 

where 𝜮𝑗,𝑓𝑛
(𝑐)

∈ ℂ𝐼×𝐼, 𝜮𝑗,𝑓
(𝑎)

∈ ℂ𝐼×𝐼 is the time-invariant spatial covariance matrix of the channel associated with 

the j-th source, 𝑣𝑗,𝑓,𝑛 ∈ ℝ is the j-th source variance in the spectrogram. The scalar representation of 𝜮𝑗,𝑓,𝑛
(𝑐)

 is 

given by 𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

 is the (r,s)
th
 element of the 𝐼 × 𝐼 matrix 𝜮𝑗,𝑓,𝑛

(𝑐)
. Similarly, 𝛴𝑟,𝑠,𝑗,𝑓

(𝑎)
 is the (r,s)

th
 element of the 

𝐼 × 𝐼 matrix 𝜮𝑗,𝑓
(𝑎)

. For fixed 𝑟, 𝑠 and 𝑗, it is noted that 

(i) 𝛴𝑟,𝑠,𝑗,𝑓
(𝑎)

 is a complex-valued scalar which can be expressed in terms of magnitude and phase: 

𝛴𝑟,𝑠,𝑗,𝑓
(𝑎)

= |𝛴𝑟,𝑠,𝑗,𝑓
(𝑎)

 | 𝑒√−1 𝛼𝑓
𝑗,𝑟,𝑠

 .                                                        (5) 

where √−1 is adopted to represent the imaginary part. 

(ii) 𝑣𝑗,𝑓,𝑛, is a real-valued scalar which represents the source power spectrogram. Various models exist but 

for speech and audio signals, the NMF2D [24] is adopted: 

𝑣𝑗,𝑓,𝑛 = ∑ ∑ ∑ 𝑔𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥−1

𝜙=0

𝜏𝑚𝑎𝑥−1

𝜏=0

𝐾𝑗

𝑘=1

.                                               (6) 

where 𝐾𝑗 is the number of components or frequency basis assigned to the j-th source, 𝜏𝑚𝑎𝑥 and 𝜙𝑚𝑎𝑥 

refer to the number of temporal and frequency shifts in the model, 𝑔𝑓,𝑘
𝜏,𝑗

 represents the k-th spectral basis 

of the j-th source, and ℎ𝑘,𝑛
𝜙,𝑗

 represents the k-th temporal code for each spectral basis element of the j-th 

source, for 𝑓 = 1, … , 𝐹, 𝑛 = 1, … , 𝑁, and 𝑗 = 1, … , 𝐽. 
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Using eqns. (5) and (6) in (4), we can write the latter as 

𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

= ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

 ℎ𝑘,𝑛−𝜏
𝜙,𝑗

 𝑒√−1 𝛼𝑓
𝑗,𝑟,𝑠

 .

𝜙𝑚𝑎𝑥−1

𝜙=0

𝜏𝑚𝑎𝑥−1

𝜏=0

𝐾𝑗

𝑘=1

                                                    (7𝑎)  

where 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

≜ |𝛴𝑟,𝑠,𝑗,𝑓
(𝑎)

| 𝑔𝑓,𝑘
𝜏,𝑗

 is the combined channel-source spectral basis. For the case where the channels 

are time-varying, 𝛴𝑗,𝑓
(𝑎)

 has a dependency on time frame 𝑛 and this representation can be absorbed into the 

temporal code and phase spectrum. Hence (7a) can be generalized to 

𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

= ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

 ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

 𝑒√−1 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

.

𝜙𝑚𝑎𝑥−1

𝜙=0

𝜏𝑚𝑎𝑥−1

𝜏=0

𝐾𝑗

𝑘=1

                                          (7𝑏) 

where 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

 is equivalent to the time-varying phase spectrum [25]. The dimension of the variables are as 

follows:  𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

∈ ℂ𝐹×𝑁×𝐽×𝐼×𝐼 , 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

∈ ℝ𝐹×𝐾×𝜏𝑚𝑎𝑥×𝐼×𝐼 ,  ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

∈ ℝ𝐾×𝑁×𝜙𝑚𝑎𝑥×𝐼×𝐼  and 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

∈

ℝ𝐹×𝑁×𝐽×𝐼×𝐼. The spectral covariance matrix of 𝑥𝑓,𝑛 can be expressed as 𝜮𝑓,𝑛
(𝑥)

= 𝐸[𝒙𝑓,𝑛𝒙𝑓,𝑛
𝐻 ] = ∑ 𝜮𝑗,𝑓,𝑛

(𝑐)𝐽
𝑗=1 +

𝜮𝑓
(𝑏)

 where 𝜮𝑓
(𝑏)

 is the time invariant noise covariance matrix. Its scalar form can be expressed as 

𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

= ∑ 𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

𝐽

𝑗=1

+ 𝛴𝑟,𝑠,𝑓
(𝑏)

  

= ∑ ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

 ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

 𝑒√−1 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

𝜙𝑚𝑎𝑥−1

𝜙=0

𝜏𝑚𝑎𝑥−1

𝜏=0

𝐾𝑗

𝑘=1

𝐽

𝑗=1

+ 𝛴𝑟,𝑠,𝑓
(𝑏)

.               (8) 

Most conventional source separation methods work on the spectrogram of the data samples; however, the 

proposed method performs complex matrix factorization on the spectral covariance matrices where the latter 

has to be constructed by computing the first and second order statistics of the data spectrogram as shown in 

Section 3.2. Thus, a point of departure between the proposed method and other conventional algorithms is that 

the former works directly on the statistics (i.e., spectral covariance matrices) instead on the data samples (i.e., 

the time-domain mixture signal or its spectrogram) [21, 24]. 
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3. PROPOSED ESTIMATION ALGORITHM 

In this section, the source model and the Generalized Expectation-Maximization with Multiplicative Update 

(GEM-MU) algorithm will be developed. The GEM-MU algorithm is formulated in two steps, namely, E-step 

and M-step. To pave the way forward for the estimation of the parameters, a graphical model of the proposed 

CNTF2D has been constructed. The performance of matrix factorization depends considerably on the sparsity 

of the solution. Thus a sub-section is dedicated on the development of adaptive estimation of the sparsity for 

the temporal codes. Finally, it is shown how the separated image sources are reconstructed using the minimum 

mean square error estimate.  

 

3.1. Source model 

The spatial image of the sources can be modeled as realization of zero-mean proper complex distribution 

𝒄𝑗,𝑓,𝑛~𝒩𝑐 (0, 𝜮𝑗,𝑓,𝑛
(𝑐)

).                                                                       (9) 

where 𝒩𝑐(𝜇, Σ) is proper complex Gaussian distribution [26] and its probability density function (pdf) can be 

expressed as 

𝒩𝑐 (0, 𝜮𝑗,𝑓,𝑛
(𝑐)

) ≜
1

𝑑𝑒𝑡 (𝜋𝜮𝑗,𝑓,𝑛
(𝑐)

)
𝑒

−(𝒄𝑗,𝑓,𝑛
𝐻 𝜮𝑗,𝑓,𝑛

(𝑐)−1
𝒄𝑗,𝑓,𝑛)

.                                           (10) 

By substituting eqn. (7) into eqn. (9) we have  

𝒄𝑗,𝑓,𝑛~𝒩𝑐 (𝟎, [ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

 ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

 𝑒√−1 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

𝑘,𝜏,𝜙

]

𝑟,𝑠

).                                            (11) 

which is a zero mean with complex covariance matrix whose (𝑟, 𝑠)𝑡ℎ  element is given by 

∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

 ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

 𝑒√−1 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

𝑘,𝜏,𝜙  The noise 𝒃𝑓,𝑛  in eqn. (3) is assumed to be time invariant, stationary and 

spatially uncorrelated, i.e. 

𝒃𝑓,𝑛~𝒩𝑐 (0, 𝜮𝑓
(𝑏)

 
).                                                                       (12) 
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and its distribution can be expressed as 

𝒩𝑐 (0, 𝜮𝑓
(𝒃)

 
) ≜

1

𝑑𝑒𝑡 (𝜋𝜮𝑓
(𝒃)

 
)

𝑒
−(𝒃𝑓,𝑛

𝐻 𝜮𝑓
(𝒃)−1

𝒃𝑓,𝑛)
.                                          (13) 

 

3.2. Generalized Expectation-Maximization with Multiplicative Update (GEM-MU) algorithm 

The source images, noise and their spectral covariances will be estimated using the GEM algorithm while 

𝑊 = {𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

}, 𝐻 = { ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

}, and 𝛼 = {𝛼𝑓,𝑛
𝑗,𝑟,𝑠

} will be estimated in the M step using the MU algorithm. The 

model parameters are 𝛩 = {𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼}, with observations 𝑋 = {𝒙𝑓,𝑛}. 𝛬 = {𝜆𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

}  is a tensor that 

contains the sparsity terms, that are added to the cost function as a constraint in order to ensure that only a few 

units (out of a large population) in the temporal code will be active at the same time [27]. We define 

𝐶 = {𝒄𝑗,𝑓,𝑛} and 𝛴(𝑏) = {𝜮𝑓
(𝒃)

} according to (11) and (13), respectively. To pave the way forward for the 

estimation of the parameters, a graphical model of the proposed CNTF2D has been constructed and is shown in 

Fig. 2.The nodes represent random variables (shaded node refers to observed variable and unshaded node 

refers to latent variable) and dots represent parameters. Firstly, we determine the posterior distribution of 

𝐶, 𝑊, 𝐻: 

𝑃(𝐶, 𝑊, 𝐻|𝑋, 𝛴(𝑏), 𝛬, 𝛼 ) =
𝑃(𝑋|𝐶, 𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼)𝑃(𝐶, 𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼)

𝑃(𝑋, 𝛴(𝑏), 𝛬, 𝛼)
. 

