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Abstract

This thesis establishes new results concerning the proof-theoretic strength
of two classic theorems of Ring Theory relating to factorization in integral
domains.

The first theorem asserts that if every irreducible is a prime, then every
element has at most one decomposition into irreducibles; the second states
that well-foundedness of divisibility implies the existence of an irreducible
factorization for each element.

After introductions to the Algebra framework used and Reverse Math-
ematics, we show that the first theorem is provable in the base system of
Second Order Arithmetic RCA0, while the other is equivalent over RCA0 to
the system ACA0.
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Chapter 1

Introduction

The program of Reverse Mathematics was introduced by Harvey Fried-
man in his 1974 address to the International Congress of Mathematicians
in Vancouver. It is a program in Mathematical Logic with deep philosophi-
cal import, redefining one of the pillars of the Foundations of Mathematics,
namely Proof Theory.

1.1 Background

Reverse Mathematics is a study of the foundations of ordinary Mathemat-
ics, and this involves both reasoning within a given proof system and “go-
ing backwards from the theorems to the first principles”. The main question
it poses is “which set-existence axioms are needed to prove the theorems of
non-set-theoretic Mathematics?” It stands in intimate connection with Com-
putability Theory, since a certain notion of effectiveness provides a founda-
tion to these types of investigations.

The results the logician focuses on are, in a sense, already known to be
true if one considers the larger proof framework of ZFC Set Theory. It is not
the ’truth’ of results that one seeks to establish, but the more philosophically
adequate notion of ’relative truth’. We come to a better understanding of
what this means if we try to restrict our attention to different programs in
the Philosophy of Mathematics, ranging from Constructive Mathematics to
Impredicativism.

The process is carried out in subsystems of Second Order Arithmetic,
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2 CHAPTER 1. INTRODUCTION

where one takes a base system as proving grounds and then proves that
a certain theorem is equivalent to a stronger set of axioms, over the base
system. Like any equivalence, this proof is done in two parts: first, a direct
proof is formulated that the theorem follows from the axioms, and then a
’reversal’ step is appended, in which it is shown that the axioms follow if
we are to assume the theorem.

In the words of S. S. Wainer, reviewing Friedman’s survey, two main
themes can be identified straight away: first, that “the ’proper’ axioms
to use in proving particular fundamental theorems of mathematics often
turn out to be (provably) equivalent to those theorems”, and second that
“stronger axioms are needed to provide explicit definitions of hard-to-
define sets of integers than merely to prove their existence”.

Friedman introduced several axioms for arithmetic sets. RCA, the base
system, which is too weak for most proofs but strong enough for most def-
initions, consists of basic axioms for arithmetic manipulations, a restricted
induction scheme and a comprehension scheme for computable properties.
Hence, provability in this system is equivalent to effectiveness.

ACA is the Arithmetic Comprehension axiom system, KL consists of
RCA (recursive comprehension axioms) plus König’s Lemma, SLUB con-
sists of RCA plus the axiom “every bounded sequence of reals has a l.u.b.”.
SBW is the sequential Bolzano-Weierstrass system. The above systems are
all equivalent.

WKL (the weak König’s Lemma system, for binary trees) is equivalent
to SHB (sequential Heine-Borel system) and to the reflection principle “if
a statement is true there is a structure in which it holds” (it has a model),
which can also be viewed as a soundness statement. The second theme is
illustrated by the fact that whereas ACA is clearly sufficient to explicitly
define non-recursive sets, WKL is not.

Even though it deals with Constructivism, Reverse Mathematics differs
from this school of thought because it assumes the framework of Classical
Logic and does not make the radical ontological commitments of intuition-
ists.

However, from this perspective, Reverse Mathematics is the answer to
those who are not prepared to make the full set-existence commitments
that a working mathematician makes: the big five subsystems correspond
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roughly to Bishop’s Constructive mathematics, Hilbert’s Finitistic reduc-
tionism, Weyl’s and Feferman’s Predicativism, Friedman’s and Simpson’s
Predicative reductionism, and to Impredicativism respectively.

1.2 Effective and Reverse Algebra

Effective Algebra incorporates both Computable Algebra and Constructive
Algebra. Good surveys of the latter are found in [1, 16].

The systematic study of computability in the framework of Ring Theory
started in the fifties and sixties with [7, 8, 20, 21].

The work of Fröhlich and Sheperdson in [7, 8] assumed a less rigorous
foundation for computable sets, while Rabin in [20, 21] and Mal’cev in [14]
developed the modern concept of a computable structure by using an ana-
logue of the Gödel numbering of logical syntax.

The focus of [7] was effective factorization of polynomials, extending on
the work of Van der Waerden ([29]) and Kneser([12]). In particular, [29] has
discussed the problem of carrying out certain field theoretical procedures
effectively, in a ”finite number of steps”, and it was shown that there can be
no general algorithm for splitting polynomials over an explicitly given field
K, more precisely that such an algorithm would lead to a general procedure
for deciding whether arbitrarily given properties of positive integers are in-
stantiated. (A splitting algorithm for a field K decides the irreducibility of
a polynomial over K[x].) In [29] it was defined an ”explicitly given” field
as one whose elements are uniquely represented by distinguishable sym-
bols with which one can perform the operations of addition, multiplication,
subtraction and division in a finite number of steps, and Fröhlich and Shep-
erdson assume the same framework.

In [7, 8] it was constructed an explicit field for which there is no splitting
algorithm, and explicit fields K, K̄ such that K̄ is a simple non separable
extension of K, and K has a splitting algorithm but K̄ does not. In addi-
tion to this, they show there exist isomorphic ”explicitly given fields”, one
of which possesses a splitting algorithm but the other does not, and that
a computable field with a splitting algorithm has a computable algebraic
closure that is unique up to computable isomorphism.

In [20, 21] Rabin develops the notion of what it means for an algebraic
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structure to be ”computable” by defining an indexing of a set S as an in-
jective mapping i : S → ω such that i(S) is a recursive subset of ω. Several
results are then proved, including the fact that the algebraic closure T of any
computable field K is computable, and the natural embedding of K into T
is computable.

Mal’cev ([14]), working on the same framework based on Gödel num-
bering, focused on effective universal algebras.

A historical note on Computability in Ring Theory is found in [26].

Reverse Algebra (Reverse Mathematics in the context of Algebra) is inti-
mately related to Computable Algebra and debuted with the seminal paper
by Friedman et al. ”Countable Algebra and set existence axioms” ([6]). Sev-
eral equivalences are proved over RCA0. It is shown that WKL0 is equiv-
alent to the following statements: every countable field has a unique alge-
braic closure; every countable formally real field is orderable; every count-
able formally real field has a real closure; every countable commutative ring
has a prime ideal. It is shown thatACA0, is equivalent to the statements: ev-
ery countable field is isomorphic to a subfield of its algebraic closure; every
countable ordered field is isomorphic to a subfield of its real closure; ev-
ery countable field has a transcendence base; every countable vector space
has a basis; every countable abelian group has a torsion subgroup; every
countable abelian group has a unique divisible hull; every countable com-
mutative ring (or countable integral domain) has a maximal ideal. Finally, it
is shown that ATR0 is equivalent to the statement: every countable reduced
abelian group has a system of Ulm invariants which determine it up to iso-
morphism, and that Π1

1−CA is equivalent to the statement: every countable
abelian group is the direct sum of a divisible group and a reduced group.

Subsequently, weaker theories have been investigated to allow for equiv-
alences with RCA0 to be proven; some equivalences are: every finitely gen-
erated vector space over a countable field has a basis (Friedman quoted by
[11]); a polynomial over a countable field has finitely many roots, such a
polynomial has an irreducible factor, the ring of polynomials over a count-
able field is a unique factorization domain ([25]) and a principal ideal do-
main, every countable Euclidean domain is a unique factorization domain,
if R is a countable unique factorization domain, so is R[x] ([22]).

For a treatment of Reverse Algebra we refer the reader to [24].
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1.3 Results

Our problems relate to two well-known equivalent characterizations for
Unique Factorization Domains. Either one of these characterizations is em-
ployed as a definition, while the other is showed to be equivalent. The two
characterizations are:

ACCP & AP-domain (I)

Atomic & U-UFD (II)

Characterization I invokes the Ascending Chain Condition on Principal
Ideals (ACCP), which is equivalent to the statement ”the divisibility relation
is well-founded”. It also invokes the property of being an AP-domain, by
which every irreducible is a prime. Hence, the first characterization reads:

The divisibility relation is well-founded and every irreducible is a prime.

Characterization II invokes the property of being Atomic, which requires
every element of the ring to have an irreducible factorization, and the prop-
erty of being an U-UFD, which stipulates that any element which admits
an irreducible factorization has a unique such factorization, up to units and
order of the factors. So this reads:

Every element has exactly one factorization into irreducibles.

The equivalence is not hard to prove, and we state it here as the first
theorem:

Theorem 1.1. Let R be an integral domain. The following are equivalent:
1. R is an AP domain which satisfies the ACCP;
2. R is an Atomic U-UFD.

These two characterizations hint towards two other classic theorems of
Ring Theory. We will use these two theorems as objects of study and we
will provide their strength relative to the five subsystems of Second Order
Arithmetic used in Reverse Mathematics. The theorems depict two different
implications. The first one links irreducibles, primes and unique factoriza-
tions:
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Theorem 1.2. If an integral domain is AP, then it is an U-UFD.

As expected, the second theorem links ACCP and Atomicity:

Theorem 1.3. If an integral domain satisfies the ACCP, then it is Atomic.

Given the equivalence between the characterizations and the above im-
plications, it is somewhat surprising that neither of the two converses hold,
as shown in [10, 2]. Hence the situation is, in some sense, asymmetrical.
This relationship is depicted below by Figure 1.1.

Characterization I Characterization II

Theorem 1.3 ACCP Atomic

Theorem 1.1 & &

Theorem 1.2 AP-domain U-UFD

×

×

Figure 1.1: The logical structure of our main problems

It is perhaps less surprising that theorems 1.2 and 1.3 exhibit different
proof-theoretic strengths. This can be easily seen by examining their stan-
dard proofs: while the proof of the second holds effectively, the proof of the
first one requires the Halting Set as an oracle. It is these novel facts that the
present work establishes.

More precisely, we give an involved proof that theorem 1.3 is equivalent
to ACA0 over RCA0 while also giving an argument that theorem 1.2 is
provable in RCA0.

Chapter 2 introduces the notions of Algebra we will make use of in our
treatment of UFDs. Chapter 3 provides a short introduction to Computabil-
ity Theory and Reverse Mathematics and presents some results concerning
Effective Algebra that will be useful in the next Chapter. Finally, Chapter 4
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focuses on our main results. A brief conclusion is formulated at the end of
Chapter 4.
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Chapter 2

Elements of Algebra

This chapter sets up the framework of Abstract Algebra we will be inter-
ested in, which concerns the theory of commutative rings. Some of the ma-
terial presented here is standard, but we include it in order to lay a foun-
dation to our inquiry. Other parts of this chapter are more specialized and
form prerequisites of Chapter 4, in which our results are presented.

In the Chapters concerning Algebra the capital letters P,Q,R, S will de-
note rings, small letters will usually denote elements of rings, maps will be
referenced by greek letters ϕ, ψ, η, sets will be referenced by capitals I, J,K
and the letters f, g, h will be reserved for polynomials.

We start by defining a ring structure.

Definition 2.1. A ring is a nonempty set R endowed with two binary
operations, + and ·, such that for all a, b, c ∈ R the following conditions
hold:
1. a+ b = b+ a (commutativity of addition);
2. (a+ b) + c = a+ (b+ c) (associativity of addition);
3. ∃ 0 ∈ R such that ∀a ∈ R, a+ 0 = a (additive identity);
4. ∀a ∈ R∃ − a ∈ R such that a+ (−a) = 0 (additive inverses);
5. a · b = b · a (commutativity of multiplication);
6. a · (b · c) = (a · b) · c (associativity of multiplication);
7. ∃ 1 ∈ R such that ∀a ∈ R, a · 1 = a (multiplicative identity);
8. a · (b+ c) = a · b+ a · c (distributivity).

In the literature, the structure defined above is known as a “commutative

9
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ring with unity”. These are precisely the kind of rings we will make use of
in the present work, so we have restricted the definition of a ring to only
include these objects.

Examples include the integers Z, the integers modulo n, Z/nZ, and the
set Z[x] of all polynomials in the variable xwith integer coefficients. We will
give a formal treatment of polynomial rings below.

We will write (R,+R, ·R, 0R, 1R) for the ring R, and if it is understood
from context, the subscripts will be dropped.

For the treatment of basic Ring Theory, we follow Gallian in [9].

2.1 Divisibility

We begin our treatment of divisibility here.

Definition 2.2. A ring in which there are no non-zero elements a, b such that
a · b = 0 is called an integral domain.

A unit is an element a ∈ R such that there is b ∈ R with a · b = 1R. The set
of units of R is denoted as R×. In an integral domain, the element a divides
the element b if there exists c such that a · c = b. We write a | b. Elements a
and b of an integral domainD are called associates if a = u·b for a unit u. This
is equivalent to a | b and b | a, and we will write a ∼ b. A non-zero element a
of an integral domain D is called irreducible if it is a non-unit and, whenever
b, c ∈ D with a = b · c, then b is a unit or c is a unit. In other words, a is
irreducible if a is not a unit and whenever b|a, either b and a are associates
or b is a unit. A non-zero element a of an integral domain D is called a prime
if a is not a unit and a|b·c implies a|b or b|c. For example, in Z, the irreducible
elements are the prime numbers p and their additive inverses −p. Non-unit
elements which are not irreducible are called reducible.

Proposition 2.3. In an integral domain, every prime is irreducible.

Proof. Suppose p is prime and p = a · b. Then, p | ab, by primeness p | a or
p | b. Suppose without loss of generality that p | a, we have that p ∼ a, so b
must be invertible.
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The converse does not always hold; we will reserve a special name for a
ring in which the converse is true.

Definition 2.4. A ring in which every irreducible is prime is called an AP
domain.

Definition 2.5. An ideal of a ring R is a non-empty subset I of R such that:
1. a− b ∈ I whenever a, b ∈ I ,
2. r · a ∈ I whenever r ∈ R and a ∈ I .

Hence, an ideal generated by I in R has the form:

〈I〉 = {r1 · a1 + r2 · a2 + · · ·+ rk · ak | r1, r2 · · · rk ∈ R, a1, a2 · · · ak ∈ I}.

A multiset B is a pair (S,m), where S is a set and m is a function
m : S → ω. If s ∈ S, ms(B) = m(s) denotes the multiplicity of s in B. If
S = {s1, s2 · · · sk · · · }with msi = ni, we write

B = [s1, s1 · · · s1, s2, s2 · · · s2, · · · sk, sk · · · sk, · · · ],

where each si appears in B ni many times.
To formalize the idea of unique factorization, we use the following defi-

nition.

