

Reverse Engineering a Bluetooth Low

Energy Light Bulb

Created by Tony DiCola

https://learn.adafruit.com/reverse-engineering-a-bluetooth-low-energy-light-bulb

Last updated on 2022-12-01 02:23:34 PM EST

©Adafruit Industries Page 1 of 20

3

4

8

13

19

Table of Contents

Overview

Explore GATT

Sniff Protocol

Control With Bluez

Inside The Bulb

©Adafruit Industries Page 2 of 20

Overview

This is a fun project that walks through how to reverse engineer a smart light bulb

that uses Bluetooth Low Energy (BLE) to change its color. I stumbled on the Smart

Bulb Colorific! () bulb recently at a local store and was intrigued by its Bluetooth-

based control and relatively low price (for a 'smart' gadget at least). Because the light

bulb uses Bluetooth Low Energy (which is a subset of Bluetooth 4.0) it means any

BLE device can in theory control the bulb. But to control the bulb the protocol for

communicating with it must be understood, and this guide will show you how to

use the Bluefruit LE sniffer and other tools to reverse engineer a Bluetooth Low

Energy gadget.

If you'd like to follow along and control a bulb yourself you'll first need a few things:

A Smart Bulb Colorific! light bulb (). It's

possible other BLE light bulbs can be

controlled in a similar manner as

discovered here, but I recommend picking

up one of these bulbs to be sure you can

control it. The bulbs use the Colorific! app

on the Android () or iOS () app store for

control. You can see a picture of the bulb I

used to the left.

Bluetooth 4.0 USB module (). Make sure the module supports Bluetooth Low

Energy. Older Bluetooth before version 4.0 does not support BLE!

Raspberry Pi () of any model (A, B, A+, B+, Pi 2, etc.). This guide shows how to

use tools and code on the Pi to control the bulb. Another linux computer can be

used but we've only tested it on the Pi

•

•

©Adafruit Industries Page 3 of 20

http://www.amazon.com/Controlled-compatible-Bluetooth-Dimmable-Daylight/dp/B00KG1NE4M
http://www.amazon.com/Controlled-compatible-Bluetooth-Dimmable-Daylight/dp/B00KG1NE4M
https://learn.adafruit.com//assets/23586
https://learn.adafruit.com//assets/23586
https://learn.adafruit.com//assets/23587
https://learn.adafruit.com//assets/23587
http://www.amazon.com/Colorific-Controlled-Dimmable-Android-Bluetooth/dp/B00KG1JYCI
https://play.google.com/store/apps/details?id=com.colorificbulb.RGB&hl=en
https://itunes.apple.com/us/app/colorific-bulb/id826131369?mt=8
https://www.adafruit.com/product/1327
https://www.adafruit.com/product/2358

Bluefruit LE Sniffer (). The Bluefruit LE sniffer is a special version of the Bluefruit

LE friend () but with a firmware that allows it to watch BLE packets being sent to

and from a device.

You should also familiarize yourself with Bluetooth Low Energy by first reading this

introductory guide (). This will help you understand terminology like GATT, service,

and characteristic.

Continue on to learn where to start when exploring a Bluetooth Low Energy device.

Explore GATT

The first step to figuring out how the light bulb works is to investigate the GATT

services exposed by the bulb. GATT, or generic attribute profile, is a protocol for

interacting with a BLE device. Devices expose a list of services, and each service

exposes a list of characteristics which can be read and/or written by a BLE

application. Check out this great short introduction guide () for more information on

Bluetooth Low Energy and GATT.

An easy way to explore the GATT of a BLE device is using a smartphone or tablet and

a BLE GATT exploration app. In this case I'll use Nordic Semiconductor's Master

Control Panel app for Android (). This is a free app that works well at letting you

explore the GATT services of a BLE device.