From the graphical model, it can be deduced that 

(i) 𝑃(𝑋|𝐶, 𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼) = 𝑃(𝑋|𝐶, 𝛩)  with 𝛩 = {𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼} 

(ii) 𝑃(𝐶, 𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼) = 𝑃(𝐶| 𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼)𝑃(𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼)  where 𝑃(𝐶| 𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼) =

𝑃(𝐶| 𝑊, 𝐻, 𝛼) and 𝑃(𝑊, 𝐻, 𝛴(𝑏), 𝛬, 𝛼) = 𝑃(𝑊, 𝐻|𝛬)𝑃(𝛴(𝑏), 𝛬, 𝛼) 

(iii) 𝑃(𝑋, 𝛴(𝑏), 𝛬, 𝛼) = 𝑃(𝑋|𝛴(𝑏), 𝛬, 𝛼)𝑃(𝛴(𝑏), 𝛬, 𝛼) 

Therefore,  
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𝑃(𝐶, 𝑊, 𝐻|𝑋, 𝛴(𝑏), 𝛬, 𝛼 ) =
𝑃(𝑋|𝐶, 𝛩)𝑃(𝐶| 𝑊, 𝐻, 𝛼)𝑃(𝑊, 𝐻|𝛬)𝑃(𝛴(𝑏), 𝛬, 𝛼)

𝑃(𝑋|𝛴(𝑏), 𝛬, 𝛼)𝑃(𝛴(𝑏), 𝛬, 𝛼)
 

=
𝑃(𝑋|𝐶, 𝛩)𝑃(𝐶| 𝑊, 𝐻, 𝛼)𝑃(𝑊, 𝐻|𝛬)

𝑃(𝑋|𝛴(𝑏), 𝛬, 𝛼)
.                                          (14) 

From the graphical model, it can also be further deduced that 𝑃(𝑋|𝐶, 𝛩) = 𝑃(𝑋|𝐶, 𝛴(𝑏)) and 𝑃(𝑊, 𝐻|𝛬) =

𝑃(𝑊)𝑃( 𝐻|𝛬). From eqn. (14), the negative log-posterior is given by 

− log 𝑃(𝐶, 𝑊, 𝐻|𝑋, 𝛴(𝑏), 𝛬, 𝛼 ) = −log 𝑃(𝑋|𝐶, 𝛩) − log 𝑃(𝐶| 𝑊, 𝐻, 𝛼) − log 𝑃( 𝑊, 𝐻|𝛬)  + 𝑐𝑜𝑛𝑠𝑡.        (15) 

where − log 𝑃(𝑋|𝛴(𝑏), 𝛬, 𝛼) is treated as a normalizing constant. In eqn. (15), the first term on the right hand 

side corresponds to the data log-likehood, the second term is the log-likehood of the spatial source images 

given the CNTF2D parameters, and the third term is the log-likehood of the channel-source spectral basis and 

temporal code. One can think that the incorporation of the second and third terms into the data log-likehood 

serve as a form of probabilistic regularization and allows the user to add prior information into the solution. 

The log-posterior probability will be computed by the GEM-MU based variable sparsity CNTF2D in the 

following sections.  

 

3.2.1. E-Step: Conditional expectations of natural statistics 

In the E-step, we determine the conditional expectations of the natural statistics. The log-likelihood in eqn. 

(15) is given by 

log 𝑃(𝑋|𝐶, 𝛩) = ∑ 𝑡𝑟 (𝜮𝑓,𝑛
(𝑥)−1

𝒙𝑓,𝑛𝒙𝑓,𝑛
𝐻 ) + log |𝜋𝜮𝑓,𝑛

(𝑥)
| .

𝑓,𝑛

                                     (16) 

where 𝑡𝑟(. ) refers to the trace operator. The conditional expectation of the natural statistics  𝑹̂𝑗,𝑓,𝑛
(𝑐)

, 𝑹̂𝑓
(𝑏)

, 

𝜮̂𝑗,𝑓,𝑛
(𝑐)

, 𝜮̂𝑓
(𝑏)

, 𝒄̂𝑗,𝑓,𝑛 and 𝒃̂𝑓,𝑛 can be obtained using the complete data likelihood log 𝑃(𝑋, 𝐶|𝛩) as follows: 

𝑹̂𝑗,𝑓,𝑛
(𝑐)

= 𝒄̂𝑗,𝑓,𝑛𝒄̂𝑗,𝑓,𝑛
𝐻 + 𝜮̂𝑗,𝑓,𝑛

(𝑐)
.                                                                        (17) 
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𝜮̂𝑗,𝑓,𝑛
(𝑐)

= (𝑰 − 𝜮𝑗,𝑓,𝑛
(𝑐)

𝜮𝑓,𝑛
(𝑥)−1

) 𝜮𝑗,𝑓,𝑛
(𝑐)

 .                                                             (18) 

𝒄̂𝑗,𝑓,𝑛 = 𝜮𝑗,𝑓,𝑛
(𝑐)

𝜮𝑓,𝑛
(𝑥)−1

𝒙𝑓,𝑛.                                                                             (19) 

         𝑹̂𝑓
(𝑏)

= 𝒃̂𝑓,𝑛𝒃̂𝑓,𝑛
𝐻 + 𝜮̂𝑓

(𝑏)
.                                                                              (20) 

𝜮̂𝑓
(𝑏)

= (𝑰 − 𝜮𝑓
(𝑏)

𝜮𝑓,𝑛
(𝑥)−1

) 𝜮𝑓
(𝑏)

.                                                                  (21) 

𝒃̂𝑓,𝑛 = 𝜮𝑓
(𝑏)

𝜮𝑓,𝑛
(𝑥)−1

𝒙𝑓,𝑛.                                                                               (22) 

The derivation for the above expressions follows from the linear complex Gaussian model of eqn. (3) in the 

STFT domain.  

 

3.2.2. M-Step: Update of parameters  

In the M-step, the parameters of the model are updated based on the conditional expectations obtained from the 

natural statistics in eqns. (17)-(22). The scalar form of 𝑅̂𝑗,𝑓,𝑛
(𝑐)

 can be expressed as follows 𝑅̂𝑟,𝑠,,𝑗,𝑓,𝑛
(𝑐)

=

{𝑅̂𝑗,𝑓,𝑛
(𝑐)

}
𝑟,𝑠

 which is the(𝑟, 𝑠)𝑡ℎ   element of the 𝐼 × 𝐼 matrix 𝑅̂𝑗,𝑓,𝑛
(𝑐)

. The second term in the right hand side of 

(15) can be expressed with IS divergence [15] as 

−log 𝑃(𝐶|𝑊, 𝐻, 𝛼) = ∑ 𝐷𝐼𝑆 (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

| 𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

 ) .

𝑟,𝑠,𝑗,𝑓,𝑛

                                           (23) 

The third term in the right hand side of (15) is the prior information on 𝑊 and 𝐻. An improper prior is assumed 

for 𝑊 and factor-wise normalized to unit length i.e. 𝑝(𝑊) = ∏ 𝛿 (‖𝑾𝑗‖
2

− 1)𝑗  where 𝑾𝑗 = {𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

} is the 

spectral basis that belongs to the j-th source. Each element of 𝐻 has independent decay parameter 𝜆𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

 with 

exponential distribution: 

log 𝑝(𝑊, 𝐻|𝛬) = log ∏ 𝛿 (‖𝑾𝑗‖
2

− 1)

𝑗

+ log (∏ 𝑝(𝐻𝑘
𝑗
|𝛬𝑘

𝑗
)

𝑗,𝑘

)

= ∑ log 𝛿 (‖𝑾𝑗‖
2

− 1)

𝑗

− ∑ (𝜆𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

ℎ𝑘,𝑛

𝜙,𝑗,𝑟,𝑠 − log 𝜆𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

) .

𝑟,𝑠,𝑗,𝑘,𝑛𝜙,

                   (24) 
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Inserting eqns. (16), (23), (24) to (15) yields the following: 

− log 𝑃(𝐶, 𝑊, 𝐻|𝑋, 𝛴(𝑏), 𝛬, 𝛼 )

= − ∑ 𝑡𝑟 (𝜮𝑓,𝑛
(𝑥)−1

𝒙𝑓,𝑛𝒙𝑓,𝑛
𝐻 ) − log |𝜋𝜮𝑓,𝑛

(𝑥)
| 

𝑓,𝑛

+ ∑ (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

𝑟,𝑠,𝑗,𝑘,𝑓,𝑛

𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)−1

 −log (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)−1

) − 1) − ∑ log 𝛿 (‖𝑾𝑗‖
2

− 1)

𝑗

+ ∑ 𝜆𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

ℎ𝑘,𝑛

𝜙,𝑗,𝑟,𝑠

𝑟,𝑠,𝑗,𝑘,𝑛,𝜙

− ∑ log 𝜆𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

𝑟,𝑠,𝑗,𝑘,𝑛,𝜙

.                                                                                   (25) 

The differentiation of eqn. (25) with respect to 𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

,  ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

, and 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

gives the followings: 

𝜕

𝜕𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

log 𝑃(𝐶, 𝑊, 𝐻|𝑋, 𝛴(𝑏), 𝛬, 𝛼 ) 

             = − ∑ 𝑅̂𝑟,𝑠,𝑗,𝑓+𝜙,𝑛
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓+𝜙,𝑛
(𝑐)−2

𝑒
−√−1 𝛼𝑓+𝜙,𝑛

𝑗,𝑟,𝑠

𝑛,𝜙

ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠 + ∑ 𝛴𝑟,𝑠,𝑗,𝑓+𝜙,𝑛
(𝑐)−1

𝑒
−√−1 𝛼𝑓+𝜙,𝑛

𝑗,𝑟,𝑠

𝜙,𝑛

ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠.                   (26) 

Likewise, 

𝜕

𝜕ℎ
𝑘,𝑛

𝜙,𝑗,𝑟,𝑠
log 𝑃(𝐶, 𝑊, 𝐻|𝑋, 𝛴(𝑏), 𝛬, 𝛼 ) 

= − ∑ 𝑅̂𝑟,𝑠,𝑗,𝑓,𝑛+𝜏
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓,𝑛+𝜏
(𝑐)−2

 𝑒
−√−1 𝛼𝑓,𝑛+𝜏

𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠

𝑓𝜏

+ ∑ 𝛴𝑟,𝑠,𝑗,𝑓,𝑛+𝜏
(𝑐)−1

𝑒
−√−1 𝛼𝑓,𝑛+𝜏

𝑗,𝑟,𝑠

 

𝑓𝜏

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
+ 𝜆𝑘,𝑛

𝜙,𝑗,𝑟,𝑠
.     (27) 