Definition 2.6. An irreducible (prime) factorization of p in the ring Q is a
finite multiset of irreducible (prime) elements B = [pi | i ≤ n] in Q, such

that p ∼
n∏
i=1

pi.

We say B is a subset of B′ up to association if there exists an injective
function f : B → B′ such that if f(p) = p′, then p ∼ p′. If f is a bijection we
say B and B′ are equal up to association and write B ∼ B′.

Since functions on multisets are defined for each copy of an element of
their domain, copies of the same element may be mapped differently. For
example, in the ring of integers [2, 2] is a subset of [2,−2, 3] up to association,
since we can put f(2) = 2 and f(2) = −2; the two copies of the integer 2

represent distinct elements of the domain of f .
Atomicity will play an important part in the present work. We define it

here.
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Definition 2.7. An integral domain R is Atomic if every non-zero element of
R has an irreducible factorization.

Note that the factorization of a unit of R is an empty multiset.
U-UFDs are also central in our treatment of divisibility.

Definition 2.8. An integral domain in which every element that admits a
factorization into irreducible factors has a unique such factorization (up to
association of multisets) is called an unrestricted unique factorization domain,
or U-UFD for short.

We are now ready to define a Unique Factorization Domain.

Definition 2.9. An integral domain R is a unique factorization domain if
1. R is Atomic,
2. R is a U-UFD.

A principal ideal in a ring R is an ideal I generated by a single element a,
i.e. I = {r · a | r ∈ R}.

A principal ideal domain (PID) is an integral domain in which every ideal
is principal. In a PID, the set of irreducibles coincides with the set of primes.
Every element of a PID admits a factorization into irreducibles. It turns out
that every PID is a UFD, for example the Integers and the Gaussian Integers.
It must be noted that the converse does not hold: not every UFD is a PID.
For example, Z[x] is not a PID (e.g. the set of polynomials in Z[x] whose
constant term is even is a non-principal ideal) but it is a UFD.

As in a PID, every irreducible of a UFD is a prime.

Proposition 2.10. Every UFD is an AP domain.

Proof. Let p be an irreducible of Q and suppose ph = ab. We have h =∏
hi∈Bh

hi, a =
∏

aj∈Ba
aj and b =

∏
bk∈Bb

bk, such that each factorization is unique.

Then, p ·
∏

hi∈Bh
hi =

∏
aj∈Ba

aj ·
∏

bk∈Bb
bk.

By uniqueness, each irreducible on [p] ∪ Bh is an associate of an irre-
ducible in Ba ∪Bb, so [p] ∪Bh is a subset of Ba ∪Bb, up to association.

In particular, this means p associates with one irreducible in the factor-
ization of ab, which means that either p | a or p | b. This shows every
irreducible of Q is prime.
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We will make use of the following condition, which we name ACCP.
We will prove later that the presence of this condition logically implies that
every element admits a factorization into irreducibles.

Lemma 2.11. Let R be an integral domain. The following are equivalent:
1. Every ascending chain of principal ideals is eventually constant,
2. In R, the divisibility relation is well-founded; that is, there is no infinite

descending chain 〈ci〉i∈ω such that ci+1 properly divides ci.

Proof. We make use of the following facts:
Claim 1 For a, b ∈ R, a | b if and only if 〈a〉 ⊆ 〈b〉.
This fact is straightforward: if a | b, then a · r = b for some r ∈ R, which

is equivalent to 〈a〉 ⊆ 〈b〉.
Claim 2 a properly divides b if and only if 〈a〉 ( 〈b〉.
Now, if a · r = b for non-unit r, then b = a · r /∈ 〈a〉 whereas a ∈ 〈b〉 and

if 〈a〉 = 〈b〉 then a · r1 = b and b · r2 = a, which makes r1 and r2 inverses of
each other.

1. ⇒ 2.
Let 〈pi〉i∈ω be an infinite descending chain in divisibility. In light of the

claims, this corresponds to an infinite ascending chain of principal ideals,
contradicting 1.

2. ⇒ 1.
Let 〈Ii〉i∈ω be a non-constant ascending chain of principal ideals. From

the claims, this corresponds to an infinite descending chain in divisibility,
which proves divisibility is not well-founded, contradicting 2.

Proposition 2.12. Let B be a multiset of primes and C a multiset of irre-
ducibles. Then

∏
p∈B

p |
∏
q∈C

q if and only if B is a subset of C up to association.

Furthermore, the division is proper if and only if the subset inclusion is
proper.

Proof. Suppose
∏
pi∈B

pi |
∏
qj∈C

qj . Since every pi is prime, we have by induction

for all pi that pi | qj for some qj ∈ C. Define f : B → C by f(pi) = qj , where
j = min{j | pi | qj and qj /∈ f [{p1, p2, · · · pi−1}]}. Notice that the choice of
j ensures injectivity of f . By primeness, pi ∼ f(pi). We claim this choice
is always possible, and we prove this by induction on |B|. If |B| = 1 with
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p ∈ B, then p |
∏
qj∈C

qj and an induction on |C| shows using primeness of p

that p divides exactly one element of C, which shows our choice for map-
ping p under f is possible. Suppose |B| = t + 1, B = [p1, p2 · · · pt, pt+1] and
each pi with i ≤ t is mapped to qi under f . We have

∏
i≤t+1

pi =
∏
qk∈C

qk, and

we can use cancellation to obtain pt+1 =
∏

qk∈C,k≥t+1

qk, and an induction on

|C \ f([p1, p2 · · · pt])| shows using primeness of pt+1 that pt+1 divides exactly
one element of C \ f([p1, p2 · · · pt]), hence an injective choice for f(pt+1) is
possible.

Also, if the division was proper, this means that f was not surjective,
which implies B is a proper subset of C up to association. This proves the
first direction.

The second direction is easier: if B subset of C up to association, there
is injective f : B → C such that f(p) = q if p ∼ q. This means

∏
pi∈B

pi |∏
pi∈B

f(pi) |
∏
qj∈C

qj . Again, if B proper subset of C, then f is not surjective,

which implies the division is proper.

The following is a somewhat technical consequence of a ring being an
UFD. We will make use of it in Chapter 4

Proposition 2.13. If Q is a UFD, a is irreducible in Q, b, c ∈ Q and m the
greatest power of a dividing b , n the greatest power of a dividing c, and
suppose m > n. Then b - c.

Proof. Let b =
∏
pi∈B

pi and c =
∏
qj∈C

qj be prime decompositions of b and c in

Q.

By Proposition 2.12,
∏
pi∈B

pi|
∏
qj∈C

qj if and only if B is a subset of C up to

association.

Suppose b | c, in the light of the claim this means t ≤ v and there is
an injective map f : {1, 2 · · · t} → {1, 2 · · · v} such that each pi with i ≤ t

associates with some qf(j) for j ≤ v .

Note that a is prime, so if am | b then without loss of generality a = uipi

for units ui and i ≤ m ≤ t and similarly since an | c a = vjqj for units vj and
j ≤ n ≤ v.
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But then a = uipi = viqf(i) for all i ≤ m, and so am | c. Since m > n and
we assumed n is the largest such that an | c, we have a contradiction.

Since an isomorphism is a “structure-preserving map”, it makes sense
for many properties to be preserved under an isomorphism.

Proposition 2.14. If R,Q are rings such that R ∼= Q via isomorphism ϕ, then
1. ϕ(0R) = 0Q,
2. ϕ(1R) = 1Q,
3. if u ∈ R× then ϕ(u) ∈ Q×,
4. if p is irreducible in R, then ϕ(p) is irreducible in Q,
5. if p is prime in R, then ϕ(p) is prime in Q,
6. if R is an integral domain, then Q is an integral domain,
7. if R is a UFD, then Q is a UFD.

The proof is straightforward, so we omit it.

2.2 Localization

A multiplicative subset of a ring R is a subset of R that contains 1R and is
closed under multiplication, but it does not contain 0R.

Definition 2.15. If R is a ring and a1, a2 · · · ak ∈ R, P is a multiplicative
subset of R generated by a1, a2 · · · ak if it is the collection of finite products
of elements in {a1, a2 · · · ak}.

We use r/a in the ring R to denote the element r · a−1, for a unit a.
The localization of a ring R with respect to a multiplicative set S is a

generalization of the idea of fraction. Intuitively, it contains precisely those
“fractions” of the form r/s where r ∈ R and s ∈ S. We make this notion
precise with the following definition.

Definition 2.16. Let R be an integral domain, and I be a multiplicative sub-
set of R. Define a relation ∼ on R× I by setting 〈r, a〉 ∼ 〈r′, a′〉 if r · a′ = r′ · a
in R. Remark 2.17 shows that ∼ is an equivalence relation. The localization
ofR by I , written I−1R, is defined as the collection of∼-equivalence classes.

We define the operations on I ×R:
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〈r, a〉+I×R 〈r′, a′〉 = 〈ra′ + r′a, a · a′〉, and 〈r, a〉 ·I×R 〈r′, a′〉 = 〈r · r′, a · a′〉.
Operations on I−1R are defined by taking the equivalence classes of the

operands and the results. Remark 2.18 shows these operations are well-
defined. The multiplicative subset of R generated by a is {ak | k ∈ ω}. If I is
generated by a single element a, we denote the localization of R by I by Ra.

Remark 2.17. The relation ∼ on R × I of Definition 2.16 is an equivalence
relation.

Proof. Reflexivity and symmetry of ∼ are immediate. For transitivity, let
〈r, a〉 ∼ 〈r′, a′〉 and 〈r′, a′〉 ∼ 〈r′′, a′′〉. Then r ·r′ ·a′′ = r ·Qr′′ ·a′, multiplying by
a gives r·r′·a·a′′ = r·a·r′′·a′, which is equivalent to (r·a′′)·(r′·a) = (r′·a)·(r′′·a)

and by cancellation, r · a′′ = r′′ · a.

Remark 2.18. The operations on I−1R are well-defined.

Proof. Let 〈r, a〉 ∼ 〈r′, a′〉 and 〈p, b〉 ∼ 〈p′, b′〉.
We need to show that 〈r′b′ + p′a′, a′b′〉 ∼ 〈rb + pa, ab〉 and 〈r′p′, a′b′〉 ∼

〈rp, ab〉.
Note that ra′ = r′ · a and pb′ = p′ · b.
For addition, we have: (r′b′ + p′a′) · ab = r′b′ab + p′a′ab = (rb + pa) · a′b′,

as required.
For multiplication, we have: r′p′ · ab = rp · a′b′, as required.

We show below that a localization is always a ring and its elements can
be written in the fraction form.

Remark 2.19. If R is an integral domain and I is a multiplicative subset of R,
then the localization of R by I , I−1R, is a ring.

Proof. We note that [〈0, 1〉] and [〈1, 1〉] are the identities under addition and
multiplication.

We note that the additive inverse of [〈r, a〉] is [〈−r, a〉], since [〈r, a〉] +

[〈−r, a〉] = [〈0, a〉] ∼ [〈0, 1〉].
Let [〈r, a〉], [〈r′, a′〉] and [〈r′′, a′′〉] be elements of I−1R.
That the operations on I−1R are well-defined was shown on Remark

2.18.
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Commutativity of addition carries from R: [〈r, a〉] + [〈r′, a′〉] = [〈r · a′ +
r′ · a, a · a′〉] = [〈r′ · a+ r · a′, a′ · a〉] = [〈r′, a′〉] + [〈r, a〉].

Commutativity of multiplication carries as well: [〈r, a〉] · [〈r′, a′〉] = [〈r ·
r′, a · a′〉] = [〈r′ · r, a′ · a〉] = [〈r′, a′〉] · [〈r, a〉].

Associativity of addition: [〈r, a〉] + ([〈r′, a′〉] + [〈r′′, a′′〉]) = ([〈r, a〉] +

[〈r′, a′〉]) + [〈r′′, a′′〉] = [〈ra′a′′ + r′aa′′ + r′′aa′, aa′a′′〉].
Associativity of multiplication: [〈r, a〉] · ([〈r′, a′〉] · [〈r′′, a′′〉]) = ([〈r, a〉] ·

[〈r′, a′〉]) · [〈r′′, a′′〉] = [〈rr′r′′, aa′a′′〉].
Distributivity carries from R: [〈r, a〉]([〈r′, a′〉] + [〈r′′, a′′〉]) = [〈r, a〉] ·

[〈r′, a′〉] + [〈r, a〉] · [〈r′′, a′′〉] = [〈rr′a′′ + rr′′a′, aa′a′′〉].

Remark 2.20. A ring R is embedded into I−1R by the map ϕ defined by r 7→
[〈r, 1〉].

Proof. ϕ is injective since r · 1 = p · 1 implies r = p.
We show ϕ is a homomorphism. Additivity: ϕ(r + p) = [〈r + p, 1〉] while

ϕ(r)+ϕ(p) = [〈r, 1〉]+[〈p, 1〉] which is the same as [〈r+p, 1〉. Multiplicativity
is analogous.

At times we will choose to regard R as a subring of I−1R and identify R
with its image under this embedding.

Remark 2.21. The equivalence class of 〈r, a〉 in I−1R is equal to ϕ(r)/ϕ(a),
where ϕ is the canonical embedding ϕ : R→ I−1R.

Proof. We note that ϕ(a) is a unit of I−1R, since ϕ(a) = [〈a, 1〉] and [〈a, 1〉] ·
[〈1, a〉] = [〈1, 1〉].

Also note that ϕ(r)/ϕ(a) = ϕ(r) · (ϕ(a))−1 = [〈r, 1〉] · [〈1, a〉] = [〈r, a〉].

Due to Remarks 2.19 and 2.21, we can write r/a for the element [〈r, a〉] of
I−1R, and note that this notation is well-defined.

If the underlying ring R is an integral domain or a UFD, the localization
of R by one of its multiplicative subsets is an integral domain or a UFD.

Lemma 2.22. Let R be an integral domain and I be a multiplicative subset of R.
Then I−1R, the localization of R by I , is an integral domain.
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Proof. Suppose p/a · r/b = 0, for p, r ∈ R, a, b ∈ I . Note that p/a = 0 if
and only if p = 0 and assume p/a 6= 0 and r/b 6= 0, so p 6= 0, r 6= 0. But
p/a · r/b = pr/ab, so pr = 0, so R cannot be an integral domain.

Lemma 2.23. Let R be an integral domain and I a multiplicative subset of R. If
p ∈ R is prime, then in I−1R p is a unit or prime.

Proof. Let a ∈ R be prime and not a unit of I−1R. Suppose a | r−1b · q−1c in
I−1R. So d−1e · a = r−1b · q−1c for some d−1e ∈ I−1R. Then a - d in R since a
is not a unit of I−1R. So eqr · a = dbc. Since a is prime and a - d, then it must
be the case that a | b or a | c in R. But then a | r−1b or a | q−1c in I−1R, as
required.