With a light bulb turned on, I started the master control panel app and quickly saw the

light bulb advertising itself as a BLE device:

•

©Adafruit Industries Page 4 of 20

https://www.adafruit.com/product/2269
https://www.adafruit.com/product/2267
https://www.adafruit.com/product/2267
file:///home/deploy/introduction-to-bluetooth-low-energy/introduction
file:///home/deploy/introduction-to-bluetooth-low-energy/introduction
file:///home/introduction-to-bluetooth-low-energy/introduction
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en

You can see master control panel lists all of the BLE devices that are advertising

themselves, including this 'RGBLightOne' device that must be my light bulb. The most

important thing to note here is the address of the device, 5C:31:3E:F2:16:13. The

address is a unique ID that will be different for every device.

Next I touched the connect button to connect and discover the GATT services

exposed by the bulb:

©Adafruit Industries Page 5 of 20

Now things are getting a little interesting! You can see the bulb exposes a handful of

services. Notice each service has a UUID (universal unique ID) and some of the

services have been recognized by master control panel as general services defined

by the BLE spec (). Short 4 hex character (16 bit) UUIDs identify these common

services, like 0x180A, 0x1803, etc.

When a service is clicked on it drills down into the characteristics exposed by the

service. For example this is what I see when I look at the device information service

and read its characteristics:

©Adafruit Industries Page 6 of 20

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

Unfortunately there isn't much useful information in the device information service of

the bulb. In fact the strings like model number, serial number, etc. appear to be set to

default values like "Model Number" and "Serial Number".

Looking further at the services list I see two unknown services at the bottom. These

are custom services that the manufacturer defined and are identifiable by their full

128-bit UUIDs, 0000ffe0-0000-1000-8000-00805f9b34fb and 0000ffa0-0000-1000-

8000-00805f9b34fb. If I'm lucky the manufacturer will have documented these

services so I can learn how to use the characteristics they expose.

©Adafruit Industries Page 7 of 20

In this case I did some searching online and found the two unknown services are

actually defined by Texas Instrument's CC2540 () development kit as an acceleromete

r and simple keys service (). This is a very interesting insight as it helps identify what

hardware is powering this bulb, it's very likely a TI CC2540 BLE system on a chip.

Looking at all the device services for the bulb it's a bit puzzling why none of them

appear to be related to LEDs or a light bulb. What likely happened is that the

manufacturer adapted an existing BLE board (like the CC2540) and sample code to

their needs instead of defining custom light bulb control services. This makes

understanding how the bulb works a little more challenging since I'll need to look at

the BLE commands sent by the bulb's control application to see what characteristics

control the bulb.

Continue on to learn how to sniff Bluetooth Low Energy traffic and take a deeper look

at how the bulb works.

Sniff Protocol

Now that I've examined the GATT for the bulb and hit a dead end, I'll capture packets

from the light bulb's control application to understand how it controls the bulb. This is

possible using a BLE sniffer like the Bluefruit LE sniffer () that's based on a Nordic

nRF51822 chip (). Using a special firmware and tools from Nordic ()I can watch the

BLE commands sent to the bulb to change its color. Nordic's sniffing tool even allows

the use of Wireshark (), a powerful and popular packet analysis tool, to examine the

traffic.

If you're doing your own BLE device sniffing with the Bluefruit LE sniffer, make sure to

read the guide on its usage first () as it explains how to install and setup the software.

 In my case I'll be using Nordic's tool on Windows as it lets me directly see the data in

Wireshark.

One thing to note, after you've finished examining the GATT for a device be sure to

disconnect or turn off any applications which were connected to the light bulb. BLE

only allows one connection to a device at a time, and if you leave a GATT control app

running then you won't be able to run the sniffer or other things that talk to the bulb!

First I begin by plugging in the Bluefruit LE sniffer and running's Nordics's sniffer

application. After a few moments the tools scans and lists all available BLE devices.

 Notice the device it finds has the same address for the light bulb that I saw earlier

while exploring its GATT--this helps me know I'm looking at the correct device:

©Adafruit Industries Page 8 of 20

http://www.ti.com/product/cc2540
http://chipk215.github.io/keyfobsimulation/
http://chipk215.github.io/keyfobsimulation/
https://www.adafruit.com/product/2269
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF-Sniffer
https://www.wireshark.org/
file:///home/introducing-the-adafruit-bluefruit-le-sniffer/introduction

Then I press 0 to select device zero in the list and then press w to start Wireshark

with the packet capture.