Similarly, 

𝜕

𝜕𝛼𝑓,𝑛
𝑗,𝑟,𝑠

log 𝑃(𝐶, 𝑊, 𝐻|𝑋, 𝛴(𝑏), 𝛬, 𝛼 ) 

= −√−1𝑅̂𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)−2

𝑒−√−1 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

∑ 𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠

𝜏,𝜙,𝑘

ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠  + √−1𝛴𝑟,𝑠,𝑗,𝑓,𝑛
(𝑐)−1

𝑒−√−1 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

∑ 𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠

𝜏,𝜙,𝑘

.       (28) 
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Therefore, the MU rules for 𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

,  ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

, and 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

can be respectively formulated as 

𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

← 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

(
∑ 𝑅̂𝑟,𝑠,𝑗,𝑓+𝜙,𝑛

(𝑐)
𝛴𝑟,𝑠,𝑗,𝑓+𝜙,𝑛

(𝑐)−2

𝑒
−√−1 𝛼𝑓+𝜙,𝑛

𝑗,𝑟,𝑠

𝑛,𝜙 ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠

∑ 𝛴𝑟,𝑠,𝑗,𝑓+𝜙,𝑛
(𝑐)−1

𝑒
−√−1 𝛼𝑓+𝜙,𝑛

𝑗,𝑟,𝑠

𝜙,𝑛 ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠

).                               (29) 

ℎ𝑘,𝑛

𝜙,𝑗,𝑟,𝑠
←  ℎ𝑘,𝑛

𝜙,𝑗,𝑟,𝑠
(

∑ 𝑅̂𝑟,𝑠,𝑗,𝑓,𝑛+𝜏
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓,𝑛+𝜏
(𝑐)−2

 𝑒
−√−1 𝛼𝑓,𝑛+𝜏

𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
𝑓𝜏

∑ 𝛴𝑟,𝑠,𝑗,𝑓,𝑛+𝜏
(𝑐)−1

𝑒
−√−1 𝛼𝑓,𝑛+𝜏

𝑗,𝑟,𝑠

 𝑓𝜏 𝑤
𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
+ 𝜆𝑘,𝑛

𝜙,𝑗,𝑟,𝑠
).                               (30) 

𝑒√−1 𝛼𝑓,𝑛
𝑗,𝑟,𝑠

←
𝑅̂𝑟,𝑠,𝑗,𝑓,𝑛

(𝑐)

∑ 𝑤
𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
ℎ

𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠
𝜏,𝜙,𝑘

.                                                                                                   (31) 

In eqn. (29), in order to satisfy the constraint 𝛿 (‖𝑾𝑗‖
2

− 1), each spectral basis is explicitly normalized to unity 

i.e. 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

= 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠 √∑ (𝑤𝑓,𝑘

𝜏,𝑗,𝑟,𝑠
)

2

𝑓,𝜏,𝑘⁄ . 

 

3.2.3. Estimation of variable sparsity using Gibbs distribution 

For the sparsity term, the update is obtained by maximizing the log-posterior as follows: 

𝜆̂ = arg max   
𝜆

log 𝑃(𝐶, 𝑊, 𝐻 |𝑋, 𝛴(𝑏), 𝛬, 𝛼).                                              (32) 

Solving  
𝜕

𝜕𝜆
log 𝑃(𝐶, 𝑊, 𝐻 |𝑋, 𝛴(𝑏), 𝛬, 𝛼) = 0 will lead to 

𝜆̂𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

=
1

 ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

    (or in matrix form  𝛬 = 1 ∙ 𝐻⁄ ).                                     (33) 

where “∙/” represents element-wise division. Since we are seeking a sparse 𝐻, then the above solution (33) will 

yield divergent updates in cases where  ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

= 0 . Therefore, a better approximation to account for 

variability of 𝐻 is required. We partition 𝐻 into two distinct subsets of positive values  ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

> 0 and zero 
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value  ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

= 0, and develop a probability distribution for each subset. For any distribution 𝑄(ℎ), the 

log-likelihood function satisfies the Jensen’s inequality: 

log 𝑃(𝑋|𝜆) ≥ ∫ 𝑄(ℎ) log (
𝑃(𝑋, ℎ|𝜆)

𝑄(ℎ)
) 𝑑ℎ.                                             (34) 

In eqn. (34), both 𝐻 and 𝛬 are vectorized into column vectors as ℎ and 𝜆 which have dimension 𝐷 × 1 where 

𝐷 = 𝐾 × 𝑁 × 𝛷𝑚𝑎𝑥 × 𝐼2 . The elements of ℎ  and 𝜆  are denoted as ℎ𝑝  and 𝜆𝑝 , respectively, for 𝑝 =

1, 2, … . , 𝐷. By substituting eqn. (34) into eqn. (32), this leads to 

𝜆̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥   
𝜆

∫ 𝑄(ℎ) (𝑙𝑜𝑔 𝜆𝑝 − 𝜆𝑝ℎ𝑝)𝑑ℎ.                                                 (35) 

Eqn. (35) can be solved as follows: 

𝜕

𝜕𝜆𝑝
∫ 𝑄(ℎ) (log 𝜆𝑝 − 𝜆𝑝 ℎ𝑝) 𝑑ℎ = 0 

Therefore,  

𝜆̂𝑝 =
1

∫ ℎ𝑝𝑄(ℎ)𝑑ℎ
=

1

𝐸𝑄(ℎ)[ℎ𝑃]
.                                                            (36) 

where 𝐸𝑄(ℎ)[ℎ𝑃] is the expectation of ℎ𝑃 under the distribution 𝑄(ℎ). However, eqn. (36) cannot be solved 

analytically therefore we will approximate 𝑄(ℎ) with respect to the mode of distribution ℎ𝑝. As ℎ𝑝 can be 

partitioned into distinct subsets of positive value (ℎ𝑀) ∀𝑚∈ 𝑀 such that ℎ𝑚 > 0, and zero value (ℎ𝐿) ∀𝑙∈ 𝐿 

such that ℎ𝑙 = 0. It then follows from eqn. (25) and by using the reverse Triangle Inequality [28], for any ℎ𝑝, 

ℎ𝑚 and ℎ𝑙 satisfying the above, it can be shown that: 

𝐹(ℎ) ≡ ∑ 𝐷𝐼𝑆 (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑝
(𝑐)

| 𝛴𝑟,𝑠,𝑗,𝑓,𝑝
(𝑐)

 )

𝑟,𝑠,𝑗,𝑓,𝑝

+ ∑(𝜆𝑝ℎ𝑝 − log 𝜆𝑝)

𝑝
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≥ ∑ 𝐷𝐼𝑆 (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑚
(𝑐)

| 𝛴𝑟,𝑠,𝑗,𝑓,𝑚
(𝑐)

 )

𝑟,𝑠,𝑗,𝑓,𝑚

+ ∑(𝜆𝑚ℎ𝑚 − log 𝜆𝑚)

𝑚

 

+ ∑ 𝐷𝐼𝑆 (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)

| 𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)

 )

𝑟,𝑠,𝑗,𝑓,𝑙

 + ∑(𝜆𝑙ℎ𝑙 − log 𝜆𝑙)

𝑙

 

Thus,  

𝐹(ℎ) ≥ 𝐹(ℎ𝐿
 ) + 𝐹(ℎ𝑀

 ).                                                                  (37) 

In this paper, we will use the Gibbs distribution as the approximate distribution 𝑄(ℎ)  i.e. 𝑄(ℎ) =

𝑍ℎ
−1 𝑒𝑥𝑝[−𝐹(ℎ)] where 𝑍ℎ = ∫ 𝑒𝑥𝑝 [−𝐹 (ℎ)]𝑑ℎ  therefore 𝑄(ℎ) can be factorized into a product of 𝑄𝐿(ℎ𝐿

 ) 

and 𝑄𝑀(ℎ𝑀
 ):  

𝑄(ℎ) ≈ 𝑍ℎ
−1 𝑒𝑥𝑝[−𝐹(ℎ𝐿

 ) − 𝐹(ℎ𝑀
 )] 

=
1

𝑍𝐿
𝑒𝑥𝑝[−𝐹(𝒉𝐿

 )]
1

𝑍𝑀
𝑒𝑥𝑝[−𝐹(𝒉𝑀

 )]                                                      

= 𝑄𝐿(ℎ𝐿
 )𝑄𝑀(ℎ𝑀

 ).                                                                               (38) 

where  𝑍𝐿 = ∫ 𝑒𝑥𝑝 [−𝐹(𝒉𝐿
 )] 𝑑𝒉𝐿

  and 𝑍𝑀 = ∫ 𝑒𝑥𝑝 [−𝐹(𝒉𝑀
 )]𝑑𝒉𝑀

 . This leads to 𝐸𝑄𝑀(ℎ𝑀)[ℎ𝑃] = ℎ𝑃 (which 

is optimized in eqn. (30)), and 𝐸𝑄𝐿(ℎ𝐿)[ℎ𝑃] = 𝑢𝑙 where 𝑢𝑙 is the variational parameter. Therefore, eqn. (36) is 

given by 

𝜆̂𝑝 = {
1 ℎ𝑝⁄ ∀𝑝∈ 𝑀 

1 𝑢𝑝⁄ ∀𝑝∈ 𝐿 
.                                                                 (39) 

where  

𝑢𝑝 ← 𝑢𝑝

−𝑏𝑝 + √𝑏𝑝
2 + 4

(𝛩̃𝑢)
𝑝

𝑢𝑝

2(𝛩̃𝑢)
𝑝

.                                                                                                                        (40) 

𝛩̃ = diag(𝛩𝑝).                                                                                                                                                     (41𝑎) 
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𝛩𝑝 = ∑ (−2(𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
)

2

𝑟,𝑠,𝑗,𝑘,𝑓,𝜙

𝑒
−2√−1 𝛼𝑓,𝑝

𝑗,𝑟,𝑠

𝑅̂𝑟,𝑠,𝑗,𝑓,𝑝
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓,𝑝
(𝑐)−3

+(𝑤𝑓−𝜙,𝑘

𝑗
)

2
𝑒

−2√−1𝛼𝑓,𝑝
𝑗,𝑟,𝑠

𝛴𝑟,𝑠,𝑗,𝑓,𝑝
(𝑐)−2

).          (41𝑏) 

𝑏𝑝 = ∑ (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑝
(𝑐)

𝑟,𝑠,𝑗,𝑘,𝑓,𝜙

𝛴𝑟,𝑠,𝑗,𝑓,𝑝
(𝑐)−2

 𝑒
−√−1 𝛼𝑓,𝑝

𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
−𝛴𝑟,𝑠,𝑗,𝑓,𝑝

(𝑐)−1

 𝑒
−√−1 𝛼𝑓,𝑝

𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
 

−  𝜆𝑝).                   (42) 

The detailed derivation of the variational parameter 𝑢𝑝 can be found in Appendix A1. 