Proposition 2.24. Let R be an integral domain. If every element of R has a
prime factorization, then R is a UFD.

Proof. We need to prove R is Atomic and U-UFD.
Atomicity follows immediately from the assumption and the fact that

every prime is irreducible.
Let a ∈ R. We know a has a prime decomposition B. Suppose C is

another irreducible factorization of a. By Proposition 2.12, we know that B
is a subset of C up to association. But if B 6= C up to association, then

∏
q∈B

q

properly divides
∏
p∈C

p, which is not the case since they are associates.

Lemma 2.25. Let R be a UFD and let I be a multiplicative subset of R. Then
I−1R, the localization of R by I , is a UFD.

Proof. By Lemma 2.22, I−1R is an integral domain.
We note that prime elements in I become units in I−1R. This is immedi-

ate, since all elements of I are invertible in I−1R.
Take an arbitrary non-zero element r−1a of I−1R. Let the prime factor-

ization of a inR beB with a ∼
∏
pi∈B

pi. We want to show that it is an associate

of a product of primes of I−1R. But r−1a is an associate of a, units of R are
also units of I−1R and if an element is prime in R, by Lemma 2.23 it is either
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a unit or a prime in I−1R. Let B′ be the multiset of elements of B that are
units in I−1R, then B \ B′ is the required prime factorization of r−1a. By
Proposition 2.24, the localization I−1R is a UFD.

2.3 Polynomial Rings

Next, we give a formal treatment of the ring of polynomials R[x1, x2 · · ·xk]
associated with a ring R. Informally, this comprises of the collections of
finite expressions of the form

∑
ι

rιx̄
ι, where ι is a multi-index. Formally,

polynomials can be thought of as finite (nested) sequences of elements of R.

Definition 2.26. Let R be a ring. A polynomial in one variable f over R is an
element of R<ω, i.e. a finite tuple of the form 〈r0, r1, r2 · · · rn〉, where ri ∈ R
for 0 ≤ i ≤ n, n ∈ ω and rn 6= 0. We write as shorthand f(x) =

n∑
i=0

rix
i for the

polynomial, and R[x] for the class of all such polynomials. The operations
on R[x] are defined naturally as:

(
n∑
i=0

rix
i) +R[x] (

n∑
i=0

tix
i) =

n∑
i=0

(ri + ti)x
i, and

(
n∑
i=0

rix
i) ·R[x] (

m∑
i=0

tix
i) =

m+n∑
k=0

(
∑

i+j=k

ri · tj)xk.

By the degree of f we mean the largest i ≤ n such that ri 6= 0, and write

deg(f) = i. If a ∈ R, then f evaluates at a as f(a) =
n∑
i=0

ria
i.

We extend this to finitely many variables, and let R[x1, x2 · · ·xk−1, xk] =

R[x1, x2 · · ·xk−1][xk]

To define a shorthand notation, we write x̄ = x1, x2 · · ·xk and if ι =

i1, i2 · · · ik, where i1, i2 · · · ik ∈ ω, define x̄ι = xi11 x
i2
2 · · ·x

ik
k , and write g(x̄) =∑

ι

qιx̄
ι, where only finitely many qι are different from zero.

By the degree of g relative to xj we mean the largest ij ∈ ι with qι 6= 0

and write degxj(g) = ij .

If a1, a2 · · · ak ∈ R, write ā = a1, a2 · · · ak, and then g evaluates at
〈a1, a2 · · · ak〉 as g(ā) =

∑
ι

qιā
ι.

Note that the zero polynomial is coded by the empty string.
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We note in the following remark that if x̄′ is a permutation of x̄, then
R[x̄] = R[x̄′].

Remark 2.27. Note that R[xn1 , xn2 · · ·xnk ] for distinct n1, n2 · · ·nk ∈ ω refer
to the same polynomial ring, namely R[x1, x2 · · ·xk], therefore the indeter-
minate variables are not to be distinguished by order. We will sometimes
write R[y, x1, x2 · · ·xk] and this is the same as R[x1, x2 · · ·xk, xk+1].

We give a proof that the collection of polynomials associated with a ring
R forms a ring and further below that if R is an integral domain, then R[x̄]

is an integral domain.

Remark 2.28. If R is a ring, then R[x1, x2 · · ·xk] is a ring and R embeds into
R[x1, x2 · · ·xk].

As is the case with localization, note that technicallyR is only embedded
into R[x1, x2 · · ·xk], however at times we choose to regard R as a subring of
R[x1, x2 · · ·xk] and identify it with its image under the embedding.

Proof. Let f, g, h ∈ R[x] with f(x) =
n∑
i=0

pix
i, g(x) =

m∑
j=0

qjx
j and h(x) =

v∑
l=0

rlx
l

Note that f̄(x) =
n∑
i=0

(−pi)xi is an additive inverse of f(x). Commutativ-

ity of addition carries from R: f(x) + g(x) = g(x) + f(x) =
max(m,n)∑

i=0

(pi + qi)x
i,

where we can assume a padding of the polynomial of lesser degree, that is
pi or qi are taken as zero if n < i ≤ m or m < i ≤ n. Commutativity of multi-

plication carries as well: f(x) ·g(x) = g(x) ·f(x) =
m+n∑
k=0

(
∑

k=i+j piqj)x
k. Asso-

ciativity of addition: f(x)+(g(x)+h(x)) = (f(x)+g(x))+h(x) =
max(n,m,v)∑

i=0

(pi+

qi + ri)x
i, where we can assume a similar padding. Associativity of multi-

plication: f(x) · (g(x) · h(x)) = (f(x) · g(x)) · h(x)
n+m+v∑
k=0

(
∑

k=i+j+l piqjrl)x
k.

Distributivity carries from R: f(x) · (g(x) + h(x)) = f(x)g(x) + f(x)h(x)
n+max(m,v)∑

k=0

(
∑

k=i+j

pi(qj + rj))x
k

0R and 1R serve as additive and multiplicative inverses in R[x]. By iter-
ation, R[x1, x2 · · ·xk] is a ring. Since R is embedded in R[x1, x2 · · ·xk] by the
map q 7→ f for f(x̄) = q, the second part of the remark holds.
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Lemma 2.29. Let R be an integral domain. Then R[x1, x2 · · ·xk] is an integral
domain.

Proof. Suppose
n∑
i=0

(aix
i) ·

m∑
j=0

(bjx
j) = 0R, for ai ∈ R, bj ∈ R for 0 ≤ i ≤ n

and 0 ≤ j ≤ m. Assume
n∑
i=0

(aix
i) 6= 0 and

m∑
j=0

(bjx
j) 6= 0, and this implies

an 6= 0 and bm 6= 0. But then
n+m∑
k=0

(
∑

k=i+j

ai · bj)xk = 0. In particular, this means

anbm = 0, so R cannot be an integral domain. This shows R[x] must be an
integral domain. By iteration, R[x1, x2 · · ·xk], must be an integral domain.

The units of an integral domain R and the units of the associated ring of
polynomials R[x1, x2 · · · xk] coincide.

Proposition 2.30. If R is an integral domain, then (R[x1, x2 · · ·xk])× = R×.

Proof. By Remark 2.28, 1R = 1R[x].
If r ∈ R× then there is r−1 ∈ R such that r · r−1 = 1R. By Remark 2.28,

R < R[x], so r−1 ∈ R[x].
Now suppose f, g ∈ R[x] such that f · g = 1R. Then, deg(fg) = deg(1), so

deg(f) + deg(g) = 0 which means both f and g are constant, so f, g ∈ R×.
By iteration, (R[x1, x2 · · ·xk])× = R×.

Each element in the collection of indeterminates {x1, x2 · · ·xk} of
R[x1, x2 · · · xk] is irreducible.

Proposition 2.31. If R is an integral domain, in R[x1, x2 · · ·xk] each xi with
1 ≤ i ≤ k is irreducible.

Proof. Suppose g(x̄) · h(x̄) = xi. Then degxi(gh) = degxi(xi), so degxi(g) +

degxi(h) = 1. Note that degxj(gh) = 0 for j 6= i so degxj(g) = 0 and degxj(h) =

0.
Suppose without loss of generality that degxi(g) = 0 and degxi(h) = 1.

Then h = axi + b, g = c for a, b, c ∈ R. Then gh = acxi + bc and so c 6= 0 so
b = 0 and c · a = 1 which means c ∈ R× so g ∈ R[x1, x2 · · ·xk]×.
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The next result is known as the Factor Theorem, and it states that in R[x]

the element a ∈ R is a zero of f(x) if and only if x− a divides f(x).

Proposition 2.32 (Factor Theorem). If R is an integral domain, f ∈ R[x] and
a ∈ R then f(a) = 0 if and only if there exists g ∈ R[x] with deg(g) < deg(f)

such that f(x) = (x− a)g(x).

Proof. If f(x) = (x− a)g(x) then f(a) = (a− a)g(a) = 0 · g(a) = 0.

Conversely, suppose f(a) = 0, and suppose f(x) =
n∑
i=0

rix
i with rn 6= 0,

so deg(f) = n. Then, f(x) = f(x) − f(a) =
n∑
i=0

ri(x
i − ai), but for any m,

xm − am = (x − a)(xm−1 + xm−2a + · · · + am−1). Then f(x) = (x − a)g(x),

where g(x) =
n∑
i=1

ri(x
i−1 + xi−2a+ · · ·+ ai−1), so deg(g) = n− 1.

We use Proposition 2.32 to show that a polynomial of degree k can have
at most k zeros.

Proposition 2.33. If R is an integral domain, then if f ∈ R[x] with f 6= 0 and
deg(f) = k, there are at most k elements ofR αi for i ≤ k such that f(αi) = 0.

Proof. Proceed by induction on k. If k = 0, the polynomial is constant and
we can see there are no roots of f(x).

Assume that if k < n, all f ∈ R[x] have at most k roots.

Let k = n for some f ∈ R[x]. Let a ∈ R such that f(a) = 0.

By Proposition 2.32, f(x) = (x − a)g(x) for some g ∈ R[x] with deg(g) <

deg(f) = n. By induction hypothesis, g(x) has at most n− 1 roots.

If f(x) has no other roots, we are done. Otherwise, let b ∈ R, b 6= a such
that f(b) = 0. So f(b) = (b − a)g(b) = 0, and we can see that g(b) = 0, i.e. b
is a root of g(x). We know there are at most n− 1 choices for such a b. Thus,
f(x) has at most n− 1 + 1 = n roots.

In any ring of polynomials R[x] that contains the field of rationals, for
any polynomial f(x), there exists a unit α that is not a zero of f . Intuitively,
this is because Q contains infinitely many units, while f(x) can have only
finitely many zeroes.
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Proposition 2.34. If R is an integral domain and Q < R, for any f, g ∈ R[x]

there is α ∈ R× such that f(α) 6= 0 and g(α) 6= 0.

Proof. Let n = deg(f) and m = deg(g). By Proposition 2.33, there are at most
m + n zeroes of f and g. But Q is an infinite field and Q ⊆ R×. So R× is
infinite, while the set of roots of f and g is finite.

The next lemma is known as Gauss’ Theorem. We will use it in a con-
struction of Chapter 4.

Lemma 2.35 (Gauss’ Theorem). Let R be a UFD. Then R[x] is a UFD.

2.4 Independence and Generation

In this section we are concerned with the algebraic independence and gen-
eration of certain subrings of a ring; both notions involve sets of elements
of a ring R. Intuitively, a set I ⊂ R is algebraically independent over some
ring Q < R if no finite sequence of ring operations involving elements of Q
and elements of I evaluates to 0R. Similarly, the ring generated by I over Q
comprises of the collection of elements we obtain through such sequences
of operations. We make these concepts precise in what follows.

Definition 2.36. If Q < P are rings and a1, a2, · · · , ak ∈ P , the ring
Q[a1, a2, · · · ak] = {f(a1, a2 · · · ak) | f ∈ Q[x1, x2, · · ·xk]} is the subring of
P generated by Q ∪ {a1, a2, · · · , ak}.

The ring Q[a1, a2 · · · ak] is the smallest subring of P under inclusion
which contains Q ∪ {a1, a2, · · · , ak}. It is important to note that this ring
depends on both P and Q.

A generated ring will always be a subring of the ring in which we gen-
erate it.

Remark 2.37. If Q < P and a1, a2 · · · ak ∈ P , then Q ≤ Q[a1, a2, · · · ak] ≤ P .

We omit the proof of this remark.
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The subring of P generated over Q by a multiplicative inverse of an ele-
ment b of Q can be viewed as a collection of ”fractions” over Q with denom-
inators powers of b. Hence, such a collection of fractions is isomorphic to
the localization Qb. This is the gist of the following two propositions.

Proposition 2.38. If Q < P are rings, c ∈ Q and c is invertible in P , then
Q[c−1] = {b/ck | b ∈ Q, k ∈ ω}.

Proof. By Definition 2.36, Q[c−1] = {f(c−1) | f ∈ Q[x]}. But if f(x) =
n∑
i=0

qix
i,

then f(c−1) =
n∑
i=0

qic
−i = c−n(

n∑
i=0

qic
n−i) = c−n · b where b ∈ Q, therefore

Q[c−1] = {b/ck | b ∈ Q, k ∈ ω}.

For rings R, T , S and embeddings ψ1 : R → T and ψ2 : R → S, we say
T ∼= S over R with isomorphism ϕ, if ϕ is an isomorphism between T and S

such that ϕ ◦ψ1 = ψ2. In particular, R < T and R < S is a special case of this
definition, given by ϕ�R = idR.

Proposition 2.39. Let P be a ring, and let b ∈ P be non-zero. Let Q < P be a
ring. The following are equivalent:

1. Qb
∼= P over Q,

2. b is a unit of P and P = Q[b−1].

Proof. Recall Qb = Q × I/∼ where I is the multiplicative subset of Q gen-
erated by b and 〈q, bk〉 ∼ 〈q′, bk′〉 if q · bk′ = q′ · bk. The embedding of Q
into Qb is defined by q 7→ 〈q, 1〉 and the operations on Qb are given by:
〈q, bk〉+Qb 〈q′, bk

′〉 = 〈qbk′ + q′bk, bkbk
′〉 and 〈q, bk〉 ·Qb 〈q′, bk

′〉 = 〈qq′, bkbk′〉.
This is an instance in which we identify Q with its image under the

canonical embedding into Qb.
1. ⇒ 2.
Let ϕ be an isomorphism between Qb and P . Note that ϕ�Q = idQ

Since b is a unit of Qb, let c = 〈1, b〉 ∈ Qb such that bc = 1 in Qb. Then,
bϕ(c) = ϕ(b)ϕ(c) = ϕ(bc) = 1 in P , so b is a unit of P .

We need to show Q[b−1] ⊆ P and P ⊆ Q[b−1]. The first inclusion is by
definition.