One thing to note before you sniff BLE traffic with the Bluefruit LE sniffer is that it can

be sensitive to noise from other BLE devices. Try to turn off all the other nearby BLE

devices like tablets, phones, etc. Also be sure as few programs as possible are

running on your PC becuase the tool needs to grab data from the Bluefruit sniffer as

quickly as possible to prevent dropping packets.

Once Wireshark loads I quickly see a flood of advertising packets like:

©Adafruit Industries Page 9 of 20

If you haven't used Wireshark before the interface can be a little daunting. I

recommend reading the official documentation and watching videos () on using it to

get a quick overview of the tool. At a very high level Wireshark's main window shows

you three things:

The top third is the list of packets that have been captured. When wire shark is

capturing packets this list will quickly grow. You can scroll up and down to see

packets as they've been received, and you can click a packet to see more

information about it.

The middle third is information that's been decoded from the packet. You can

drill in to specific frames inside the packet to see what it's doing. Think of a

network packet kind of like an onion, where you have layers of information that

get more detailed as you peel them back and look deeper into the packet.

The bottom third is the raw hexadecimal and ASCII representation of the packet

data. It's interesting to note that as you click around information in the middle

pane you can see highlighted the raw representation in the bottom pane.

In the picture above I've selected a BLE advertising packet and highlighted a few

interesting details in the middle pane. You can see this packet is coming from the

light bulb since it has the same address for the bulb that I learned earlier from

exploring its GATT. You can also see the advertisement packet includes a few of the

services I saw earlier that the bulb exposes.

Now it's time to load the bulb's control application and see what happens when

I change the bulb's color. I loaded up the control app on an iOS device (note: for

some reason I couldn't capture packets from the Colorific! Android application--my

suspicion is the app might be generating packets that are malformed or confusing the

nRF sniffer), found the bulb, and changed the bulb's color a few times. As I did this I

saw small bursts of interesting packets scroll by in Wireshark. Unfortunately the

continuous stream of other BLE communication packets added a lot of noise

that made it difficult to focus on just the bulb control packets. However Wireshark has

a great capability for filtering packets that I can use to help focus on on just the

control packets.

To filter the packets I first stopped the capture of packets by pressing the red square

stop button in Wireshark's toolbar. This is also a good point to save the capture file

so it can be examined again without having to sniff device traffic.

Once the capture stopped I scrolled through the packet list and found some

interesting packets under the ATT protocol. These are packets which contain

commands for reading and writing BLE characteristics and are what I need to examine

•

•

•

©Adafruit Industries Page 10 of 20

https://www.wireshark.org/docs/

in more detail. To filter out all the other packets I entered the expression 'btl2cap.cid

== 0x0004' (without quotes) in the filter box below the toolbar, then pressed enter.

 Wireshark immediately hid all the other packets and just showed me the ATT packets:

Another way to filter to just the ATT packets is to select an ATT packet and drill into

the Bluetooth L2CAP Protocol in the middle pane. Click the CID: Attribute Protocol

(0x0004) line to select that part of the packet which identifies it as an ATT packet,

then right click and choose the Apply as Filter -> Selected menu item. This will set the

filter expression to only show packets with that exact attribute protocol value.

I can now restart packet capture with the filter applied and see only the ATT packets

and none of the other BLE packet noise. This is great because it removes the packets

I don't care about and lets me easily see the packets that matter.

As I changed the color of the bulb in the app I saw BLE characteristic write commands

like the picture above shows. Notice the parts of the packet I've highlighted which

show the handle that identifies the characteristic being updated, and the value which

are the bytes to use as the new value of the characteristic.

Now that I can see the packets associated with a color change I can try to reverse

engineer what the bytes inside the packet mean. Reverse engineering can be more

of an art than a science as it helps to have intuition and experience with what you're

trying to reverse engineer. Unfortunately there is no fool-proof process for reverse

engineering any device!