 

3.2.4. Components Reconstruction 

The estimated STFT source spatial image 𝑐̂𝑗,𝑓,𝑛 can be reconstructed by using the multichannel Wiener filter 

that obtained by the minimum mean square error (MMSE) estimate 𝒄̂𝑗,𝑓,𝑛 = 𝔼[𝒄𝑗,𝑓,𝑛|𝒙𝑓,𝑛; 𝛩]as in eqn. (19).  

The multichannel Wiener filter takes all the source spatial image components instead of the dominant one, as 

in the binary masking. Due to the linearity of the STFT, the inverse-STFT (with dual synthesis window [29]) 

can be used to transform the source spatial image to time domain. 

4. MODEL ORDER ESTIMATION 

In this section, the issue of model order estimation of the CNTF2D is considered. This includes estimation of 

the number of effective components and the number of convolutive parameters (which refers to the number of 

𝜏 components and number of 𝜙 components of the CNTF2D model). It is also shown how spectral and 

temporal tensors of the CNTF2D can be initialized. 

 

4.1. Latent-observation model 

The Gamma-Exponential process is proposed to estimate the convolutive parameters and the number of 

components of the CNTF2D model. In Section 3, 𝑾 is set as improper prior and 𝑯 as generalized exponential. 

For the purpose of model order estimation, we generalize the previous setting to generative distributions: 

𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

 ~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑘
𝜏,𝑗,𝑟,𝑠

, 𝑎𝑘
𝜏,𝑗,𝑟,𝑠

).                                                          (43) 
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ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

 ~ 𝐺𝑎𝑚𝑚𝑎 (𝑏𝑘
𝜙,𝑗,𝑟,𝑠

, 𝑏𝑘
𝜙,𝑗,𝑟,𝑠

).                                                       (44) 

where first parameter represents the shape and the second parameter is the rate. The magnitude of the spectral 

covariance matrix of the mixture signal is modelled as exponential distribution. We will also introduce a 

hidden tensor of nonnegative values 𝜃𝑘
𝜏,𝜙

 that weight each element of the factor model i.e. 

∑ 𝜃𝑘
𝜏,𝜙

𝑗,𝑘,𝜏,𝜙 𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

 such that the number of components and convolutive parameters are inferred 

automatically based on the observed mixture data. In this way, the proposed model will retain a finite number 

of each subset corresponding to the active elements in 𝜃. Using the above, the spectral covariance matrix of the 

mixture signal is given by 

|𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| ~ 𝐸𝑥𝑝 ( ∑ 𝜃𝑘
𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

𝑗,𝑘,𝜏,𝜙

).                                            (45) 

and 

𝜃𝑘
𝜏,𝜙

 ~ 𝐺𝑎𝑚𝑚𝑎 (
𝜗𝜏,𝜙

𝐿𝜃
, 𝜗𝜏,𝜙𝑐).                                                        (46) 

where Gamma and Exp denote the Gamma and exponential distributions, respectively, 𝐿𝜃 = 𝐿 + 𝜙𝑚𝑎𝑥 +

𝜏𝑚𝑎𝑥 with 𝐿 being a positive number. It should be noted that 𝐿𝜃 defines the truncation level and it increases to 

infinity, then {𝜃𝑘
𝜏,𝜙

} approximates an infinite sequence drawn from a gamma process with shape parameter 

𝜗𝜏,𝜙 and inverse-scale parameter 𝜗𝜏,𝜙𝑐. A property of this consequence is that the number of elements 𝐾 

greater than some number 𝜖 > 0  is finite almost surely [30]. Specifically, we have 

𝐾 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
1

𝑐
∫ 𝑥−1𝑒−𝑥𝜗𝜏,𝜙𝑐∞

 𝜖
𝑑𝑥). For truncation levels 𝐿𝜃 that are sufficiently large relative to the shape 

parameter 𝜗𝜏,𝜙, we would likewise expect that only a few of the 𝐿𝜃 elements of 𝜃𝑘
𝜏,𝜙

 will be substantially 

greater than 0. The expected value of 𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

 under this model is constant with respect to 𝐿𝜃, 𝜗𝜏,𝜙, 𝑎𝑘
𝜏,𝑗,𝑟,𝑠

 and 

𝑏𝑘
𝜙,𝑗,𝑟,𝑠

: 
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𝔼𝑝 [|𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

|] = ∑ 𝔼𝑝 [𝜃𝑘
𝜏,𝜙

]
𝑗,𝑘,𝜏,𝜙

𝔼𝑝 [𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

] 𝔼𝑝 [ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

]      =
1

𝑐
 .                            (47) 

Eqn. (47) suggests setting the expected mean of the spatial covariance matrix under the prior equal to its 

empirical mean 𝛴̂𝑟,𝑠,𝑓,𝑛
(𝑥)

 by setting 𝑐 = 1 𝛴̂𝑟,𝑠,𝑓,𝑛
(𝑥)

⁄ . In this paper, we use the Generalized Inverse-Gaussian 

(GIG) [31] family to approximate the posterior distribution. The GIG for our model is given by: 

𝑞(𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

) = 𝐺𝐼𝐺(𝜁𝑤,𝑓,𝑘
𝜏,𝑟,𝑠 , 𝜓𝑤,𝑓,𝑘

𝜏,𝑟,𝑠 , 𝛽𝑤,𝑓,𝑘
𝜏,𝑟,𝑠 ).                                                    (48) 

𝑞 (ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

) = 𝐺𝐼𝐺 (𝜁ℎ,𝑘,𝑛
𝜙,𝑟,𝑠

, 𝜓ℎ,𝑘,𝑛
𝜙,𝑟,𝑠

, 𝛽ℎ,𝑘,𝑛
𝜙,𝑟,𝑠

).                                                     (49) 

𝑞 (𝜃𝑘
𝜏,𝜙

) = 𝐺𝐼𝐺 (𝜁𝜃,𝑘
𝜏,𝜙

, 𝜓𝜃,𝑘
𝜏,𝜙

, 𝛽𝜃,𝑘
𝜏,𝜙

).                                                            (50) 

where  

𝐺𝐼𝐺(𝑦; 𝜁, 𝜓, 𝛽) =
(𝜓/𝛽)𝜁/2

2𝒦𝜁(2√𝛽𝜓)
 𝑦𝜁−1𝑒𝑥𝑝(−(𝛽𝑦−1 + 𝜓𝑦)/2).                                      (51) 

for 𝑦 ≥ 0, 𝜁 ≥ 0 and 𝛽 ≥ 0, and 𝒦𝜁(∙) is the modified Bessel function of the third kind with index 𝜁. The 

expectation under q can be computed for any variable 𝑦 ~ 𝐺𝐼𝐺(𝜁, 𝜓, 𝛽): 

𝔼𝑞[𝑦] =
√𝛽/𝜓𝒦𝜁+1(2√𝜓𝛽)

𝒦𝜁(2√𝜓𝛽)
.                                                           (52) 

𝔼𝑞[1 𝑦⁄ ] =
√𝜓/𝛽𝒦𝜁−1(2√𝜓𝛽)

𝒦𝜁(2√𝜓𝛽)
.                                                           (53) 

By using the Jensen’s inequality, the posterior distribution of |𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| is bounded below as 
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𝑝 (|𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| |𝜗𝜏,𝜙, 𝑎𝑘
𝜏,𝑗,𝑟,𝑠

, 𝑏𝑘
𝜙,𝑗,𝑟,𝑠

, 𝑐)

≥  𝔼𝑞 [𝑙𝑜𝑔 𝑝 (|𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| |{𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

}, {ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

} , {𝜃𝑘
𝜏,𝜙

})] + 𝔼𝑞 [𝑙𝑜𝑔 𝑝 ({𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

}|𝑎𝑘
𝜏,𝑗,𝑟,𝑠

)]

− 𝔼𝑞 [𝑙𝑜𝑔 𝑞 ({𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

})] +     𝔼𝑞 [𝑙𝑜𝑔 𝑝 ({ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

} |𝑏𝑘
𝜙,𝑗,𝑟,𝑠

)] − 𝔼𝑞 [𝑙𝑜𝑔 𝑞 ({ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

})]

+     𝔼𝑞 [𝑙𝑜𝑔 𝑝 ({𝜃𝑘
𝜏,𝜙

} |𝜗𝜏,𝜙, 𝑐)] − 𝔼𝑞 [𝑙𝑜𝑔 𝑞 ({𝜃𝑘
𝜏,𝜙

})].                                                         (54) 

The difference between the left and right hand sides of eqn. (54) is the Kullback-Leibler divergence between 

the true posterior and the variational distribution 𝑞. Thus, maximizing this bound with respect to 𝑞 minimizes 

the KL divergence between 𝑞 and our posterior distribution of interest. The likelihood term in eqn. (54) 

expands to  

𝔼𝑞 [log 𝑝 (|𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| |{𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

}, {ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

} , {𝜃𝑘
𝜏,𝜙

})]

= ∑ 𝔼𝑞 [
− |𝛴𝑟,𝑠,𝑓,𝑛

(𝑥)
|

∑ 𝜃𝑘
𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

𝑗,𝑘,𝜏,𝜙

]

𝑓,𝑛

− 𝔼𝑞 [log ∑ 𝜃𝑘
𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

𝑗,𝑘,𝜏,𝜙

].                     (55𝑎) 

By using the Jensen’s inequality, it can be shown that the above likelihood term is bounded below as: 

𝔼𝑞 [log 𝑝 (|𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| |{𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

}, {ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

} , {𝜃𝑘
𝜏,𝜙

})] 

≥   ∑ ∑ −|𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| (𝜑𝑓,𝑛,𝑘
𝜏,𝜙,𝑟,𝑠

)
2

𝑗,𝑘,𝜏,𝜙

𝔼𝑞 [
1

𝜃𝑘
𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

]

𝑓,𝑛

 − 𝑙𝑜𝑔(𝜔𝑓,𝑛
𝑟,𝑠 ) + 1 −

1

𝜔𝑓,𝑛
𝑟,𝑠 𝔼𝑞[𝜃𝑘

𝜏,𝜙
𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠
].       (55𝑏) 

Using Lagrange multipliers, maximizing the lower bound eqn. (54) with eqn. (55) leads to the following 

optimal 𝜑𝑓,𝑛,𝑘
𝜏,𝜙,𝑟,𝑠

 and 𝜔𝑓,𝑛
𝑟,𝑠

: 

𝜑𝑓,𝑛,𝑘
𝜏,𝜙,𝑟,𝑠

∝ 𝔼𝑞 [
1

𝜃𝑘
𝜏,𝜙

𝑤𝑓,𝑘
𝜏,𝑟,𝑠ℎ𝑘,𝑛

𝜙,𝑟,𝑠
]

−1

.                                                       (56) 



19 

 

and 

𝜔𝑓,𝑛
𝑟,𝑠 = ∑ 𝔼𝑞 [𝜃𝑘

𝜏,𝜙
𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠
] .