Let p ∈ P , we have that ϕ−1(p) ∈ Qb and so it is of the form [〈c, bk〉],
so bkϕ−1(p) = c ∈ Q. Since ϕ�Q = idQ, we obtain bkp ∈ Q, which means
p ∈ Q[b−1].
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2. ⇒ 1.

By Proposition 2.38, Q[b−1] = {c/bk | c ∈ Q, k ∈ ω}.
Define a map ϕ : P → Qb by ϕ(p) = [〈c, bk〉] where p = c/bk. Note that if

〈c′, bk′〉 ∈ [〈c, bk〉], then p = c′/bk
′ , since p · bk = c and c′ · bk = c · bk′ so we have

c′ · bk = p · bk · bk′ which implies c′ = p · bk′ and so p = c′/bk
′ .

Bijectivity follows by definition of ϕ, we check additivity and multiplica-
tivity:

ϕ(c/bk + c′/bk
′
) = ϕ((cbk

′
+ c′bk)/bkbk

′
) = [〈c, bk〉 + 〈c′, bk′〉] = [〈cbk′ +

c′bk, bkbk
′〉, while ϕ(c/bk)+ϕ(c′/bk

′
) = [〈c, bk〉]+ [〈c′, bk′〉] = [〈cbk′+c′bk, bkbk

′〉],
and ϕ(c/bk · c′/bk′) = ϕ(cc′/bkbk

′
) = [〈cc′, bkbk′〉], while ϕ(c/bk) + ϕ(c′/bk

′
) =

[〈c, bk〉] + [〈c′, bk′〉] = [〈cc′, bkbk′〉].
This shows ϕ is an isomorphism. It is an isomorphism over Q since

elements of Q are mapped to elements of Qb by the canonical embedding
ψ1, to elements of P by the inclusion map ψ2, and ϕ ◦ ψ2 = ψ1, because
ϕ(ψ2(q)) = ϕ(q) = [〈q, 1〉] = ψ1(q).

Proposition 2.40. If R < Q are rings and I, J ⊂ Q, then R[I][J ] = R[I ∪ J ].

Proof. Let I = {i1, i2 · · · ik} and J = {j1, j2 · · · jt}.
We need to show R[I][J ] ⊆ R[I ∪ J ] and R[I ∪ J ] ⊆ R[I][J ].

Let r ∈ R[I][J ]. Then r = f(j̄), with f(x̄) =
∑
ζ

rζ x̄
ζ , where each rζ ∈ R[I],

so rζ = gζ (̄i) =
∑
ι

rζ,ιī
ι, with rζ,ι ∈ R. Then we define h ∈ R[I∪J ] as h(x̄, ȳ) =∑

ζ

∑
ι

rζ,ιx̄
ζ ȳι, and we can see that h(j̄, ī) = f(j̄). Hence, r ∈ R[I ∪ J ].

For the other inclusion, suppose without loss of generality that I and J

are disjoint and let r ∈ R[I ∪ J ] and the previous argument reverses. So r =

h(̄i, j̄) =
∑
ζ

∑
ι

rζ,ιī
ζ j̄ι, with rζ,ι ∈ R, we can define the family of polynomials

gζ ∈ R[I] by gζ(ȳ) =
∑
ι

rζ,ιȳ
ι, and the polynomial f(x̄) =

∑
ζ

gζ (̄i)x̄
ζ , and we

can see that f(j̄) ∈ R[I][J ] and f(j̄) = h(̄i, j̄) = r.

We now define algebraic independence.

Definition 2.41. LetQ < P and a1, a2 · · · ak ∈ P . The set {a1, a2 · · · ak} is alge-
braically independent or independent overQ if for all non-zero f ∈ Q[x1, ..., xk],
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f(a1, ..., ak) 6= 0.

If the set {a} is algebraically independent over Q we say the element a is
transcendental over Q.

Note that in R[x1, x2 · · ·xk] the set {x1, x2 · · ·xk} is independent over R.
The proof of this is immediate.

If ϕ : R → S and ψ : P → Q are maps between rings with R < P and
S < Q, we say that ψ extends ϕ if ψ�R = ϕ.

The following fact will be useful in many of our proofs.

Lemma 2.42. Suppose we have ringsR < P = R[a1, a2 · · · ak] with {a1, a2 · · · ak}
independent over R and ψ : R → S a homomorphism. Let R′ = ψ[R] < S and
let ψ∗ : R[x1, x2 · · ·xk] → R′[x1, x2 · · ·xk] be defined by ψ∗(f) =

∑
ι

ψ(qι)x̄
ι for

f =
∑
ι

qιx̄
ι.

Let b1, b2 · · · bk ∈ S. Then the map f(ā) 7→ ψ∗(f)(b̄) is the unique homomor-
phism ψ̄ : P → S such that ψ̄(ai) = bi for i ≤ k and ψ̄ extends ψ.

Further, if ψ is injective and b̄ is independent over R′, then ψ̄ is injective.
Also, the range of ψ̄ is R′[b1, b2 · · · bk].

Proof. We claim ψ̄ is well-defined: suppose f(ā) = g(ā), then put h(ā) =

f(ā)− g(ā) and if f 6= g then h contradicts the independence of ā. So f = g,
which means g(ā) 7→ ψ∗(f)(b̄) and the claim is proved.

We note that ψ̄ is defined on all of P , by definition of P .
Let f(x̄) =

∑
ι

qιx̄
ι and g(x̄) =

∑
ι

rιx̄
ι, for qι, rι ∈ R.

Check that ψ̄ is a homomorphism. Note that f(ā) + g(ā) = (f + g)(ā)

and f(ā) · g(ā) = (f · g)(ā). Check additivity: ψ̄(f(ā) + g(ā)) = ψ̄((f +

g)(ā)) = ψ∗(f + g)(b̄) =
∑
ι

ψ(qι + rι)b̄
ι and since ψ is a homomorphism, this

is ψ∗(f)(b̄) + ψ∗(g)(b̄). Multiplicativity is analogous.
Now ψ̄ is injective if ψ is injective and b̄ is independent over R′. To see

this, let f(ā) 7→ ψ∗(f)(b̄) and g(ā) 7→ ψ∗(g)(b̄), and suppose ψ∗(f)(b̄) =

ψ∗(g)(b̄). Since b̄ is independent, we get ψ∗(f) = ψ∗(g). By injectivity of
ψ, this means qι = rι. Hence, f = g.

We claim ψ̄ is onto R′[b̄]. To see this, let q =
∑
ι

ψ(qι)b̄
ι be a member of

R′[b̄] and we can see that q = ψ̄(
∑
ι

qιā
ι).
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Finally, we prove uniqueness of ψ̄. Let φ : P → S be a homomorphism
such that φ extends ψ and φ(ai) = bi. Let c = f(ā) be an element of P , written
as above. Then φ(c) =

∑
ι

φ(qιā
ι), and since φ extends ψ this is the same as

φ(c) =
∑
ι

ψ(qι)φ(āι) and since φ(ai) = bi, we finally get φ(c) =
∑
ι

ψ(qι)b̄
ι =

ψ̄(c).

If Q is a UFD and subring of R, b̄ ∈ R is independent over Q, then the
subring of R generated by Q and b̄ is a UFD.

Proposition 2.43. Let Q be a UFD, Q < R and {b1, b2 · · · bk} ⊂ R be alge-
braically independent over Q. Then Q[b1, b2 · · · bk] is a UFD.

Proof. By Lemma 2.35, Q[x] is a UFD, and by iteration Q[x1, x2 · · ·xk] is
a UFD. By Lemma 2.42, we have an isomorphism ϕ : Q[b1, b2 · · · bk] →
Q[x1, x2 · · ·xk] with bi 7→ xi. By Proposition 2.14, Q[b1, b2 · · · bk] is a UFD.

Proposition 2.44. Suppose we have rings Q < P with b1, b2 · · · bk ∈ P . The
following are equivalent:

1. P ∼= Q[x1, x2 · · ·xk] over Q, with bi 7→ xi for 1 ≤ i ≤ k;
2. {b1, b2 · · · bk} is independent over Q and P = Q[b1, b2 · · · bk].

Proof. 1. ⇒ 2.
First we argue that {b1, b2 · · · bk} is independent over Q. We note that

0P 7→ 0Q[x1,x2···xk]. Suppose for a contradiction we have some non-zero
f ∈ Q[x1, x2 · · ·xk] with f(b̄) =P 0. By isomorphism, f(x̄) =Q[x̄] 0, contra-
dicting injectivity. So f(b̄) 6= 0 for any non-zero f .

Now apply Lemma 2.42 to Q, P , x̄ and the embedding ψ of Q into P

which is the restriction of the isomorphism from P to Q[x1, x2 · · · xk], to
obtain an isomorphism ψ̄ between Q[b1, b2 · · · bk] and P . Since Q = ψ[Q], the
range of ψ̄ is Q[b1, b2 · · · bk], hence P = Q[b1, b2 · · · bk].

2. ⇒ 1.
Apply Lemma 2.42 to Q, P , Q[b1, b2 · · · bk], {b1, b2 · · · bk} and the embed-

ding ψ : Q → P to obtain a homomorphism ψ̄ : P → Q[x1, x2 · · ·xk] with
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bi 7→ xi. Then, ψ̄ is one to one and onto Q[x1, x2 · · ·xk], so it is an isomor-
phism.

The following result states that if a is transcendental over R and f(a) is
irreducible, then f(x) must be irreducible in R[x].

Proposition 2.45. If R < P are rings, f ∈ R[x], a ∈ P transcendental over R
and f(a) is irreducible in R[a], then f is irreducible in R[x].

Proof. By Proposition 2.44, R[a] ∼= R[x] with a 7→ x. This means f(a) 7→ f(x)

under this isomorphism. By Proposition 2.14, f is irreducible in R[x].

We give an equivalent condition for the union of sets of elements to be
independent over some ring.

Lemma 2.46. If Q and R are rings, with Q < R and J,K ⊂ R with J ∩K = ∅,
then J ∪K is independent over Q if and only if J is independent over T and K is
independent over Q[J ].

Proof. Let J = {j1, j2 · · · jr} and K = {k1, k2 · · · kt}.
Note that by Proposition 2.40, Q[x1, x2 · · ·xr][xr, xr+1 · · · xt] =

Q[x1, x2 · · · xr+t].
Suppose J is independent over Q and K is independent over Q[J ]. We

show J ∪K is independent over Q.
For suppose f(j̄, k̄) = 0, with non-zero f ∈ Q[x1, x2 · · · xt+r].
Write f as f(x̄, ȳ) =

∑
ι

fι(x̄)ȳι, where x̄ = x1, x2 · · ·xr, ȳ = y1, y2 · · · yt and

fι ∈ Q[x1, x2 · · · xr].
Note that since f 6= 0, some fι(x̄) must be non-zero.
However, since f(j̄, k̄) = 0 and since K is independent over Q[J ], it fol-

lows that each fι(j̄) must be zero, so there is a non-zero polynomial f over
Q[x1, x2 · · · xr] with f(j̄) = 0. Since J is independent over Q, this produces a
contradiction.

Conversely, suppose J∪K is independent overQ. That J is independent
overQ is almost immediate, since J ⊆ J∪K and from f ∈ Q[x1, x2 · · ·xr] we
can define f ∗ ∈ Q[x1, x2 · · ·xr+t] with zero-coefficients for xr+1, xr+2 · · ·xr+t,
so f ∗ = f . So if J is not independent over Q, neither can J ∪K be.
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We now show K is independent over Q[J ]. Let g ∈ (Q[J ])[ȳ], write g as
g(ȳ) =

∑
ι

gι(j̄)y
ι where as before x̄ = x1, x2 · · ·xr, ȳ = y1, y2 · · · yt, and each

gι ∈ Q[x1, x2 · · · xr]. But then we can define g∗ over Q as g∗(x̄, ȳ) =
∑
ι

gι(x̄)yι,

and we can see that if g(k̄) = 0, then g∗(j̄, k̄) = 0, against the independence
of J ∪K.

Lemma 2.47 and Remarks 2.48, 2.49 and 2.50 establish properties of
elements in independent generating sets.

If an element is transcendental over a ring, then all its associates are also
transcendental.

Lemma 2.47. If Q < R are rings, a ∈ R is transcendental over Q and a ·R u = b

for some unit u of R, then b is transcendental over Q.

Proof. Suppose b is not transcendental over Q. So there is f ∈ Q[x], f 6= 0

and f(x) =
n∑
i=0

qix
i, such that f(b) = 0.

Define h ∈ Q[x] by h(x) =
n∑
i=0

qiu
−ixi, We claim h 6= 0. Otherwise, if

qiu
−i = 0 for all 0 ≤ i ≤ n, since we know u 6= 0 it must be that qi = 0 for all

i, but this is impossible since f 6= 0.

Then, h(a) =
n∑
i=0

qiu
iai = q0 + q1b+ q2b

2 + · · ·+ qnb
n = f(b) = 0, therefore

a is not transcendental over Q.

No transcendental elements of a generating set can be units in the gen-
erated ring.

Remark 2.48. If Q < R are rings and Q[a1, a2 · · · ak] < R where the set
{a1, a2 · · · ak} is independent over Q, then no ai with 1 ≤ i ≤ k is invert-
ible in Q[a1, a2 · · · ak].

Proof. Suppose b · ai = 1Q.
Now suppose b ∈ Q[a1, a2 · · · ak], so g(a1, a2 · · · ak) = b, for some

g ∈ Q[x1, x2 · · ·xk]. Define f ∈ Q[x1, x2 · · ·xk] as f(x1, x2 · · ·xk) = xi ·
g(x1, x2 · · ·xk) − 1 and note that f 6= 0, and so we have f(a1, a2 · · · ak) =

aib− 1 = 0. In this case, {a1, a2 · · · ak}would not be independent over Q.



30 CHAPTER 2. ELEMENTS OF ALGEBRA

No elements of an independent generating set associate or divide any
elements of the base ring or other elements in the set.

Remark 2.49. If Q < R are rings and Q[a1, a2 · · · ak] < R where the set
{a1, a2 · · · ak} is independent over Q, then no ai with 1 ≤ i ≤ k divides
or associates with any element of Q ∪ {a1, a2 · · · ak} \ {ai}.

Proof. Suppose b = ai · c, where c = g(a1, a2 · · · ak) for g ∈ Q[x1, x2 · · ·xk].
Now suppose b ∈ {a1, a2 · · · ak} \ {ai}, so b = aj . Define f ∈

Q[x1, x2 · · ·xk] as f(x1, x2 · · · xk) = xig(x1, x2 · · ·xk) − xj and note that f 6= 0

since i 6= j, and so we have f(a1, a2 · · · ak) = aic− b = 0.

If b ∈ Q, define f ∈ Q[x1, x2 · · · xk] similarly as f(x1, x2 · · · xk) =

xig(x1, x2 · · ·xk)− b, which again gives f(a1, a2 · · · ak) = aic− b = 0.

In either case, {a1, a2 · · · ak}would not be independent over Q.