©Adafruit Industries Page 11 of 20

In this case I know the application is probably sending the bulb a new color, and

colors are typically represented in a few common ways like as a 24-bit value (with 1

byte/8 bits for each red, green, and blue component), a floating point value for each

color component, or perhaps even a string or ID that identifies the color inside a

palette or lookup table. If I'm really unlucky the color information might be encoded

or even encrypted in some way that I can't decipher--there is no guarantee I will be

able to figure out the protocol!

I started by comparing the value of multiple color change packets to see how they

differed. These are the values I saw (in hexadecimal):

58010301FF00E12D00

58010301FF00EF0018

58010301FF0047E756

58010301FF000F2373

58010301FF00CE5F00

Do you see a pattern? The first few bytes are exactly the same and only the last 3

bytes are changing. I know a 24-bit representation of color with a byte for each red,

green, and blue component is quite common so could these last three bytes be the

color of the bulb? Let's look at the colors if I assume the first changing byte is red, the

second is green, and the third is blue:

Aha! I can see these color values are the red, green, blue, and orange colors that I

had sent to the bulb with its control application! By just looking at a few packets it's

trivially easy to reverse engineer this bulb's protocol. It appears that sending a write

to the characteristic with handle 0x0028 and providing a value that starts with

0x58010301FF00 and ends with a byte for the red color, green color, and blue color

will change the bulb's color.

Before I get too excited about this discovery I need to replicate it myself to confirm

the protocol works as I suspect. What the 6 bytes in front of the color represent are a

complete mystery and might complicate understanding how the protocol works. Are

they a static value that uniquely identifies this write as a color update, could they be

a magic value like a session ID the bulb told the app to send ahead of time, or

perhaps something else entirely? Trying to replay one of the captured packets myself

will help me confirm if I've really figured out the protocol.

•

•

•

•

•

©Adafruit Industries Page 12 of 20

Continue on to learn how to use the bluez Bluetooth stack to send BLE packets to the

bulb.

Control With Bluez

Now for some real fun, I'll try to control the light bulb using a BLE adapter on a

computer. I'm going to use a Raspberry Pi, Bluetooth 4.0 USB adapter, and the bluez

Bluetooth stack () becuase it's easy to setup and use. Unfortunately there is no cross-

platform Bluetooth stack or API that works across Windows, Mac, Linux, etc. so if you

want to use a different platform you'll need to look at that platform's Bluetooth Low

Energy stack and API.

To setup the Bluetooth dongle and bluez I followed the steps in the setting up section

of the Pi Beacon guide here (). A couple small changes I made were to download and

build the latest version of bluez (5.28 as of the time of this writing) and to manually

install bluez's GATT tool. For some reason bluez does not install its GATT tool

anymore as this bug notes (), however an easy workaround is to manually install it by

executing this command inside the bluez source directory after it has been compiled

and installed:

sudo cp attrib/gatttool /usr/bin/

Confirm you can access gatttool by running 'gatttool --help' (without quotes) to see

the usage information of the tool. If you see an error that gatttool can't be found,

double check it has been compiled by bluez and it's in to the /usr/bin/ directory.

Now I brought up the Bluetooth USB adapter on the Pi by running the command hcico

nfig to find the name of the adapter (it should be hci0 assuming it's the only Bluetooth

adapter connected to the Pi). Then running 'sudo hciconfig hci0 up' (without quotes)

to turn on the adapter. Finally running hciconfig again should show the adapter is in

the UP RUNNING state as shown below:

©Adafruit Industries Page 13 of 20

http://www.bluez.org/
http://www.bluez.org/
file:///home/pibeacon-ibeacon-with-a-raspberry-pi/setting-up-the-pi
file:///home/pibeacon-ibeacon-with-a-raspberry-pi/setting-up-the-pi
https://bugzilla.redhat.com/show_bug.cgi?id=1141909

Now that the adapter is up I can scan for BLE devices by running the command:

sudo hcitool lescan

Information about nearby BLE devices will be displayed. Press Ctrl-C to stop the

scanning process. Notice from the picture below my light bulb address and name are

visible during the scan:

If you don't see your light bulb in the scan then make sure it is turned on and that no

devices are connected to the bulb. Remember BLE only allows one device to be

connected at a time so if you left the bulb's control application or a BLE GATT app

running then it might still be connected to the bulb and preventing you from finding

©Adafruit Industries Page 14 of 20

the bulb. Close out of all apps using the bulb and try running the scan again until you

see the bulb being advertised.