𝑗,𝑘,𝜏,𝜙
                                                  (57) 

The variational distribution parameters can be optimized by differentiating the likelihood function in eqn. (54) 

and eqn. (55) with respect to its parameters. This yields the following updates: 

𝜁𝑤,𝑓,𝑘
𝜏,𝑟,𝑠 = 𝑎𝑘

𝜏,𝑗,𝑟,𝑠
 .                                                                                                    (58a) 

𝜓𝑤,𝑓,𝑘
𝜏,𝑟,𝑠 = 𝑎𝑘

𝜏,𝑗,𝑟,𝑠
+ ∑

𝔼𝑞 [𝜃𝑘
𝜏,𝜙

ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

]

𝜔𝑓,𝑛
𝑟,𝑠

𝑛,𝜙

.                                                          (58b) 

𝛽𝑤,𝑓,𝑘
𝜏,𝑟,𝑠 = ∑ |𝛴𝑟,𝑠,𝑓,𝑛

(𝑥)
| 𝜑𝑓,𝑛,𝑘

𝜏,𝜙,𝑟,𝑠2

𝔼𝑞 [
1

𝜃𝑘
𝜏,𝜙

ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

] .

𝑛,𝜙

                                            (58𝑐) 

𝜁ℎ,𝑘,𝑛
𝜙,𝑟,𝑠

= 𝑏𝑘
𝜙,𝑗,𝑟,𝑠

.                                                                                                     (59a) 

𝜓ℎ,𝑘,𝑛
𝜙,𝑟,𝑠

= 𝑏𝑘
𝜙,𝑗,𝑟,𝑠

+ ∑
𝔼𝑞 [𝜃𝑘

𝜏,𝜙
𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
]

𝜔𝑓,𝑛
𝑟,𝑠

𝑓,𝜏

.                                                          (59b) 

𝛽ℎ,𝑘,𝑛
𝜙,𝑟,𝑠

= ∑ |𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| 𝜑𝑓,𝑛,𝑘
𝜏,𝜙,𝑟,𝑠2

𝔼𝑞 [
1

𝜃𝑘
𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

] .

𝑓,𝜏

                                             (59c) 

𝜁𝜃,𝑘
𝜏,𝜙

=
𝜗𝜏,𝜙

𝐿 + 𝜙𝑚𝑎𝑥 + 𝜏𝑚𝑎𝑥
.                                                                                  (60a) 

𝜓𝜃,𝑘
𝜏,𝜙

= 𝜗𝜏,𝜙𝑐 + ∑
𝔼𝑞 [𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
ℎ𝑘,𝑛−𝜏

𝜙,𝑗,𝑟,𝑠
]

𝜔𝑓,𝑛
𝑟,𝑠 .

𝑓,𝑛

                                                         (60b) 

𝛽𝜃,𝑘
𝜏,𝜙

= ∑ |𝛴𝑟,𝑠,𝑓,𝑛
(𝑥)

| 𝜑𝑓,𝑛,𝑘
𝜏,𝜙,𝑟,𝑠2

𝔼𝑞 [
1

𝑤𝑓−𝜙,𝑘
𝜏,𝑗,𝑟,𝑠

ℎ𝑘,𝑛−𝜏
𝜙,𝑗,𝑟,𝑠

] .
𝑓,𝑛

                                     (60c) 

 

4.2. Estimating the number of effective components 

The number of effective components in the proposed model can be estimated according to the hidden latent 

variable in eqn. (47) as 
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𝔼𝑞[𝜃𝑘] = ∫ 𝜃𝑘 𝑞(𝜃𝑘)𝑑𝜃𝑘  = ∫ ∑ ∑ 𝜃𝑘  𝑞(𝜃𝑘|𝜏, 𝜙)𝑞(𝜏)𝑞(𝜙)

𝜙𝑚𝑎𝑥−1

𝜙=0

𝜏𝑚𝑎𝑥−1

𝜏=0

𝑑𝜃𝑘 

=
1

𝜏𝑚𝑎𝑥𝜙𝑚𝑎𝑥
∑ ∑ 𝔼𝑞 [𝜃𝑘

𝜏,𝜙
] .

𝜙𝑚𝑎𝑥−1

𝜙=0

𝜏𝑚𝑎𝑥−1

𝜏=0

                                       (61𝑎) 

where 

𝔼𝑞 [𝜃𝑘
𝜏,𝜙

] = ∫ 𝜃𝑘 𝑞(𝜃𝑘|𝜏, 𝜙)𝑑𝜃𝑘 =

√𝛽𝜃,𝑘
𝜏,𝜙

/𝜓𝜃,𝑘
𝜏,𝜙

𝒦
𝜁𝜃,𝑘

,𝜏,𝜙
+1

(2√𝜓𝜃,𝑘
𝜏,𝜙

𝛽𝜃,𝑘
𝜏,𝜙

)

𝒦
𝜁

𝜃,𝑘
,𝜏,𝜙 (2√𝜓𝜃,𝑘

𝜏,𝜙
𝛽𝜃,𝑘

𝜏,𝜙
)

.                           (61𝑏) 

The above statistical expectations are obtained from the GIG distribution. It is assumed that both 𝑞(𝜏) and 

𝑞(𝜙) are uniformly distributed. We define the effective component as  

𝑘∗ = arg
𝑘

{ 𝔼𝑞[𝜃𝑘] ∑ 𝔼𝑞[𝜃𝑘]

𝐾

𝑘=1

⁄  ≥ 𝜀 }.                                                       (62) 

where 𝜀 is a small constant (which we set to 0.1 after conducting 200 experimental trials). We select the 

optimum model for (𝜏, 𝜙) by treating each 𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏,𝜙
] for various values of (𝜏, 𝜙) as a histogram. Thus the 

optimum model for (𝜏, 𝜙) is given by the average of non-zero components: 

𝜏̂𝑚𝑎𝑥,𝑘∗
=

∑ 𝐹𝑙
(𝜏)𝜙𝑚𝑎𝑥−1

𝑙=0

# (𝐹𝑙
(𝜏)

≠ 0, ∀𝑙)
.                                                             (63𝑎) 

𝜙̂𝑚𝑎𝑥,𝑘∗
=

∑ 𝐹𝑙
(𝜙)𝜏𝑚𝑎𝑥−1

𝑙=0

# (𝐹𝑙
(𝜙)

≠ 0, ∀𝑙)
.                                                            (63𝑏) 

where 

𝐹𝑙
(𝜏)

= #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 
𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏,𝜙=𝑙
]

∑ 𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏,𝜙=𝑙
]𝜏

≥ 𝜀, 

𝐹𝑙
(𝜙)

= #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 
𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏=𝑙,𝜙
]

∑ 𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏=𝑙,𝜙
]𝜙

≥ 𝜀. 
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The term 𝐹𝑙
(𝜏)

 counts the number of 𝜏 components in the normalized 𝔼𝑞 [𝜃𝑘
𝜏,𝜙=𝑙

] that exceeds 𝜀,and # (𝐹𝑙
(𝜏)

≠

0, ∀𝑙) counts the number of entries of 𝐹𝑙
(𝜏)

 that is non-zero. The same interpretation is applied to 𝐹𝑙
(𝜙)

 and 

# (𝐹𝑙
(𝜙)

≠ 0, ∀𝑙) for determining the model order 𝜙𝑚𝑎𝑥. 

 

4.3. Initialization of CNTF2D 

We initialized the spectral and temporal tensors of the proposed CNTF2D depending on 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

 and ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

 

obtained from the Gamma-Exponential process as follows: 

𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

= 𝔼𝑞[𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

].                                                             (64a) 

ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

= 𝔼𝑞 [ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

].                                                            (64b) 

for the convolutive parameters and number of components that have been obtained from the 

Gamma-Exponential process. Equations (64a) and (64b) can be obtained using (61b). Table 1 summarizes the 

main step of the proposed CNTF2D algorithm. 

 

Table 1: Proposed algorithm GEM-MU CNTF2D 

Step 1: Estimate the number of components and convolutive parameters by using the proposed 

Gamma-Exponential process in eqns. (58)-(60) and compute 𝔼𝑞 [𝜃𝑘
𝜏,𝜙

]. 

Step 2: Initialize 𝑊 = {𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

} and 𝐻 = {ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

} with the proposed Gamma-Exponential process spectral 

and temporal tensors using eqn. (64), 𝛼 = {𝛼𝑘,𝑓,𝑛
𝑗,𝑟,𝑠

} with zero, 𝛴𝑓
(𝑏)

 with random nonnegative diagonal 

matrix, and 𝜆𝑝 with a positive value. 

Step 3: (E-step) Compute 𝑅̂𝑗,𝑓,𝑛
(𝑐)

, 𝛴̂𝑗,𝑓,𝑛
(𝑐)

, 𝑐̂𝑗,𝑓,𝑛, 𝑅̂𝑓
(𝑏)

, 𝛴̂𝑓
(𝑏)

, and 𝑏̂𝑓,𝑛 using eqns. (17)-(22). 