All elements of an independent generating set are irreducible in the gen-
erated ring.

Remark 2.50. If Q < R are rings and Q[a1, a2 · · · ak] < R where the set
{a1, a2 · · · ak} is independent over Q, then every ai with 1 ≤ i ≤ k is an
irreducible of Q[a1, a2 · · · ak].

Proof. By Proposition 2.44 Q[a1, a2 · · · ak] ∼= Q[x1, x2 · · ·xk] over Q, with
ai 7→ xi for 1 ≤ i ≤ k. By Proposition 2.31, each such xi is irreducible in
Q[x1, x2 · · ·xk]. By Proposition 2.14, each ai is irreducible in Q[a1, a2 · · · ak].

Given a polynomial f over some ring R containing “fractions”, it will
later be a useful trick to define a polynomial g over a subring of R that has
no denominators. This is a convenient way of restricting the domain of the
polynomials we deal with.

Lemma 2.51. If Q and R are rings such that Q < R and b ∈ Q is a unit of
R, then for all f ∈ Q[b−1][x1, x2 · · ·xn] there exists N ∈ ω such that bNf ∈
Q[x1, x2 · · ·xn].
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Proof. Let f ∈ Q[b−1][x1, x2 · · ·xk], f(x̄) =
∑
ι

(qιx̄
ι where each qι ∈ Q[b−1].

For each ι, let Iι = min{k ∈ ω | qι = c · b−k, c ∈ Q}. Let N = max{Iι}.
Then bN · qι ∈ Q for all ι, so bNf ∈ Q[x1, x2 · · ·xn].

Lemma 2.52 gives the intersection of rings generated by different ele-
ments in terms of the intersection of the generating sets.

Lemma 2.52. If P,Q,R, S are rings, with P = R[b, b1 · · · bk], Q = R[b, b−1]

for b, b1 · · · bk ∈ S and b a unit of S, P < S and Q < S where {b, b1 · · · bk} is
independent over R, then P ∩Q = R[b].

Proof. R[b] ⊆ P ∩ Q is immediate since R[b] ⊆ R[b1 · · · bk][b] = R[b, b1 · · · bk]
and R[b] ⊆ R[b−1][b] = R[[b, b−1]].

To prove the other containment, suppose c ∈ P ∩Q, so c ∈ P and c ∈ Q.
Write b̄ = b1, b2 · · · bk and ȳ = y1, y2 · · · yk. Since c ∈ P , c = f(b, b̄), for some
f ∈ R[x, ȳ]. Since c ∈ Q, using Proposition 2.38, c = d/bk where d ∈ R[b]

therefore d = g(b), for some g ∈ R[x].
Put f̄(x, ȳ) = xkf(x, ȳ) and let h(x, ȳ) = f̄(x, ȳ) − g(x) and we can see

that h ∈ R[x, ȳ] and h(b, b̄) = d− d = 0.
If h(x, ȳ) 6= 0 then {b, b̄} is not independent over R. So it must be that

h(x, ȳ) = 0, which means g(x) = f̄(x, ȳ) so f̄ ∈ R[x] which means f ∈ R[x]

but this implies c ∈ R[b], as required.

This concludes our exposition of the elements of Abstract Algebra we
will be using in our proofs. The next Chapter is concerned with Computabil-
ity and Reverse Mathematics, and also with a few results of Effective Alge-
bra, building on the material presented here.
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Chapter 3

Reverse Mathematics and Logic

In this chapter we set out the logic machinery we will be employing in
our proofs, while also proving relevant results concerning Effective Algebra.

We now present briefly the fundamental notions of Computability and
the framework of Reverse Mathematics.

A set S ⊆ ω will often be equated with its characteristic function. If
σ = 〈s0, s1 · · · sk−1〉, we will write σ(i) for the element si and |σ| for k. If
i ≥ k, we leave the function σ(i) undefined. Recall that S<ω denotes the
collection of finite tuples on S.

We will make use of strings of natural numbers to index elements of
some particular ring. We will work in Baire space ωω of sequences, or
strings, of natural numbers. If σ and τ are strings, we use σaτ to denote
appending τ to the end of σ, to form a third string. We denote by σ � n the
initial segment of σ of length n. A tree is a collection T of strings σ ∈ ω<ω

such that T is closed under initial segments, i.e. if σ ∈ T then any initial
segment of σ is in T . The empty string is represented by λ. The relation �
on a collection of strings T is defined by σ � τ if σ is an initial segment of τ .
We write σ ≺ τ if σ � τ and σ 6= τ . The relations � and � are the inverses
of relations � and ≺. If σ � τ or σ � τ , the strings are said to be comparable.
Otherwise we call them incomparable, written σ | τ . For two strings σ and τ ,
we denote by σ ∩ τ their longest common initial segment. An infinite path
on a tree T ⊆ ω<ω is a function f : ω → ω such that for all n, f � n is in T .
We say τ is a child of σ in T if both strings are in T and τ = σas for some
s ∈ ω. Write σ = τ−. Intuitively, a string τ will later be called terminal in T

33
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if it is not the initial segment of an infinite path. This nomenclature is not
standard, as a string is usually called terminal in the literature if it has no
descendants. We will make this notion precise in Chapter 4, in such a way
as to be definable within a certain axiomatic framework. A tree T is finitely
branching if any string in T has finitely many children. T is binary branching
if elements of T have at most two children.

3.1 Notions from Computability Theory

For the primitive notions of Computability we follow Soare in [27].
Computability Theory is the study of the effective content of Mathemat-

ics, developing the informal concept of an algorithm, or computation, into
a more formal framework consisting of computable functions and the struc-
tures they act upon. These functions are rigorously defined on the set of
natural numbers ω = {0, 1, 2, 3 · · · }. More complicated structures can be
embedded into ω using the technique of Gödel Numbering.

A partial function ϕ : ωk → ω is a function ϕ : D → ω, where D ⊆ ωk. We
denote the domain of ϕ by domϕ.

A Turing Machine is an abstract model of computation that formalizes
the notion of algorithm. Turing Machines compute partial computable func-
tions.

A set A ⊆ ω is c.e. if it is the empty set or the range of a total computable
function. Hence, a set is c.e. if it can be listed (or enumerated) effectively. A
set is computable if it and its complement are c.e.

Assuming these details, Turing Machines can be constructed to compute
most of the common functions of ordinary Mathematics. We equate the
informal concept of effective/computable with the formally defined notion
of Turing Computable. This idea is a version of the well-known Church’s
Thesis.

There exists a Universal Turing Machine. This provides us with an enu-
meration of the partial computable functions ϕ0, ϕ1, ϕ2 · · · and an enumera-
tion of the c.e. sets W0,W1,W2 · · · , where Wi = domϕi .

The most natural c.e. set is ∅′ = {e | ϕe(e) ↓}, known as the Halting Prob-
lem. This set is not computable. We denote by ∅′s the result of enumerating
∅′ for s steps of some enumeration.
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In general, theorems could claim the existence of (non-computable) ob-
jects given other (non-computable) objects. Such a theorem claiming the
existence of a particular object (output) given the existence of some other
object (input) will be said to hold uniformly if there exists an effective way to
pass from indices for the inputs to indices for the outputs. If such a propo-
sition claims that for every computable function g and number b there is a
computable function h and number d such that some property holds, then
to say that the proposition is uniform is to say that there is a computable
function f such that for all a and b, if ϕa is total then f(a, b) = 〈c, d〉, ϕc is
total and the pair 〈ϕc, d〉 satisfies the conclusion of the proposition given the
input 〈ϕa, b〉.

We will often say that A computes B if given access to a finite fragment
of the characteristic sequence of A, we can decide membership for B.

We code sequences by elements of ω in a way which makes the basic
relations and operations on strings (such as σ � τ and 〈σ, τ〉 7→ σ ∩ τ ) com-
putable.

For two sets A,B ⊆ ω, their join is defined as:

A⊕B = {2a | a ∈ A} ∪ {2b+ 1 | b ∈ B}.

The join A ⊕ B is the least upper bound of the Turing degrees of A and
B.

3.2 Reverse Mathematics

Reverse Mathematics is carried out using the language, L2, of Second Order
Arithmetic, Z2. It is the study of theories weaker than Z2. L2 is a two sorted
first order language, which has two types of variables: number variables,
which are denoted by lower-case letters, and set variables, which are de-
noted by upper-case letters. L2 also has two types of quantifiers, ∃x, ∀x and
∃X , ∀X .

The axioms for Z2 come in three categories: axioms specifying the prop-
erties of +, ·, 0, 1, <,∈, to which we add the induction axiom for sets:

((0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X))
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and a simplified version of the comprehension scheme for forming sets:

∃X∀n(n ∈ X ↔ φ(n)).

The Arithmetical Hierarchy is ubiquitous in Mathematical Logic and we
define it here, for formulas of L2.

Definition 3.1 (Arithmetical Hierarchy). A formula ψ is Σ0
0 and Π0

0 if it is
logically equivalent to a first order formula with only bounded quantifiers.

A formula is classified as Σ0
n+1 (or Σn+1) if it is logically equivalent to a

formula of the form:
∃n1∃n2 · · · ∃nkψ,

where ψ is a Π0
n formula.

A formula is classified as Π0
n+1 (or Πn+1) if it is logically equivalent to a

formula of the form:
∀n1∀n2 · · · ∀nkψ,

where ψ is a Σ0
n formula.

Note that a formula of L2 is said to be arithmetical if it contains no set
quantifiers.

The base system will use a weak form of induction, restricted to Σ0
1 for-

mulas:

Definition 3.2 (Σ0
1-Induction). The Σ0

1-Induction scheme is given by the fol-
lowing formula:

(φ(0) ∧ ∀n(φ(n)→ φ(n+ 1))→ ∀nφ(n)),

where φ(n) is a Σ0
1 formula that can contain set variables.

Various versions of the axiom for comprehension will also be used.

Definition 3.3 (Axiom Schema of Arithmetic Comprehension). The axiom
schema of arithmetic comprehension is as follows:

∀w1, ..., wn∃B∀x (x ∈ B ⇔ φ(x,w1, . . . , wn)),

where the formula φ is in the Arithmetical Hierarchy. This essentially
means:
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“there exists a set B whose members are precisely those objects that sat-
isfy the predicate φ.”

Note that φ cannot contain set quantifiers, however set parameters are
allowed.

Definition 3.4 (Recursive Comprehension). Recursive comprehension is de-
fined as follows:

∀x(φ(x)↔ ψ(x))→ ∃X∀x(x ∈ X ↔ φ(x)),

where φ is Σ0
1 and ψ is Π0

1 and X is not free on either ψ or φ.

A model for L2 is a first order structure

U = (A, SA,+A, ·A, 0A, 1A, <A,∈SA),

where the number variables range over A and the set variables range over
SA ⊆ P(A) and the function, relation and constant symbols are interpreted
as indicated in the context.

Z2 consists of basic arithmetic axioms, the comprehension axiom for ev-
ery formula ϕ, and a second-order induction axiom. This theory is some-
times called ”full second order arithmetic” to distinguish it from its subsys-
tems, defined below.

The intended model for Z2 is (ω,P(ω),+, ·, 0, 1, <,∈), but we can also
have non-standard models, if the number variables would range over a non-
standard set or the set variables would range over a set smaller than the full
powerset of A.

An ω-model M is an L2-model for which the first order part is standard,
i.e. A = ω. So M can be viewed as a collection of sets of natural numbers,
representing the range of the set variables in L2.

3.3 Subsystems of Z2

The five subsystems of Z2 most frequently used in Reverse Mathematics are
RCA0, WKL0, ACA0, ATR0 and Π1

1CA0. The subscript 0 refers to the usage
of restricted induction.
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The first and weakest subsystem of Z2, RCA0, is named because of the
recursive comprehension axiom and it includes the arithmetic axioms, the
recursive comprehension scheme and restricted induction. RCA0 includes
the semi-ring axioms while addition and multiplication satisfy their recur-
sive definition. Σ0

1 induction is allowed, while a classic result of [6] shows
that Π0

1 induction is also admissible. The unique smallest ω-model forRCA0

is the collection REC of computable/recursive sets. The ω-models of RCA0

are the collections of subsets of ω which are closed under join and relative
computability.

This system corresponds roughly to constructive mathematics. If a state-
ment is provable in RCA0, its effective or computable version will always
be true.

The second subsystem of Z2 is WKL0 and is named after the Weak
König’s Lemma. This is the statement ”every infinite binary branching tree
has an infinite path”. As the name suggests, WKL0 is made up by adding
Weak König’s Lemma to the axioms of RCA0. WKL0 is strictly stronger
than RCA0 - we can see this because the effective version of the Weak
König’s Lemma is not true. One consequence of equivalences to WKL0

is that the effective versions of the results fail to hold.

The third subsystem is dubbed ACA0, for Arithmetic Comprehension
Axiom, which comprises of RCA0 plus the Σ0

1 comprehension. This system
can prove the Full König’s Lemma and can define the Turing Jump of any
set. ACA0 allows us to form the set of natural numbers satisfying an ar-
bitrary arithmetical formula, no matter how complex. In this framework,
it is easy to prove the existence of the integers, the rationals, the reals (as
Cauchy sequences of rationals), the complex numbers (as pairs of reals) and
also show some of their properties.

It is then provable that RCA0 and the restriction of the comprehension
scheme to arithmetical formulas, which yield the arithmetical induction
scheme, is equivalent to ACA0. The unique smallest ω-model for ACA0

is then the collection ARITH of arithmetical sets. Among the ω-models of
RCA0, the ω-models for ACA0 are characterized by the property of closure
under Turing Jump.

The system ATR0, short for arithmetic transfinite recursion, comprises
of ACA0, plus axioms which allow for the arithmetic comprehension to be
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iterated transfinitely, along any well-order.

Given that a well-ordering is an irreflexive linear ordering of a subset of the
natural numbers having no infinite descending sequences, the ATR0 main ax-
iom asserts that “if ’<’ is a well-ordering, then for any arithmetical formula
φ(j, Y ) there exists a set X such that for all j and n, (j, n) ∈ X if and only if
φ(j, {(i,m)|m < n ∧ (i,m) ∈ X})”.

It is a result of Friedman that ATR0 is equivalent to the statement that
any two well-orderings are comparable. In particular, it is also equivalent to
the assertion that the Turing Jump can be iterated along any countable well
ordering starting with any set.

The final and strongest system that is usually considered in Reverse
Mathematics is Π1

1CA0, which is strong enough to develop the basic struc-
ture theory of countable abelian groups. It consists of the system ATR0 plus
the axiom of Π1

1 comprehension, which states that {x ∈ ω|φ(x)} exists for
any Π1

1 formula φ(x). This system can prove the existence of Kleene’s O,
which cannot be shown in ATR0.

This concludes our exposition of the subsystems of Z2. For complete-
ness, we have introduced all of the big five subsystems, however we will
only refer to RCA0 and ACA0 in our proofs, using the first as a base system
and proving an equivalence with the latter.