Next I run the bluez GATT tool to interact with the bulb. I ran this command to start

GATT tool's command shell:

sudo gatttool -I

A command prompt is shown and I can type help and press enter to see a list of

commands.

Now I connect to the bulb by issuing a connect command:

connect <bulb address>

Where is the address of the bulb that was found with the previous scan command. In

my case I ran 'connect 5C:31:3E:F2:16:13' (without quotes) to connect to my bulb. After

a moment a 'Connection successful' message should be displayed like below:

Once connected to the bulb some commands can be run to examine the bulb in more

detail. In particular the primary command will list services exposed by the bulb like

below:

©Adafruit Industries Page 15 of 20

The output of the primary command is a raw list of the characteristic handles and

service UUIDs implemented by the bulb. This is the same information from earlier

when exploring the GATT, but with a bit lower level of detail.

In particular I can see the characteristic handle 0x0028 falls within the range of the

0x1802 service UUID (for UUIDS that have the form

0000xxxx-0000-1000-8000-00805f9b34fb they are officially recognized UUIDs and

are abbreviated with the shorter 16-bit UUID). Looking at the Bluetooth services list ()

the 0x1802 service is the Immediate Alert service (), which is typically used for

proximity sensors and similar devices. Very odd that the light bulb appears to be

using this service to control its color!

Another command that can be run is the char-desc command to get details on a

particular characteristic. I ran this command to query the 0x0028 characteristic:

char-desc 0x0028 0x0028

(both 0x0028 values are necessary as the command takes a range of beginning and

ending handles)

I saw a response like the following which tells me what UUID represents this

characteristic:

©Adafruit Industries Page 16 of 20

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.immediate_alert.xml

Going to the Bluetooth characteristic list () I can see this characteristic is the alert

level () characteristic. I can see from the characteristic definition that it is normally

only takes one byte which is interpreted as a level of alert. However from the

protocol sniffing earlier it looks like the bulb has overloaded the alert level

characteristic to take 9 bytes, including the 3 bytes of RGB color information--very

strange, indeed!

Now for the moment of truth, can I change the color of the bulb by writing to this

characteristic based on what was seen from sniffing the protocol? I executed

commands like these to write new values to the 0x0028 alert level characteristic:

char-write-cmd 0x0028 58010301ff00ff0000
char-write-cmd 0x0028 58010301ff0000ff00
char-write-cmd 0x0028 58010301ff000000ff
char-write-cmd 0x0028 58010301ff00000000
char-write-cmd 0x0028 58010301ff00ffffff

Woo hoo! The light bulb changed its color after each command was run! In particular,

writing 58010301ff00ff0000 made the bulb turn red, 58010301ff0000ff00 turned the

bulb green, and 58010301ff000000ff turned the bulb blue. Sending RGB colors of

000000 and ffffff turned the bulb off and on at full bright white respectively too. This

confirms what I suspected from the protocol reverse engineering, the last 3 bytes of

the message represent the red, green, and blue color of the bulb.

I could mix and match colors in between too, for example sending ffee00 for a yellow

color. An HTML color picker () is helpful for finding color byte values quickly.

©Adafruit Industries Page 17 of 20

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.alert_level.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.alert_level.xml
http://www.w3schools.com/tags/ref_colorpicker.asp

To really confirm my understanding of the bulb's protocol I duplicated this GATT

tool control process with a second bulb. I turned on a second bulb, scanned for BLE

devices again to find the new bulb's address, and connected with GATT tool to

change its color. The same characteristic write commands above worked to control

the second bulb's color! It appears the 6 bytes at the start of the characteristic write

are just a fixed value and luckily do not represent anything meaningful or necessary

for changing the bulb's color.