Step 4: (M-step) Compute 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

, ℎ𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

, 𝛼𝑘,𝑓,𝑛
𝑗,𝑟,𝑠

, and 𝜆𝑝 using eqns. (29), (30),(31), and (39). 
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Step 5: Normalize 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠

= 𝑤𝑓,𝑘
𝜏,𝑗,𝑟,𝑠 √∑ (𝑤𝑓,𝑘

𝜏,𝑗,𝑟,𝑠
)

2

𝑓,𝑘,𝜏⁄ . 

Step 6: Repeat Steps 3 to 5 until convergence is achieved i.e., rate of cost change is below a prescribed 

threshold, 𝜓 (e.g., 𝜓 = −20𝑑𝐵). 

Step 7: Perform inverse STFT with dual synthetic window to estimate 𝑐𝑖,𝑗(𝑡). 

 

 

5. RESULTS AND DISCUSSIONS 

5.1. DATASET 

The following two datasets will be used in the experiments. 

5.1.1.  Dataset 1: This dataset is identical to the one used in the full-rank NMF of Arberet et al. algorithm [8]. 

This dataset consist of four groups depending on the distance between their microphones and the reverberation 

time (RT). These are the 5 cm distance with 130 ms reverberation time group, 5 cm and 250 ms group, 1 m and 

130 ms group, and 1 m 250 ms group. Each group consists of ten stereo mixtures, and each mixture has a length 

of 10 seconds, sampled at 16 kHz, and generated from three convolutive sources. 

 

5.1.2. Dataset 2:This is an under-determined speech and music mixtures development dataset of SiSEC 2018 

[32]. This dataset consist of two groups. The first group is the live recording music group, which consists of 

dev1 and dev2 datasets, where each dataset has the with drum (wdrum) group; which consists of vocal and 

music instrument with drum, and the without drum (nodrum) group; which consists of vocal and music 

instruments without drum. The sources of this group are mixed in stereo mixture that has 1 m or 5 cm space 

between its microphones, and 250 ms reverberation time. The second group of this dataset is a simulated 

recording speech group, which consists of dev3 dataset, this dataset contains four females (female4) and four 

males (males4) that mixed in stereo mixture, with 5 cm or 50 cm distance between its microphones, and has a 
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reverberation time of 130 ms or 380 ms. Dev3 has three channels (left, right, and mono) and we reduce it to two 

channels (left and right). Additionally, each mixture has duration of 10 s and sampled at 16 kHz. 

 

5.2. Evaluation 

The performance of the proposed algorithm will be measured by using the signal-to-distortion ratio (SDR) [33] 

which measures an overall sound quality of the source separation, where it combines the signal-to-interference 

ratio (SIR), source image-to-spatial distortion ratio (ISR), and the signal-to-artifact ratio (SAR), into one 

measurement. 

5.3. Effects of Variable Sparsity versus Uniform Sparsity 

In this subsection, we will show the effects of the sparsity on the separation performance, by considering a 

fixed uniform sparsity; 𝜆𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

= 𝜆 = 𝑐, all over the elements of H, and the variable sparsity 𝜆𝑘,𝑛
𝜙,𝑗,𝑟,𝑠

 for each 

element of H. The fixed uniform sparsity is commonly used throughout the literature of matrix factorization. 

Each experiment will be run for different values of sparsity for the three sources that convolutively mixed in 

the stereo mixture that has 1 m space between its microphones, 250ms reverberation time, and with 16 kHz 

sampling frequency. The following parameters are set for the proposed algorithm: 𝐾𝑗 = 4, 𝜏𝑚𝑎𝑥 = 3, and 

𝜙𝑚𝑎𝑥 = 3. In order to focus on the effects of sparsity, oracle initialization has been used. Fig. 3 shows the 

average SDR performance with respect to different values of sparsity. The variable sparsity has resulted in the 

highest SDR performance. This is attributed to the fact that each element of 𝐻 has a specific sparsity value 

instead of constant value for the entire set of 𝐻 as in the case of uniform sparsity. This is especially more 

pronounced in audio signals in which case the spectrogram has a large dynamic range. It is seen that for 

variable sparsity the average SDR is 3.2 dB higher than the best uniform sparsity (the value of constant 𝜆 that 

results in the highest SDR) 𝜆 = 5. Additionally, as the sparsity value increases (leading to over-sparseness) the 

SDR begins to decrease since many elements in 𝐻 become very small and tend to zero. This results in 

switching off several parts of the spectrum in the estimated sources, as shown in Fig. 4. In particular, it shows 

the spectrogram of one of the estimated sources for the case of variable sparsity, over-sparse, and under-sparse. 
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It is visually apparent that the over-sparse and under-sparse have not fully recovered the original source. Many 

parts of the spectrum have been removed from the estimated source due to over-sparseness of 𝐻 while many 

unwanted spectrum have been added to’ the estimated source with under-sparseness. On the other hand, the 

variable sparsity has resulted in almost full recovery of the original source, as it has been optimally tuned by 

the degree of sparseness over all the elements of 𝐻. 

 

5.4. Separation Results  

5.4.1. Estimation of number of components and convolutive parameters 

The proposed Gamma-Exponential CNTF2D process has been applied to the mixtures of Dataset 1 and Dataset 

2, and the estimated values are tabulated in Table 2 for Dataset 1, and in Tables 4 and 5 for Dataset 2. It can be 

seen from these tables that we have different parameters (𝜏, 𝜙, and 𝛫) for each mixture as each mixture has a 

different temporal and pitches characteristics. In the following, we detail an example from Dataset 1 on how 

the model order is selected. Firstly, we set the bound of the proposed Gamma-Exponential process as follows: 

𝜏 = {0, 1, 2, . . . , 10}, 𝜙 = {0,1,2, . . . ,10}, and 𝐾 = 20. Secondly, we run the proposed model order estimation 

step (eqns. (56)-(63)) and the results of the Gamma-Exponential process are shown in Fig. 5. Thirdly, we 

estimate the effective parameters (𝜏, 𝜙, and 𝛫) in Fig. 5. Fig. 5(a) shows the values of 𝔼𝑞[𝜃𝑘] for 𝑘 =

1, … , 20 which are predominantly zero except for 𝑘 = 3, 5, 8, 10, 11, 12, 13, 16, 17, 18 and 19. Let 𝐾∗ = # 𝑘∗ 

be the number of effective components; from Fig. 5(a) this corresponds to 𝐾∗ = 11. Since there are 𝐽 = 3 

sources, then 𝐾𝑗 = 𝐾∗ 𝐽⁄ ≈ 4 for 𝑗 = 1, 2, 3. In addition, for each k∗ effective component, we have determined 

distribution for (τ, ϕ) which is given by 𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏,𝜙
]. These are shown in Fig. 5(b)-(l): (𝜏̂𝑚𝑎𝑥,3 = 4, 𝜙̂𝑚𝑎𝑥,3 =

2) , (𝜏̂𝑚𝑎𝑥,5 = 1, 𝜙̂𝑚𝑎𝑥,5 = 6) , (𝜏̂𝑚𝑎𝑥,8 = 2 𝜙̂𝑚𝑎𝑥,8 = 4) , (𝜏̂𝑚𝑎𝑥,10 = 2 𝜙̂𝑚𝑎𝑥,10 = 3) , (𝜏̂𝑚𝑎𝑥,11 =

3 𝜙̂𝑚𝑎𝑥,11 = 3) , (𝜏̂𝑚𝑎𝑥,12 = 2 𝜙̂𝑚𝑎𝑥,12 = 4) , (𝜏̂𝑚𝑎𝑥,13 = 2 𝜙̂𝑚𝑎𝑥,13 = 4) , (𝜏̂𝑚𝑎𝑥,16 = 3 𝜙̂𝑚𝑎𝑥,16 = 2) , 

(𝜏̂𝑚𝑎𝑥,17 = 2 𝜙̂𝑚𝑎𝑥,17 = 3), (𝜏̂𝑚𝑎𝑥,18 = 1 𝜙̂𝑚𝑎𝑥,18 = 7)and (𝜏̂𝑚𝑎𝑥,19 = 2 𝜙̂𝑚𝑎𝑥,19 = 2), respectively, and 

its averages are 𝜏̂𝑚𝑎𝑥 =
1

𝐾∗
∑ 𝜏̂𝑚𝑎𝑥,𝑘∗𝑘∗

= 2, and 𝜙̂𝑚𝑎𝑥 =
1

𝐾∗
∑ 𝜙̂𝑚𝑎𝑥,𝑘∗𝑘∗

= 3. 
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5.4.2. Results of Dataset 1 

In this dataset, the STFT window length is set to 1024 with 50% overlaps, and 50 iterations are used for testing 

the competing algorithms. For comparison purposes, we used the same initialization as that used in Arberet et 

al.. Furthermore, as the oracle initialization is used there will be no further need to include the phase, so we set 

𝛼 to zero. To show the convergence of the proposed algorithm, the average cost functions in eqn. (15) of the 

ten mixtures with different conditions (low and high reverberations time, and short and long distance between 

the microphones) are shown in Fig. 6. It is noted that the speed of convergence (as measured by the gradient of 

the cost function) is fastest for the short microphone distance with low reverberation. As the microphone 

distance becomes larger and the level of reverberation increases, the speed tends to slow down. Nonetheless, 

all curves converge to the steady state in less than 50 iterations. Furthermore, the SDRs of the full-rank NMF 

and the proposed algorithm are tabulated in Table 3. The table indicates that the proposed algorithm has better 

performance than the full-rank NMF since it has more powerful representation (using the CNTF2D), as well as 

the variable sparsity over all the elements of 𝐻. We summarize the results for all the conditions as follows: An 

average achievement of 1.2 dB more for the low reverberation group, and an average of 0.9 dB more on 

average for the high reverberations group. It shows that high SDR performance has been achieved for the 

130ms reverberation for both 100cm and 5cm microphone separation. This case corresponds to the low 

reverberation environment. For the case of high reverberation, the proposed algorithm performs better with 

shorter microphone distance. As the distance between the microphones decreases, the signal at each 

microphone becomes more correlated with each other and therefore the channel covariance matrix 𝛴𝑗,𝑓
(𝑎)

 in eqn. 