3.4 Computability and Algebra

Computability Theory operates with computable structures, so we define
the computable counterpart of a ring.

Definition 3.5. A computable ring is a computable subset R ⊆ ω, equipped
with two computable binary operations + and · on R, together with two
elements 0, 1 ∈ R, such that (R, 0, 1,+, ·) is a ring.

The embedding of a ring into its associated ring of polynomials is com-
putable with computable image. Furthermore, if the ring is computable, we
can effectively compute an index for this embedding.

We state this in the following proposition concerning computability, not-
ing that further details regarding numberings can be found in [26].
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Proposition 3.6. IfR is a computable ring, thenR[x1, x2 · · ·xk] is computable
and the embedding ϕ : R ↪→ R[x1, x2 · · ·xk] is computable with computable
image.

This is an occasion in which we need to make a distinction between R

and its image under its embedding into R[x̄] and note that the map is not an
identity.

Proof. R[x] is defined as tuples over R; this can be the empty tuple or tuples
in which the last element is non-zero; using a Gödel numbering these tuples
can be coded by natural numbers. The operations on the resulting structure
are computable, since the ringR[x] is specified by effective rules for addition
and multiplication, based on the operations ofR. By iteration,R[x1, x2 · · ·xk]
is also computable.

The embedding ϕ : R ↪→ R[x] is then defined as q0 7→ 〈q0〉. Since the
tuple 〈q0〉 is effectively recognizable by the condition i < 1, the map ϕ is
computable with computable image.

By iteration, the embedding of R into R[x1, x2 · · · xk] is computable with
computable image.

We argue that Proposition 3.6 holds uniformly.

Remark 3.7. Proposition 3.6 is effective.

Proof. From indices for the computable ring R we can pass to indices for
the ring R[x1, x2 · · ·xk]. This is because R[x1, x2 · · ·xk] is effectively defined
using elements of R, while its operations are based on the operations of R.

Also, from indices for the rings R and R[x1, x2 · · ·xk], we can pass to a
computable index for ϕ, and an index for ϕ[R].

The following remark notes that the operation of evaluating a polyno-
mial of R[x1, x2 · · ·xk] within a computable ring R is a computable opera-
tion.

Remark 3.8. If R < Q are computable rings, then the function 〈f, ā〉 7→ f(ā)

from R[x̄]×Qn → Q is computable.
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Proof. f(ā) is obtained effectively by uniformly replacing ā for x̄ in f(x̄) and
then carrying the multiplications and additions inQ. SinceQ is computable,
the process of obtaining f(ā) must be effective.

Remark 3.9. Let R be a computable integral domain and I a multiplicative
c.e. subset of R. Let ϕ be the embedding of R into I−1R. Then, there is a
computable ring S, a computable embedding ψ : R → S, and an isomor-
phism θ : I−1R→ S, such that ψ = θ ◦ ϕ.

Proof. Recall the relation∼ onR×I is defined by 〈r, b〉 ∼ 〈r′, b′〉 if r ·b′ = r′ ·b.
Let b1, b2 · · · be an enumeration of I where bk = bk.
Define a relation E on R × ω by 〈a, k〉E〈a′, k′〉 if 〈a, bk〉 ∼ 〈a, bk′〉. Then

E is a computable relation: to see if a pair 〈a, k〉 is in the relation we see
the enumeration of I up to step k and checking whether two pairs are ∼-
equivalent can be done effectively, since R is computable.

Consider the collection (R × ω)/E and the map η : R × ω → R × ω that
chooses a representative for each E-equivalence class and sends each ele-
ment to its representative. From an enumeration 〈a1, k1〉, 〈a2, k2〉 · · · of R×ω
we can effectively do this by letting η(as, ks) = 〈av, kv〉 where v = min{t ≤
s | 〈as, bks〉 ∼ 〈at, bkt〉}. In virtue of this definition, η is computable with a
computable image.

We let S = η[R× ω].
Define θ : I−1R → S by θ([〈r, bk〉]) = η(r, k). Bijectivity of θ follows from

the definition of η.
Define the operations on S by: a+S b = θ(θ−1(a)+I−1R θ

−1(b)) and a ·S b =

θ(θ−1(a) ·I−1R θ
−1(b)) It follows that S is a ring since I−1R is a ring, and θ is

an isomorphism.
We claim S is computable. For let a, c ∈ S, we can effectively find r, s ∈ R

and k, l ∈ ω such that a = 〈r, k〉 and c = 〈s, l〉. Using a search, we can
effectively find m ∈ ω such that bm = bk ·R bl. Then a ·S c = η(r ·R s,m) and
a+S c = η(r ·R bl +R s ·R bk,m).

It is straightforward that ψ = θ ◦ ϕ, since ψ(r) = η(r, k) such that bk = 1R

and θ(ϕ(r)) = θ([〈r, 1R〉]) = η(r, k). The fact that ψ is an embedding follows
from the fact that both ϕ and θ are embeddings.
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Remark 3.10. Proposition 3.9 is effective.

Proof. From an index for R as a computable ring, and a c.e. index for the
set I , we can effectively compute an index for S as a computable ring, a
computable index for ψ and a computable index for the set ψ[R].

Recall that Rb is the localization of R by the multiplicative subset I =

{bk | k ∈ ω, b ∈ R, b 6= 0R}.

Remark 3.11. Let R be a computable integral domain, let a ∈ R be nonzero,
and suppose that the relation {〈r, k〉 ∈ R × ω | bk | r} is computable.
Then there is a computable integral domain S and a computable embed-
ding ψ : R → S with computable image, and an isomorphism θ : Rb → S

such that ψ = θ ◦ ϕ, where ϕ is the canonical embedding of R into Rb.

Proof. The construction of S is exactly as in the proof of Remark 3.9.
Under the assumption that the divisibility relation is computable, we

have that the image of ψ is computable, since 〈r, k〉 ∈ S is in the range of ψ
if and only if bk |R r.

Remark 3.12. Remark 3.11 is uniform.

Proof. Just as in the proof of Remark 3.10, with the added assumption that
we have a computable index for the relation {〈r, k〉 ∈ R × ω | bk | r}. With
this added index we obtain a computable index for the set ψ[R].

The following proposition will allow us to prove Corollary 3.21. Again,
we need it to hold uniformly.

Proposition 3.13. If Q and P are computable rings with P = Q[a] for a ∈ P
transcendental over Q, there is a computable embedding ϕ : P ↪→ Q[y, z],
such that:

1. ϕ(a) = y · z,
2. ϕ[P ] is computable,
3. ϕ � Q = idQ.
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Proof. This is an instance in which we can assume Q < Q[y, z] and the em-
bedding of Q into Q[y, z] is idQ. Note that idQ is a homomorphism.

SinceQ < P = Q[a] and a is transcendental overQ, we can apply Lemma
2.42 to Q, P and idQ to obtain the unique homomorphism ϕ : P → Q[y, z]

such that f(a) 7→ (f)(yz), that extends idQ with ϕ(a) = yz. We claim yz is
transcendental over Q, otherwise we have non-zero f ∈ Q[x] with f(yz) = 0

from which we can construct non-zero g ∈ Q[y, z] with g(y, z) = f(yz) = 0,
but this is impossible.

We claim ϕ is the required embedding. By definition, ϕ(a) = y · z.

We claim ϕ is computable. Q[x] is computable. Fix an element p ∈ P .
From an enumeration f1, f2 · · · of Q[x], check if fi(a) = p, and if so, map p to
fi(y · z).

Note that the image of ϕ is computable, since a polynomial f ∈ Q[y, z] is

in the image of Q if and only if f(y, z) =
i=n,j=m∑
i,j=0

qi,jy
izj with qi,j = 0 when

i 6= j. Also, f ∈ ϕ[Q] if and only if qi,j = 0 if i > 0 or j > 0. These conditions
are recognizable, given the description of the polynomial f .

Remark 3.14. Proposition 3.13 is effective.

Proof. From computable indices for Q and P and the element a we can ef-
fectively compute indices for ϕ and for the set ϕ[P ].

If a computable ringQ is embedded into a computable ring S and S is in-
finitely bigger thanQ and given supersetR ofQ that is infinitely bigger than
Q, we can uniformly define a computable structure on R and a computable
isomorphism between R and S.

Proposition 3.15. Given computable ring Q, a computable embedding
ψ : Q ↪→ S with ψ[Q] computable, where S is a computable ring and
|S \ ψ[Q]| = ω and given computable set R ⊃ Q with |R \ Q| = ω, then
there are functions +R : R2 → R and ·R : R2 → R such that (R,+R, ·R, 0Q, 1Q)

forms a computable ring with Q < R, and a computable isomorphism
η : S → R such that η ◦ ψ = idQ.
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Proof. We want to define η as a computable bijection η : S → R, such that
η ◦ ψ = idQ.

To see that such a function exists, let s0, s1, s2 · · · ∈ S be an effective enu-
meration of S and r0, r1, r2 · · · be an effective enumeration of R \ Q. Define
η as follows

η(si) =

ψ−1(si), if si ∈ ψ[Q]

rj such that j = min{j | rj /∈ η[{s0, s1 · · · si−1}]}, otherwise

Then η�ψ[Q] is bijective due to the fact that ψ is an embedding, and η�S\ψ[Q]

is surjective because we are mapping si to a minimum rj and injective be-
cause rj was not mapped before. In virtue of our definition, η is also com-
putable and η ◦ ψ = idQ.

Define the computable ring structure on R by s1 +R s2 = η(η−1(s1) +S

η−1(s2)) and s1 ·R s2 = η(η−1(s1) ·S η−1(s2)).

Because they are compositions of computable operations, these func-
tions are computable and η becomes the required isomorphism.

Remark 3.16. Proposition 3.15 is effective.

Proof. Form computable indices for the rings Q and S, and computable in-
dices for the sets R and ψ[Q] we can effectively obtain the enumerations
s0, s1 · · · and r0, r1 · · · and pass to a computable index for the ring R and a
computable index for the map η.

If Q is a computable ring and there is a computable superset S of Q
infinitely bigger than Q and an element a of S that is not in Q, we can uni-
formly put a computable structure on S such that the ring S is generated by
Q and the element a.

Corollary 3.17. If Q is a computable ring, S is a computable superset of Q with
|S \ Q| infinite, then there are functions +S : S2 → S and ·S : S2 → S such that
(S,+S, ·S, 0Q, 1Q) is a computable ring, Q is a subring of S, and there is some
a ∈ S such that S = Q[a] and a is transcendental over Q.
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Proof. From Proposition 3.6 we know Q[x] is computable, and we have a
computable embedding with computable image ϕ : Q ↪→ Q[x].

Now, we get by Proposition 3.15 a computable structure
(S,+S, ·S, 0Q, 1Q) and an isomorphism η : Q[x] → S. Let a = η(x), we
know a 7→ x, i.e. a is transcendental over Q. By Proposition 2.44 a is
transcendental over Q and S = Q[a].

Remark 3.18. Corollary 3.17 is effective.

Proof. Follows from Remark 3.7, Remark 3.16 and Proposition 3.6.

The next Corollary is analogous to Corollary 3.17, and it uniformly de-
fines a computable structure on S such that S is isomorphic to Q[c−1], for a
non-unit non-zero c ∈ Q.

Corollary 3.19. If Q is a computable integral domain and S is a computable set
such that Q ⊂ S and |S \ Q| is infinite, and given some non-zero non-unit c ∈ Q
such that the relation {〈r, k〉 ∈ Q × ω | ck | r} is computable, then there are
functions +S : S2 → S and ·S : S2 → S such that (S,+S, ·S, 0Q, 1Q) forms a
computable integral domain, with Q a subring of S, c a unit of S, and S = Q[c−1].

Proof. Note that Qc = I−1Q, where I = {ck | k ∈ ω}, a c.e. set.
From Remark 3.9, we know there is a computable ring P , a com-

putable embedding ψ : Q→ P with computable image and an isomorphism
θ : Qc → P which extends ψ. Note that we are considering Q as a subring of
Qc.

From Proposition 3.15, we obtain a computable structure on S and an
isomorphism η : P → S such that η ◦ ψ = idQ.

We need to show that c is a unit of S and S = Q[c−1]. This follows by
Proposition 2.39 because η ◦ θ is an isomorphism between Qc and S, over Q.

Remark 3.20. Corollary 3.19 is effective.

Proof. Follows from Remark 3.16, Remark 3.10, Remark 3.18 and Proposi-
tion 3.6.
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In Chapter 4 we will need a ring homomorphism that maps a particular
element of its domain to the product of two elements of its range. We will
start with a given ring Q and use this result for defining a ring R containing
Q in which a particular element of Q is the product of two elements of R.
The following Corollary will allow that.

Corollary 3.21. If Q and P are computable rings such that Q < P and P = Q[a]

with a transcendental overQ, and S is a computable set such that P ⊂ S and S \P
is infinite, then there are functions +S, ·S : S2 → S such that (S,+S, ·S, 0Q, 1Q) is
a computable ring, P is a subring of S and elements b, c ∈ S transcendental over
Q, such that:

1. Q[b, c] = S, and
2. b ·S c = a.

Proof. From Proposition 3.13 we obtain a computable embedding ϕ : P →
Q[y, z] such that ϕ(a) = y · z.

Apply Proposition 3.15 to P , S and Q[y, z] to put a computable structure
on S and obtain an isomorphism η : Q[y, z]→ S such that η ◦ ϕ = idP .

Put b = η(y) and c = η(z) to obtain b ·S c = η(y) ·S η(z) = η(y ·Q[y,z] z))

= η(ϕ(a)) = idP (a) = a, and the following diagram:

Q Q[y, z]

P S

⊆

⊆

⊆

⊆
ηϕ

From Definition 2.41, {y, z} is independent in Q[y, z] over Q, so {b, c} is
independent in S over Q. For if there is f ∈ Q[y, z] such that f(b, c) = 0,
by isomorphism f(y, z) = 0. This shows S = Q[b, c] with {b, c} independent
over Q.

Remark 3.22. Corollary 3.21 is effective.

Proof. Follows from Remark 3.16, Remark 3.14 and Remark 3.7, and the fact
that b and c can be found effectively, since the function η from Proposition
3.15 can be found effectively.
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The following Proposition concerns computability of a generated ring,
under the assumptions that the generating set is finite and the base ring is
computable.

Proposition 3.23. If Q < R are computable rings with R = Q[J ] for some
finite J ⊆ R independent over Q, and given I ⊂ J , then the ring Q[I] is
computable.

Proof. Let I = {a1, a2 · · · ak} and J = {a1, a2 · · · ar} with r > k. Then Q[I] =

{f(a1, a2 · · · ak) | f ∈ Q[x1, x2 · · ·xk]} and R = Q[J ] = {g(a1, a2 · · · ar) | g ∈
Q[x1, x2 · · · xr]}.