Now that the protocol is understood I had some fun by controlling the light from code.

 As a simple example I made a python script () to use bluez's GATT tool and cycle

through a rainbow of hues (note that if you are a more experienced bluez user you

might realize that GATT tool can be controlled from the command line directly,

however in my testing I couldn't get GATT tool to control the bulb outside of an

interactive session, perhaps because of a bug inside the tool). If you'd like to try

yourself you can grab the script from this repository and install its dependencies by

executing these commands on the Pi:

GitHub Repository for this project

sudo apt-get update
sudo apt-get install git build-essential python-dev python-pip
sudo pip install pexpect
cd ~
git clone https://github.com/adafruit/BLE_Colorific.git
cd BLE_Colorific

Then run the script and provide it the address of the bulb to control as the first

parameter. Be sure to run the script as a root user with sudo too. For example to

control my bulb I ran:

sudo python colorific.py 5C:31:3E:F2:16:13

You should see the bulb cycle through all the hues of color. If you'd like to adjust the

speed, range of hues, etc. edit the colorific.py file and change some of the variables

defined near the top (look at the comments to see what they mean).

Phew! That was a decent amount of work but it's quite satisfying to have control over

the bulb. The sky is the limit as far as interesting things to do with a bulb that you can

control yourself over Bluetooth Low Energy! For example you could make the bulb

change color if you get new emails or even based on the local weather forecast. You

can animate the bulb like the demo of cycling through hues or do something more

interesting like flashing the bulb in time with music. Be creative and turn the bulb into

something fun and interesting!

©Adafruit Industries Page 18 of 20

https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/BLE_Colorific
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/BLE_Colorific

Inside The Bulb

Out of curiosity I decided to cut open one of the bulbs to see if there were more

details on what BLE board is being used inside the bulb. From what was found earlier

while exploring the bulb's GATT I expect a Texas Instruments CC2540 chip is inside

the bulb.

I cut through the plastic diffuser around the bulb with a Dremel and saw a little circuit

board with the LEDs:

It's interesting to see a ring of white LEDs (soft white actually, somewhere around

3500K I would guess) around the perimeter of the board. In the middle are the

colored LEDs, with two green, two red, and one blue LED. Presumably when the bulb

shows pure white it turns on the outer white LEDs to have a more pleasing color as

the red, green, and blue LEDs would be colder and less pleasant for indoor lighting.

Also interesting is the inclusion of only one blue LED vs. two of the other primary

color LEDs. I suspect only one blue LED is necessary because humans perceive the

color blue with more intensity than other colors. This is why blue LEDs on electronic

gadets are so bright and annoying in a dark room!

Going further I unscrewed the board from the bulb and pried it off with a screwdriver.

 It turns there's a row of headers that are soldered to the board, but the solder

snapped off with a bit of force.

Once unscrewed the top of the bulb base lifts off to reveal:

©Adafruit Industries Page 19 of 20

Solid silicone gunk, yuck! The edges of a couple circuit boards are visible poking out

near the left side, but unfortunately the silicone makes it impossible to get to the

boards easily. Removing the silicone could get quite messy so this is as far as the

bulb diassembly will go.

Overall for the price these 'Colorific!' smart light bulbs are quite interesting. From

what I found during the reverse engineering it looks like they're probably using a

common TI CC2540 BLE SoC and perhaps even based the bulb's code on some of

TI's examples like a proximity alert sensor. If you're looking for an inexpensive light

bulb that you can control yourself, check out these bulbs!

©Adafruit Industries Page 20 of 20

	Reverse Engineering a Bluetooth Low Energy Light Bulb
	Table of Contents
	Overview
	Explore GATT
	Sniff Protocol
	Control With Bluez
	Inside The Bulb

	Overview
	Explore GATT
	Sniff Protocol
	Control With Bluez
	Inside The Bulb