(4a) tends to have specific structure and hence reinforces the requirement of full-rank condition. On the other 

hand, as the separation between the microphones increases, the signal at each microphone becomes less 

correlated with each other. The effect is that each channel behaves independently and the channel covariance 

matrix 𝛴𝑗,𝑓
(𝑎)

 can be modelled by rank-1 structure. Thus as the separation between microphone becomes 

progressively small, this induces a complex structure to the channel covariance which will benefit from the 
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full-rank estimation procedure in the proposed algorithm. There is a clear indication that the proposed 

algorithm has outperformed the NMF for both the low and high reverberation time. The spectrogram of one of 

the original sources, and its estimate by using the full-rank NMF and the variable sparsity CNTF2D are shown 

in Fig. 7(a), (b), and (c), respectively. These figures clearly show that the variable sparsity CNTF2D has 

successfully detected the pitch change of the source (as shown in the high frequency of its spectrogram), due to 

its two-dimensional deconvolution while the full-rank NMF failed to detect these changes. Furthermore, one 

component of the 𝑊 and 𝐻 matrices and its corresponding reconstructed spectrogram is shown in Fig. 7(d). 

This clearly indicates that both 𝑊 and 𝐻 have modelled the sources quite accurately. It is seen that W has 

successfully modelled the frequencies of the source especially in the high frequency region and H has shown a 

correct distribution in the time domain. 

 

5.4.3. Result of Dataset 2 

In this section, we compare our algorithm with Adiloglu’s work in [34] from the SiSEC’16 evaluation 

campaign for the tasks of under-determined speech and music mixtures which uses fully Bayesian source 

separation algorithm based on variational inference method [35], with the multi-level NMF model [36] as a 

source variance, and the time difference of arrival (TDOA) as an initialization method [37]. Also we compare 

our algorithm with the standard NTF2D optimized using Euclidean distance [21]. The STFT window length is 

set to 2048 with 50% overlaps. Furthermore, for fair comparison and to show the significance of the 

convolutive parameters, we set the convolutive parameters of the proposed algorithm to zero. In other words, 

we compare with the full rank complex NTF instead of the NTF2D. We term this algorithm as the GEM-MU 

variable sparsity complex NTF. The average cost functions are shown in Fig. 8. The figure indicates that all the 

cost functions converged to a low value within 10 iterations while Adiloglu’s algorithm requires about 250 

iterations. Furthermore, Table 4 shows the SDRs of the proposed algorithm for the music group and on average 

it yields higher value than Adiloglu’s algorithm. For clarity of comparison, the results are summarized as 

follows: An improvement of 2.5 dB is achieved for the 5 cm and 100 cm distance with 250 ms reverberation 
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time datasets. Table 5 shows the results for the speech group and on average an improvement of 2.5 dB has 

been achieved for the 5 cm, 380 ms datasets, 1.9 dB for the 50 cm, 380 ms datasets, 0.3 dB for the 5 cm, 130 ms 

datasets, and 0.1 dB for the 50 cm, 130 ms datasets. For the NTF2D, the SDRs of the proposed algorithm are 

better for all the cases. Finally, Fig. 9 shows the spectrogram of the estimated sources. It has indicated that the 

proposed algorithm has successfully estimated the sources with a reasonable degree of accuracy. In particular, 

it is evident that all the low and high frequency components as well as the time-frequency patterns have been 

preserved in the estimated sources. 

 

5.4.4. Robustness to Noise and Computational Complexity 

Two additional assessments of the proposed method have been undertaken to clarify on the computational 

complexity and robustness against noise. Using the SiSEC 2016: Dev. 2 dataset running on a PC with dual core 

processor @ 2.4 GHz (i7 Intel processor) 8 GB RAM and 320 GB HDD, the computational time taken by each 

algorithm has been tabulated in Table 6. It is shown that the time taken to run one iteration is the highest for the 

proposed algorithm. However, the proposed algorithm has fastest convergence to the steady state solution 

requiring on average about 41 iterations. Comparing in terms of the total computational time, the proposed 

algorithm is computationally more demanding than Adiloglu’s algorithm and NTF2D by 19.9% and 12.4%, 

respectively. This is due to the estimation of the sparsity parameter which is computationally most demanding. 

We have also performed a test to examine the robustness of the algorithms in separating the mixture under 

different level of signal-to-noise ratio (SNR). Fig. 10 shows the obtained result using the SiSEC 2016: Dev. 2 

dataset. It is shown that the proposed algorithm has consistently outperformed the Adiloglu’s algorithm and 

NTF2D. Note that the measured SDR here correspond to the average of SDR of all separated source images. In 

addition, the proposed algorithm has been able to maintain a graceful depreciation of the SDR as the SNR 

reduces. This is attributed to the ability of the algorithm in modelling the noise and realizing the conditional 

estimate of the source images via the Wiener filter. Overall, it can be deduced that although the proposed 
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algorithm has higher computational load, its separation performance as measured by the SDR shows it is 

robust against noise. 

6. CONCLUSIONS 

In this paper, a novel method that combines the complex NTF2D model with variable sparsity has been 

proposed for multichannel source separation. The variable sparse parameters are derived from the Gibbs 

distribution, which has provided a tractable and stable approach to adapt each sparse parameter for every 

temporal code in the CNTF2D. The GEM-MU algorithm has been used as a platform to enable the joint 

estimation of the sources and parameters as well as preserving the non-negativity constraints of the proposed 

algorithm. It outperforms the full-rank NMF and NTF algorithms, and a recent algorithm based on variational 

inference multi-level NMF model with TDOA initialization. The proposed algorithm is fast and requires less 

than 10 iterations to converge to the steady state. Finally, the parameters that affect the separation such as 

initialization, convolutive parameters, and number of components have been controlled by using the proposed 

Gamma-Exponential process to minimize the randomization in the separation algorithm. 

APPENDIX 

A1. Derivations of variational parameter 𝑢𝑙 

The distribution 𝑄𝐿(ℎ𝐿
 ) in (40) will be approximated by considering the Taylor expansion about the updated 

ℎ∗: 

𝑄𝐿(ℎ𝐿
 ≥ 0) ∝ 𝑒𝑥𝑝 {− ∑ ((

𝜕𝐹(ℎ𝑙)

𝜕ℎ𝑙
)|

ℎ∗ 

)

 

𝑙∈𝐿

ℎ𝑙 −
1

2
∑ ((

𝜕2𝐹(ℎ𝑙)

𝜕ℎ𝑙
2 )|

ℎ∗ 

)

 

𝑙∈𝐿

ℎ𝑙
2} 
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∝ 𝑒𝑥𝑝 { ∑ (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)

𝑟,𝑠,𝑗𝑘𝑓𝜙𝑙

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−2

 𝑒−√−1 𝛼𝑓,𝑙
𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
−𝛴𝑟,𝑠,𝑗,𝑓,𝑙

(𝑐)−1

 𝑒−√−1 𝛼𝑓,𝑙
𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
 

− 𝜆𝑙

  

) ℎ𝑙  

+
1

2
∑ (−2(𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
)

2

𝑟,𝑠,𝑗𝑘𝑓𝜙𝑙

𝑒−2√−1 𝛼𝑓,𝑙
𝑗,𝑟,𝑠

𝑅̂𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−3

+(𝑤𝑓−𝜙,𝑘

𝑗
)

2
𝑒−2√−1𝛼𝑓,𝑙

𝑗,𝑟,𝑠

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−2

) ℎ𝑙
2

  
  

}.        (65) 

The variational approximation of 𝑄𝐿(ℎ𝐿) will be considered by the exponential distribution:  

𝑄̂𝑝(ℎ𝐿 ≥ 0) = ∏
1

𝑢𝑙
𝑒𝑥𝑝 (−

ℎ𝑙

𝑢𝑙
) .

𝑙∈𝐿

                                                              (66) 

The parameter ul is obtained by minimizing the Kullback- Leibler divergence between 𝑄𝐿 and 𝑄̂𝐿 

𝑢𝑙 = arg min 
𝑢𝑙

∫ 𝑄̂𝐿(ℎ𝐿
 ) log

𝑄̂𝑝(ℎ𝐿
 )

𝑄𝑝(ℎ𝐿
 )

 𝑑ℎ𝐿
 .                                                     (67) 

where 

∫ 𝑄̂𝐿(ℎ𝐿
 )[𝑙𝑛 𝑄̂𝐿(ℎ𝐿

 )]𝑑ℎ𝐿
  = ∑ ∫

1

𝑢𝑙
𝑒𝑥𝑝 (−

ℎ𝑙
 

𝑢𝑙
)

∞

0𝑙∈𝐿

(− 𝑙𝑛 𝑢𝑙 −
ℎ𝑙

 

𝑢𝑙
) 𝑑ℎ𝑙

   

= − ∑ 𝑙𝑛 𝑢𝑙 + 1.

𝑙∈𝐿

                                                                         (68) 

and 

∫ 𝑄̂𝐿(ℎ𝐿
 )𝑙𝑛 𝑄𝐿(ℎ𝐿

 )  𝑑ℎ𝐿
 

= ∑ (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)

𝑟,𝑠,𝑗,𝑘,𝑓,𝜙,𝑙

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−2

 𝑒
−√−1 𝛼𝑓,𝑙

𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
−𝛴𝑟,𝑠,𝑗,𝑓,𝑙

(𝑐)−1

 𝑒
−√−1 𝛼𝑓,𝑙

𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
 

−  𝜆𝑙) 𝑢𝑙   

+
1

2
∑ (−2(𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
)

2

𝑟,𝑠,𝑗,𝑘,𝑓,𝜙,𝑙

𝑒
−2√−1 𝛼𝑓,𝑙

𝑗,𝑟,𝑠

𝑅̂𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−3

 +(𝑤𝑓−𝜙,𝑘

𝑗
)

2
𝑒

−2√−1𝛼𝑓,𝑙
𝑗,𝑟,𝑠

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−2

) 𝑢𝑙𝑢𝑙  .       (69) 

Thus, 
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𝑢𝑙 = arg min   
𝑢𝑙

 (− ∑ 𝑙𝑛𝑢𝑙

𝑙∈𝐿

+1 + ∑ (𝑅̂𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)

𝑟,𝑠,𝑗,𝑘,𝑓,𝜙,𝑙

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−2

 𝑒
−√−1 𝛼𝑓,𝑙

𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
   −𝛴𝑟,𝑠,𝑗,𝑓,𝑙

(𝑐)−1

 𝑒
−√−1 𝛼𝑓,𝑙

𝑗,𝑟,𝑠

𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
 

−  𝜆𝑙) 𝑢𝑙

+
1

2
∑ (−2(𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
)