Let x̄ = x1, x2 · · ·xk and ȳ = ak, ak+1 · · · ar. Note thatQ[x̄] is a computable
subset of Q[x̄, ȳ].

By Proposition 2.44, fix a computable bijection ψ : R → Q[x̄, ȳ]. Then
a ∈ Q[I] if and only if ψ(a) ∈ Q[x̄], so Q[I] is computable.

Remark 3.24. Proposition 3.23 is uniform.

Proof. From computable indices for the rings Q and J and for the sets I and
J , we can pass to computable indices for the ring Q[I].

Finally, Lemma 3.25 gives a sufficient condition for the computability of
a ring generated by two specific elements.

Lemma 3.25. If P,Q,R are computable rings, Q < R < P and b invertible in P ,
with R = Q[b, b1, b2 · · · bk] where the presented variables are independent over Q,
and P = R[b−1], then the ring Q[b, b−1] is computable.

Proof. By Proposition 3.23 applied to R, {b, b1, b2 · · · bk} and {b}, Q[b] is com-
putable.

Proposition 2.38 shows P = {c/bk | c ∈ R, k ∈ ω}.
Due to Remark 2.40, Q[b, b−1] = (Q[b])[b−1]. Since Q[b] ⊂ P , Proposition

2.38 also shows that Q[b, b−1] = {c/bk | c ∈ Q[b], k ∈ ω}.
Given d ∈ P , we claim we can effectively find c ∈ R and k ∈ ω such

that d = c/bk. Starting from enumerations c1, c2 · · · ∈ R and 1, b, b2, b3 · · · , we
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can consider all pairs c, bk. We must eventually find such a pair and halt,
because d ∈ P .

Now, if d = c1/b
k1 = c2/b

k2 with c1 ∈ Q[b] and c2 ∈ R, then c2 =

c1b
k2/bk1 ∈ Q[b, b−1], so by Lemma 2.52 c2 ∈ Q[b].
Finally, we note that the condition c ∈ Q[b] is decidable. This shows

Q[b, b−1] is computable, for we can perform a search for d = c/bk ∈ P and
decide whether c ∈ Q[b].

Remark 3.26. Lemma 3.25 is uniform.

Proof. From computable indices for the rings P,Q,R and the element b we
can pass to computable indices for the ring Q[b, b−1].

In the next Chapter we will define a particular sequence of rings. The
first ring in the sequence will be isomorphic to the field of rationalsQ, hence
we need a proposition that establishes an isomorphism between the ratio-
nals and an arbitrary countably infinite set.

Proposition 3.27. If Q is a computable set with |Q| = ω, there are com-
putable functions +Q : Q2 → Q and ·Q : Q2 → Q and elements 0Q, 1Q ∈ Q

such that (Q,+Q, ·Q, 0Q, 1Q) forms a ring and Q ∼= Q.

Proof. Let R be a computable copy of the integers, such that the set Q con-
tains R and |Q \ R| = ω. This can be achieved, for example, by coding the
integers into the even numbers and letting Q = ω.

Now let I = R \ {0R}. Note that I is a c.e. subset of R. By Remark
3.9, there is a computable ring S, a computable embedding ψ : R → S with
computable image, and an isomorphism η : I−1R→ S that extends ψ.

Note that I−1R ∼= Q, so S ∼= Q.
By Proposition 3.15, there is a computable structure on Q such that R <

Q and there exists isomorphism θ : S → Q with θ ◦ ψ = idR.
This proves there exists an isomorphism between Q and Q.

This is the end of Chapter 3. The final Chapter is an exposition of our
main results.



Chapter 4

Equivalent characterizations of
UFDs

In this chapter we present our results, which deal with the proof-theoretic
strength of Theorems 1.2 and 1.3. We will work in the base system RCA0.

4.1 The theorems

We will make use of the following two lemmas in the proof of Theorem 1.3.
Recall that C ∼ C ′ means that there is a bijection f : C → C ′ such that

p ∼ f(p) for all p ∈ C. Let
∏
C =

∏
c∈C

c.

Lemma 4.1 (RCA0). Let R be an integral domain. Let C and C ′ be multisets of
primes of R. If C ∼ C ′ then

∏
C ∼

∏
C ′.

Proof. Let C = [p1, p2 · · · pm], so C ′ = [q1, q2 · · · qm] and there is injective
f : {1, 2 · · ·m} → {1, 2 · · ·m} such that pk ∼ qf(k) for all k ∈ {1, 2 · · ·m}.

For k ≤ m let Ck = [p1, p2 · · · pk] and C ′k = [qf(1), qf(2) · · · qf(k)].
We prove the Σ1 statement

∏
Ck ∼

∏
C ′k using induction on k. Take the

base case as k = 0 and we observe that Ck = C ′k = ∅, so
∏
Ck = 1R =∏

C ′k. Assume the statement holds for k < m, so there is u ∈ R× such that
u
∏
Ck =

∏
C ′k. By assumption, there is v ∈ R× such that vpk+1 = qf(k+1).

Then,

(uv)
∏

Ck+1 = u
∏

Ck · vpk+1 =
∏

C ′kqf(k+1) =
∏

C ′k+1,

49
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as required.

Lemma 4.2 (RCA0). Let R be an integral domain. Let C be a multiset of elements
of R, and let p ∈ R be prime. If p |

∏
C, then there is some a ∈ C such that p | a.

Proof. Let C = [a1, a2 · · · am].
We use induction on k ≤ m to show that there is some j ≤ k such that p |

aj , or p |
∏

[ak+1, ak+2 · · · am]. For the base step k = 0, this is the assumption
p |

∏
C. For the induction step, assume the statement holds for k. If there is

some j ≤ k such that p | aj , then certainly the statement holds for k + 1. If
not, since p is prime and by induction

p |
∏

[ak+1, ak+2 · · · am] = ak+1

∏
[ak+2 · · · am],

either p | ak+1 or p | [ak+2 · · · am], so the statement holds for k + 1. So the
statement holds for m, which means p | aj for some j ≤ m or p |

∏
∅ = 1R,

which is impossible since p is a non-unit.

The first theorem we will be concerned with states that if every irre-
ducible is prime in an integral domain, then every element has at most one
factorization into irreducibles. This result is provable in RCA0.

Theorem 1.3 (RCA0). If an integral domain is AP, then it is an U-UFD.

The proof is essentially a repeat of the proof of Proposition 2.12. We
repeat it due to the fact that we are confined to the base system RCA0.

Proof. Let R be an AP domain. Let B and B′ be multisets of irreducibles of
R, and suppose

∏
B ∼

∏
B′. Write B = [p1, p2 · · · pm] and B′ = [q1, q2 · · · qn].

By Σ1 induction on k ≤ n we prove the formula ϕ(k): ”there is injec-
tive f : {1, 2 · · · k} → {1, 2 · · ·m} such that for all i ≤ k, pi ∼ qf(i). For the
base case k = 0, the empty function witnesses the formula holds. For the
inductive case, suppose f does the job on {1, 2 · · · k}. Let C = [p1, p2 · · · pk],
C ′ = [qf(1), qf(2) · · · qf(k)], and let b =

∏
B, b′ =

∏
B′, c =

∏
C and c′ =

∏
C ′.

Let d =
∏

(B \B′) and d′ =
∏

(C \ C ′).
By Lemma 4.1, c ∼ c′. From the assumption b ∼ b′ we conclude

d ∼ d′. In particular, pk+1 | d′. By Lemma 4.2, there is q ∈ C \ C ′ such
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that p | q. By irreducibility of q, p ∼ q. Let i ≤ m such that q = qi,
define g : {1, 2 · · · k + 1} → {1, 2 · · ·m} by letting g(j) = f(j) for j ≤ k and
g(k + 1) = i.

The second theorem concerns the logical connection between well-
foundedness of divisibility and atomicity. The main contribution of our
present work is to prove the equivalence of this result to ACA0.

Theorem 1.2 (ACA0). If an integral domain satisfies the ACCP, then it is Atomic.

Proof. Let R be a computable non-Atomic integral domain. There are two
cases to consider.

Case 1: there is some a ∈ R with no irreducible factor. Recursively de-
fine a sequence 〈ai〉i∈ω with a0 = a and an+1 some proper factor of an. By
induction, an has no irreducible factor, so is reducible itself. ∅′ can identify
such an+1, so the sequence 〈ai〉i∈ω is computable from ∅′. Since this is an
infinite descending chain in divisibility, it is a counter-example to ACCP.

Case 2: every b ∈ R has an irreducible factor, but some a ∈ R is not
the product of irreducible elements. Recursively define a sequence 〈ai〉i∈ω
with a0 = a and an+1 a proper factor of an such that there is some irreducible
pn ∈ Rwith an = an+1 ·Rpn. By induction, an is not the product of irreducible
elements, and since pn is irreducible, this implies an+1 does not have an ir-
reducible factorization. ∅′′ can identify an irreducible factor of an and so the
sequence 〈ai〉i∈ω is computable from ∅′′. This sequence is a counter-example
to ACCP.

These theorems represent the first direction of the following equivalence,
which is provable in ACA0. The equivalence holds for an integral domain
R if and only if R is a UFD.

Theorem 1.1 (ACA0). Let R be an integral domain. The following are equivalent:
1. R is an AP domain which satisfies the ACCP;
2. R is an Atomic U-UFD.

Proof. 1. ⇒ 2.
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Theorems 1.3 and 1.2 prove this direction in ACA0.
2. ⇒ 1.
Suppose every element has exactly one factorization into irreducibles in

R. We need to prove R satisfies the ACCP and it is an AP-domain.
Let 〈ci〉i∈ω be a descending chain in divisibility of R, that is ci+1 divides

ci. Let ci =
∏

pi,j∈Bi
pi,j be a factorization into irreducibles of ci, where Bi is

a multiset of irreducibles. Note the use of ∅′′ to construct this sequence of
multisets, hence the proof uses ACA0.

We claim |Bi+1| ≤ |Bi|; for if p1p2 · · · pk ·
∏

pi+1,j∈Bi+1

pi+1,j =
∏

pi,j∈Bi
pi,j , where

each pi is an irreducible, by uniqueness of factorizations |Bi| = k + |Bi+1|.
In turn, this means the sequence |Bi|i∈ω is a non-increasing sequence of in-
tegers, so by Proposition 4.39, it stabilizes, which means there exists some k
such that |Br| = |Br+1| for all r ≥ k. By uniqueness of irreducible factoriza-
tions, this means pr+1 does not divide pr properly.

The second part, that UFD implies AP, is given by Proposition 2.10.

For a complete discussion of factorization in integral domains, we refer
the reader to [18].

Grams (1974, [10]) has given an example of an Atomic ring that does
not satisfy the ACCP, hence providing a counter example to the converse of
Theorem 1.2.

It was shown by Coykendall and Zafrullah (2004, [2]) that the converse
of Theorem 1.3 does not hold. They have shown that there exist U-UFDs
that are not APs.

We proceed now to showing that Theorem 1.2 implies ACA0.
We start by constructing, in the next section, a tree T , encoding ∅′ by its

non-terminal elements.
We then proceed, in the following section, to defining an increasing se-

quence 〈Qi〉i∈ω of rings that encode precisely the elements of the tree, in
such a way as to determine the divisibility relation in those rings by the
descendant relation in T .

We prove the union of the rings in the sequence forms a computable in-
tegral domainQω, whose infinite descending chains in divisibility computes
∅′.
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The conjuction of this result with Theorem 1.2 proves the existence of ∅′

in a model of both, hence implying ACA0.
The proofs that follow will be carried in RCA0.

4.2 A tree encoding ∅′

We define in stages trees Tn ⊂ ω<ω with n ∈ ω. At each stage k, we have
a corresponding string σk, which either gets extended to obtain σk+1 if it
agrees with the configuration of ∅′k, or else σk+1 is assigned to the parent of
σk, in a back-tracking step. In the first case, σk+1 is added to Tk to obtain
Tk+1, while in the second we simply assign Tk to Tk+1.

This will provide an indexing for the elements of a ring we will construct
later, which will help us determine the proof-theoretic strength of Theorem
1.2.

The collection of strings is formally defined as follows:

Construction 4.3. Let σ1 = λ and T1 = {σ1}.
Step k, for k ≥ 1: If there exists n ∈ ω with n < |σk| such that σk(n) = 0 and
n ∈ ∅′k+1, then σk+1 = σ−k and Tk+1 = Tk. Otherwise put n = |σk| and let

σk+1 =

σ
a
k 0, if n /∈ ∅′k+1

σak s, where n ∈ ∅′k+1 and n ∈ ∅′s \ ∅′s−1

with Tk+1 = Tk ∪ {σk+1}.

Finally, let T =
⋃
n∈ω

Tn.

Note that T is a computable tree in ω<ω. Formally, we will not make
use of this fact, as we will only need the sequence of strings 〈σi〉i∈ω. It
is provable in ACA0 that T has a unique infinite path which computes
∅′. Since we are working in RCA0, we cannot use this fact, however it
sheds some light on the reasons behind our definition of T : we want an
unbounded sequence in T to compute the Halting Problem. Later, we will
encode T in a computable integral domain, and make use of an unbounded
sequence in T to show that some sequence of the ring computes the Halting
Problem.
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Lemma 4.8 and Proposition 4.13 define what it means for a string σ to
be correct/non-terminal in T . As noted in Chapter 3, this terminology is
non-standard.

For brevity, we say that a string σ appears correct at stage s, if for all n < |σ|,
n ∈ ∅′s if and only if σ(n) > 0. The next lemmas relate the notion of ”appears
correct” to Construction 4.3.

Lemma 4.4. Let k ∈ ω, let σ ∈ Tk, and let n < |σ|. If σ(n) > 0 then n ∈ ∅′k.

Proof. By induction on k. Suppose the statement is correct up to k − 1. Let
σ ∈ Tk. If σ ∈ Tk−1 then we are done since ∅′k−1 ⊂ ∅′k−1. So suppose that
σ ∈ Tk \Tk−1, which implies that σ = σk, and σk extends σk−1. Let n < |σk|. If
n < |σk−1| and σk(n) > 0 then σk−1(n) > 0 (as σk−1 ≺ σk) and so by induction
n ∈ ∅′k−1 ⊂ ∅′k. Otherwise n = |σk−1| and by definition of σk, σk(n) > 0 if and
only if n ∈ ∅′k.

Lemma 4.5. Let k ∈ ω. If σk appears correct at stage k + 1 then σk+1 is an
extension of σk. Otherwise, σk+1 = σ−k .

Proof. If σk appears correct at stage k + 1 then certainly the condition of
the construction for letting σk+1 extend σk holds. Suppose otherwise. Let
n < |σk| such that σk(n) 6= 0 if and only if n /∈ ∅′k+1. By Lemma 4.4, σk(n) > 0

is impossible, so σk(n) = 0 and n ∈ ∅′k+1. Thus the condition in the construc-
tion for letting σk+1 = σ−k holds.