2

𝑟,𝑠,𝑗,𝑘,𝑓,𝜙,𝑙

𝑒
−2√−1 𝛼𝑓,𝑙

𝑗,𝑟,𝑠

𝑅̂𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−3

+(𝑤𝑓−𝜙,𝑘

𝜏,𝑗,𝑟,𝑠
)

2
𝑒

−2√−1𝛼𝑓,𝑙
𝑗,𝑟,𝑠

𝛴𝑟,𝑠,𝑗,𝑓,𝑙
(𝑐)−2

) 𝑢𝑙 . 𝑢𝑙

  
   

 

).     (70) 

Let 𝛩̃, 𝛩𝑙, and 𝑏𝑙 be defined according to eqns. (41)-(42), then we have 

𝑢𝑙 = arg min   
𝑢𝑙

 (𝑏 𝐿
𝐻𝑢 +

1

2
𝑢𝐻𝛩̃𝑢 − ∑ ln 𝑢𝑙

𝑙∈𝐿

 ).                                          (71) 

By using the nonnegative quadratic programming (NQP) [38], we have 

𝐺(𝑢, 𝑢̃) = 𝑏 𝐿
𝐻𝑢 +

1

2
∑

(𝛩̃𝑢̃)
𝑙

𝑢̃𝑙
𝑙∈𝐿

𝑢𝑙
2 − ∑ ln 𝑢𝑙

𝑙∈𝐿

.                                                        (72) 

Taking the derivative of 𝐺(𝑢, 𝑢̃) in eqn. (72) with respect to u and setting it to zero yields 

(𝛩̃𝑢̃)
𝑙

𝑢̃𝑙
𝑢𝑙

2 + 𝑏 𝐿
𝐻𝑢𝑙 − 1 = 0.                                                                   (73) 

which is solved as in eqn. (40). 
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Table 2 

Number of components and convolutive parameters for mixtures 1 to 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Average SDRs of the 10 mixtures with different conditions for the full-rank 

NMF and the proposed algorithm 

 

Dataset 1 

Reverberation Time (ms) 
130 250 

Microphone Distance (cm) 5 100 5 100 

SDR of Full-Rank NMF 8.7 10 8.6 9.1 

SDR of the proposed algorithm 
10.1 11 9.6 9.9 

 

 
 

 

 

 

 

Mixture 𝐾𝑗 𝜏̂𝑚𝑎𝑥 𝜙̂𝑚𝑎𝑥 

1 3 3 2 

2 4 3 3 

3 4 2 3 

4 4 2 3 

5 4 1 5 

6 5 4 3 

7 5 5 3 

8 4 3 2 

9 4 3 3 

10 4 5 2 
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Table 4 

SDRs of Adiloglu et al. algorithm, NTF2D, and the proposed algorithms for dev1 and dev2. 

 

 

 

 

 

 

 

  

Dataset 2 SiSEC 2016: Dev. 1 SiSEC 2016: Dev. 2 

ndrums wdrums ndrums wdrums 

Reverberation Time (ms) 250 250 250 250 

Microphone Distance (cm) 5 100 5 100 5 100 5 100 

Adiloglu et al. 

Algorithm [31] 

 

SDR 
s1 -5.5 -0.6 7.0 2.4 1.8 4.7 3.7 4.8 

s2 -1.2 -0.0 -0.1 3.0 2.7 2.0 3.7 2.0 

s3 3.7 0.6 -0.5 -11.1  -11.7 -3.9 3.7 2.7 

Avg -2.2 0.0 2.1 -1.9 -2.4 0.9 3.7 3.2 

Proposed CNTF with variable 

sparsity subject to constraint 

that 𝜏𝑚𝑎𝑥 = 𝜙𝑚𝑎𝑥 = 1 in (8) 

 

𝐾𝑗  1 4 4 5 

 

SDR 
s1 -0.2 1.2 4.7 4.0 6.9 5.2 1.1 2.0 

s2 0.6 1.0 1.3 1.4 -1.2 0.1 2.3 0.9 

s3 1.1 2.1 0.0 0.4 0.4 -2.1 3.3 3.5 

Avg 0.5 1.4 2.0 1.9 2.0 1.1 2.2 2.1 

 

 

𝜏𝑚𝑎𝑥  10 1 1 7 

𝜙𝑚𝑎𝑥  10 6 6 1 

NTF2D [22] 

𝐾𝑗  1 1 1 1 

 

SDR 
s1 -4.9 0.2 0.9 8.3 2.9 2.6 -3.3 -3.2 

s2 1.3 1.9 -4.8 -8.7 -9.5 -3.2 -3.0 -0.6 

s3 -3.5 1.3 -3.0 2.6  -11.4 -6.4 0.2 -2.4 

Avg -2.4 1.1 -2.3 0.7 -6.0 -2.3 -2.0 -2.1 

Proposed CNTF2D with 

variable sparsity and optimized 

model order  

𝐾𝑗  1 4 4 5 

 

SDR 
s1 1.2 3.3 7.9 7.4 9.3 5.7 2.0 2.7 

s2 1.9 2.2 1.6 1.7 0.6 1.7 3.9 3.0 

s3 1.8 3.4 -0.8 0.4 0.6 0.2 3.8 4.7 

Avg 1.6 3.0 2.9 3.2 3.5 2.5 3.2 3.5 
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Table 5 

SDRs of Adiloglu et al., NTF2D, and the proposed algorithms of dev 3. 

 

 

 

 

Table 6 

Computational time 

Algorithm Time (s) per 

iteration 

Average number of 

iteration to reach 

steady-state solution 

Total time (s) 

Adiloglu 2.35 150 352.5 

NTF2D 3.42 110 376.2 

Proposed algorithm 10.31 41 422.7 

  

Dataset 2 

SiSEC 2016: Dev. 3 

male4 female4 

Reverberation Time (ms) 380 130 380 130 

Microphone Distance (cm) 5 50 5 50 5 50 5 50 

Adiloglu et al. 

Algorithm [31] 

 

SDR 

s1 0.4 -1.7 -2.6 -2.1 0.2 -0.2 -0.0 -1.2 

s2 -2.6 -0.9 -0.2 2.6 0.2 -1.0 -0.9 0.6 

s3 -2.1 0.8 1.5 0.8 -3.1 -2.4 0.4 1.4 

s4 0.0 -0.4 5.2 3.9 -2.8 0.1 4.1 4.4 

Avg -1.1 -0.6 1.0 1.3 -1.4 -0.9 0.9 1.3 

Proposed CNTF with variable 

sparsity subject to constraint that 

𝜏𝑚𝑎𝑥 = 𝜙𝑚𝑎𝑥 = 1 in (8) 

𝐾𝑗  2 4 

 

SDR 
s1 -0.0 0.2 0.8 -0.3 0.3 0.7 0.2 0.5 

s2 -0.8 -3.6 -1.0 1.0 0.9 0.5 1.6 -0.7 

s3 0.2 0.3 0.9 -0.5 -0.6 -0.2 0.5 0.9 

s4 0.8 0.0 0.9 -0.4 0.2 0.2 1.3 -1.2 

Avg 0.0 -0.8 0.4 -0.1 0.2 0.3 0.9 -0.1 

 

 

𝜏𝑚𝑎𝑥  10 2 

𝜙𝑚𝑎𝑥  10 8 

NTF2D [22] 

𝐾𝑗  1 1 

 

SDR 
s1 -5.1 -6.6 -3.8 -9.6 -1.6 -5.7 -9.5 -6.8 

s2 -6.7 -5.7 1.2 2.1 -4.6 -7.7 -2.7 -3.9 

s3 -7.8 -1.0 -3.9 -3.9 -3.4 -3.4 -5.1 0.6 

s4 -7.0 -8.4 -5.9 -6.9 -3.6 -2.4 -5.3 -6.6 

Avg -6.7 -5.4 -3.1 -4.6 -3.3 -4.8 -5.6 -4.2 

Proposed CNTF2D with variable 

sparsity and optimized model 

order 

𝐾𝑗  2 4 

 

SDR 
s1 1.2 0.5 1.1 0.5 1.9 1.0 1.4 1.0 

s2 1.2 1.0 1.3 2.6 0.8 1.1 1.6 1.0 

s3 1.3 2.2 1.2 0.9 1.3 0.7 0.8 2.9 

s4 1.4 0.8 1.2 1.2 0.7 1.9 1.3 0.9 

Avg 1.3 1.1 1.2 1.3 1.2 1.2 1.3 1.5 
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Fig. 2: Graphical model of the proposed CNTF2D. 

 

  

 

Gamma-Exponential process 

GEM-MU Based 

CNTF2D 

Variable Sparsity 

Algorithm 

 

Mixture  

Estimated Sources 

Fig. 1: High level presentation of the proposed system. 

𝑘, 𝜏, 𝜙 

𝜆 
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𝐻 𝑊 

𝛴(𝑏) 
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Fig. 3: Average SDR with respect to different sparsity 

values. 

Fig. 4: The effects of sparsity on the estimated source. (a) Original source image. (b) Estimated source 

with variable sparsity. (c) Estimated source with uniform over-sparse. (d) Estimated source with uniform 

under-sparse. 

(a) (b) (c) (d) 
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Fig. 5: Estimation of the convolutive parameters and number of components by using the proposed 

Gamma-Exponential process algorithm. (a) Number of components, (b)–(l) Convolutive parameters 

corresponding to each component in (a). 
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Fig. 6: Average cost function for different conditions. 

Fig. 7: Comparison between the spectrogram of the full-rank NMF, and the variable sparsity CNTF2D. 

(a) Spectrogram of the original source. (b) Spectrogram of the estimated source by using the full-rank 

NMF. (c) Spectrogram of the estimated source by using the variable sparsity CNTF2D. (d) One 

component of W and H, with their corresponding spectrogram for the variable sparsity CNTF2D. 
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Fig. 8: Average cost function for different conditions. 

Fig. 9: Spectrogram of one of the mixtures and its original and estimated sources. 
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Fig. 10: Plot  SDR (dB) versus SNR (dB) of
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