Lemma 4.6. Suppose σk is an extension of σk−1. Then σk appears correct at stage
k.

Proof. Let n < |σk|, we show that n ∈ ∅′k if and only if σk(n) > 0. There are
two cases. First suppose that n < |σk−1|. By Lemma 4.5, σk−1 appears correct
at stage k, or else σk would not be an extension of σk−1. So σk(n) = σk−1(n) >

0 if and only if n ∈ ∅′k as required. Next take n = |σk|. Then σk(n) > 0 if and
only if n ∈ ∅′k by the definition of σk.

Lemma 4.7. Let σ ∈ T and let k be the least such that σ = σk, so that σ ∈ Tk\Tk−1.
The collection of stages s ≥ k at which σ appears correct forms an interval.
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Proof. It suffices to show that if σ does not appear correct at some stage s,
then it does not appear correct at stage s+ 1.

So suppose σ does not appear correct at s ≥ k. The assumption says that
there is some n < |σ| such that σ(n) = 0 but n ∈ ∅′s. So either σ(n) = 0

and n ∈ ∅′s, or σ(n) 6= 0 and n /∈ ∅′s. However, the second is impossible by
Lemma 4.4. So σ(n) = 0 and n ∈ ∅′s, so n ∈ ∅′s+1 as well, and so witnesses
that σ does not appear correct at stage s+ 1.

Lemma 4.8. Let σ ∈ T and let k be the least such that σ = σk. For all s ≥ k, if σ
appears correct at stage s, then σ � σs.

Proof. We prove the lemma by induction on k. By Lemma 4.7, we can start
with base case k = s, which is immediate since σk = σs.

Now assume σk � σs and σk appears correct at step s + 1, and show
σk � σs+1.

If σs+1 = σas s, then σk � σs ≺ σs+1.
If σs+1 = σ−s , there are two cases to consider: σs = σk or σs � σk.
If σs = σk, since σs+1 = σ−s , there is j < |σs| such that σs(j) = 0 and

j ∈ ∅′s+1. This contradicts our assumption.
If σs � σk, then σs = σak s

a
1 s2 · · · st where t > 0, so σs+1 = σ−s =

σak s
a
1 s2 · · · st−1, which shows σs+1 � σk.

Lemma 4.9. If σk is extending σk−1, then σk /∈ Tk−1.

Proof. let k ∈ ω and suppose, for a contradiction, that σk is an extension of
σk−1 but σk ∈ Tk−1. Let m be the least stage such that σm = σk, so m < k

by the assumption for contradiction. By Lemma 4.6, σk appears correct at
both stages m and k, so by Lemma 4.7, σk appears correct at stage k − 1. By
Lemma 4.8, σk � σk−1, contrary to the hypothesis.

We define a string σ = σk to be correct if for all n < |σk|, n ∈ ∅′ if and
only if σk(n) 6= 0. Note that this is the same as σ appearing correct at every
stage s ≥ k. We also use the notion of a string being non-terminal, which is
equivalent to being correct.
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Proposition 4.10. If σ is incorrect and τ � σ, then τ is incorrect.

Proof. Let σ be incorrect in T and let τ � σ. There exists n < |σ| with n ∈ ∅′

and σ(n) = 0. The possibility σ(n) > 0 and n /∈ ∅′ is excluded. Since τ � σ,
the same property applies to τ , which makes τ incorrect.

Lemma 4.11. For every τ ∈ T , there is a string of greatest length σ � τ which is
correct.

Proof. We note that λ is correct; this is immediate from definition.

Fix a string τ ∈ T . If τ is correct, we are done. Otherwise, let A = {n ≤
|τ | | τ�n is not correct}. The set A is Σ1 and non-empty, by Π1 induction it
has a least element.

Since λ is correct, n > 0. By Proposition 4.10, τ�n−1 is the longest correct
initial segment of τ .

Lemma 4.12. Let ρ ∈ T be incorrect, but suppose that τ = ρ− is correct. Then
ρ = τa0, and there is some s > 0 such that τas ∈ T is correct.

Proof. Let n = |τ |. By definition, we know that if ρ(n) > 0 then n ∈ ∅′; but in
that case, ρ would be correct. Hence ρ = τa0, and n ∈ ∅′. Now, let s be the
greatest stage at which τa0 appears correct, so n ∈ ∅′s+1 \ ∅′s. By Lemma 4.7,
ρ = τa0 does not appear correct at any stage t > s. So if t ≥ s and ρ � σt,
then σt does not appear correct at stage t and σt+1 = σ−t . By induction we
see that σs+1 = σ−s , σs+2 = σ−s+1 · · · until σt = ρ, for t = s + |σs| − |ρ|, and
σt+1 = τ . Since τ is correct, it appears correct at stage t+ 2 and so σt+2 = τas

and that string is also correct.

Proposition 4.13. Let σ ∈ T and let k be the least such that σ = σk. Then:

1. if σ is correct, then for all s ≥ k, σ � σs,

2. if σ is incorrect, then σ � σs for only finitely many s.

If 1 holds we say σ is non-terminal in T , and if 2 holds we say it is termi-
nal.
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Proof. Proof of 1. Follows from Proposition 4.8 and the fact that σ appears
correct at every stage s ≥ k.

Proof of 2. Suppose that σ is not correct. By Lemma 4.11, let τ be its
longest initial segment that is correct and let ρ = σ�|τ |+1, so ρ is not correct
and τ = ρ−. By Lemma 4.12, ρ = τa0 and there is some s > 0 such that
τas ∈ T is correct. By part 1, for all but finitely many stages t we have that
τas � σt. Since σ � τ a 0 is incomparable with τas, for every such stage t,
σ � σt.

Proposition 4.13 provides us with the definition of ”non-terminal”, for-
mulated in RCA0, and shows this notion is equivalent to ”correct”.

Proposition 4.14. Any two non-terminal strings are comparable.

Proof. Let σ, τ be two non-terminal strings. Let k be the least such that σ ∈ Tk
and t be the least such that τ ∈ Tt.

By Proposition 4.13, if t ≥ k, then σ � τ , otherwise σ � τ .

Proposition 4.15. Every correct string has a correct proper extension in T .

Proof. Let σ ∈ T be correct, and let k be the least such that σ = σk. If σk+1 is
correct then we are done. Otherwise, Lemma 4.12 shows that σk+1 = σa0

and that there is some s > 0 such that σas ∈ T and is correct.

For a sequence along a path in T , it must be that the elements of the
sequence have a bigger size than their index in T .

Proposition 4.16. In an infinite sequence (τi)i∈ω consisting of elements of T
such that τk ≺ τk+1, we have that |τk| ≥ k, for all k ∈ ω.

Note that we are working in RCA0 and we assume the sequence (τi)i∈ω

exists, i.e. is an element of the second order part of the model. Hence the
induction we will be performing in the proof is valid in RCA0.
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Proof. We know |τ0| ≥ 0 since lengths are non-negative. Assume |τk| ≥ k,
for some k ∈ ω.

Since τk ≺ τk+1, τk+1 = τak s
a
1 s2 · · ·a sv, for v ≥ 1. But then, |τk+1| =

|τk|+ v ≥ |τk|+ 1 ≥ k + 1, so |τk+1| ≥ k + 1.

We use Propositions 4.16 and 4.13 to show that an infinite sequence of
descendants in T computes ∅′. Intuitively, this means an infinite path of T
computes the Halting Problem.

Lemma 4.17. Any infinite sequence (τi)i∈ω consisting of elements of T such that
τk ≺ τk+1 computes ∅′.

Proof. By Proposition 4.16, for all k, |τk| ≥ k.
We need to show that each τk is correct. This follows from Proposition

4.13 (2) and the fact that τk has infinitely many extensions on T , namely τm
for m > k.

4.3 Equivalence with ACA0

We will show there exist a computable non-Atomic integral domain in
which every witness of the failure of ACCP computes ∅′. Since ACA0 is the
weakest system that can prove the existence of the Turing Jump, this will
give us our result.

The following proposition gives the sequence of underlying sets for the
rings we define in Construction 4.19.

Proposition 4.18. There exists a uniformly computable sequence of sets
〈Qn〉n∈ω such that

1. |Q0| = ω,
2. Qm ⊂ Qm+1 and |Qm+1 \Qm| = ω,
3.

⋃
n∈ω

Qn = ω.

Proof. We will be implicitly using pairing functions, which means pairs
(m,x) are coded as elements of ω.
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Define the sequence (Qn)n∈ω by Qn = {(m,x) | x ∈ ω,m ≤ n}. The
sequence is uniformly computable due to the fact that it can be effectively
coded into ω using computable pairing functions.

Property 1 follows since |Q0| = |{0} × ω| = ω.
Since Qm ⊂ Qm+1 and |{m+ 1} × ω| = ω, property 2 follows.
Property 3 follows because

⋃
n∈ω

Qn = ω · ω.

Let Q0, Q1, Q2 · · · be the sequence obtained from Proposition 4.18. We
are going to put computable ring structures on each of them in the follow-
ing construction, which looks at the way Construction 4.3 is carried. Each
Qk+1 is a superset of Qk and it is generated as a ring over Qk. We index its
generators aσ, bσ, with elements of T . Each Qk will be a computable subring
of Qk+1.

To define Qk+1 we look at how Tk+1 is obtained from Tk. If we back-track
and make σk+1 = σ−k , then we want bσk to be a unit in Qk+1, otherwise we
want aσk = aσk+1

bσk+1
, in order to generate an infinite descending chain in

divisibility in the rings.
More formally:

Construction 4.19. At step 0, apply Proposition 3.27 to the set Q0 to obtain
Q0
∼= Q, and let R0 = Q0.

At step 1, apply Corollary 3.17 to Q0 and Q1 to obtain a computable struc-
ture on Q1 and an element a ∈ Q1 transcendental over Q0, such that Q1 = Q0[a].
Let aλ = a, and we have Q1 = Q0[aλ] = R0[aλ], such that aλ is transcendental
over R0. Let R1 = R0.

Let a = aσk , b = bσk and b̄ = bσk�n for n = 1, 2 · · · |σk|.

At step k, we have computable ring Qk = Rk[a, b̄], where Rk is a com-
putable subring of Qk and the elements presented are algebraically independent
over Rk.

At step k + 1, if Tk+1 = Tk we want to make b a unit. Since Qk ⊂ Qk+1,
|Qk+1 \ Qk| is infinite, choose the element b ∈ Qk which is non-zero and non-
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unit by Remark 2.48, and since Qk is an integral domain by Corollary 4.22,
apply Corollary 3.19 to put a computable structure on Qk+1 that makes it a
computable ring with Qk < Qk+1, b a unit of Qk+1 and Qk+1 = Qk[b

−1]. Put
Rk+1 = Rk[b, b

−1]. Note that the conditions for applying Corollary 3.19 hold, in
particular the relation {〈q,m〉 ∈ Qk × ω | bm | q} is computable. To see this,
note that Qk

∼= Rk[y, x1, x2 · · ·x|σk|] over Rk and this isomorphism is computable
by Remark 3.8. Let b = bσk , q ∈ Qk and m ∈ ω, to tell whether bm | q find a
polynomial f ∈ Rk[y, x̄] such that f(a, b̄) = q and check whether xm|σk| divides f in
Rk[y, x̄]; this is done by examining the coefficients of f to see if the power of x|σk| is
at least m on any monomial with nonzero coefficient.

If Tk+1 = Tk ∪ {σk+1}, we have Qk = (Rk[b̄])[a] by Remark 2.40. Note that by
Proposition 3.23, Rk[b̄] is computable. and since Qk+1 ⊃ Qk we can apply Corol-
lary 3.21 to Rk[b̄], (Rk[b̄])[a] and Qk+1 to obtain the set {c, d} ⊂ Qk+1 independent
over Rk[b̄] and a computable structure on Qk+1, such that Qk+1 = (Rk[a, b̄])[c, d],
i.e. Qk+1 = Qk[c, d] with c ·Qk+1

d = a. We let bσk+1
= c and aσk+1

= d. Put
Rk+1 = Rk.

Remark 4.20 shows the inductive definition preserves the inductive hypothe-
sis.

Finally, let the union of each element of the sequence be a ring, Qω =
⋃
k∈ω

Qk.

It is an essential ingredient of Construction 4.19 that the properties in-
ferred in the inductive definition are preserved by induction. We prove this
here.

Remark 4.20. In the inductive definition of Construction 4.19, Qk+1 =

Rk+1[aσk+1
, bσk+1�n]n=1,2···|σk+1|, with the elements presented being alge-

braically independent over Rk+1, and furthermore Rk+1 is a computable
subring of Qk+1.

Proof. We need to verify the induction hypothesis is preserved at step k+ 1.
We need to show we have computable ringQk+1 = Rk+1[aσk+1

, bn]n=1,2···|σk+1|,
where Rk+1 is a computable subring of Qk+1 and the elements presented are
algebraically independent over Rk+1.
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If Tk+1 = Tk and we make bσk a unit, note that σk+1 = σ−k from Construc-
tion 4.3. Let a = aσk , b = bσk and b̄ = b1, b2 · · · b|σk|−1.

We have Qk+1 = Qk[b
−1], so by inductive hypothesis Qk+1 =

(Rk[a, b, b̄][b
−1], by Remark 2.40 Qk+1 = (Rk[b, b

−1])[a, b̄] = Rk+1[a, b̄]. By def-
inition, we have that Rk+1 < Qk+1. Since σk+1 = σ−k , a = aσk+1

· b−1 and
b−1 ∈ Rk+1, we have Qk+1 = Rk+1[aσk+1

, bσk+1�n]n=1,2···|σk+1|.
We need to show that {aσk+1

, b̄} is independent over Rk+1.
By Induction Hypothesis we know {a, b, b̄} is independent over Rk.
We claim it suffices to show {a, b̄} is independent over Rk+1. For if this

is the case, then by Lemma 2.46 {a} is independent over Rk+1[b̄] where b̄
is independent over Rk+1, by Lemma 2.47 {ab} is independent over Rk+1[b̄],
and using Lemma 2.46 again and the fact that ab = aσk+1

, we obtain {aσk+1
, b̄}

independent over Rk+1.
Now let f ∈ Rk+1[x, y1, y2 · · · y|σk|−1] such that f 6= 0. By Remark 2.40,

f ∈ ((Rk[b])[b
−1])[x, y1, y2 · · · y|σk|−1]. By Lemma 2.51, there is N ∈ ω such

that bNf = g ∈ Rk[b][x, ȳ]. By Lemma 2.46, {a, b̄} independent over Rk[b] if
and only if {a, b, b̄} independent overRk. This last condition holds by Induc-
tive Hypothesis, so {a, b̄} independent over Rk[b], which means g(a, b̄) 6= 0

which, since b 6= 0, means that f(a, b̄) 6= 0, so the set {a, b̄} is independent
over Rk+1.

Since Rk+1 = Rk[b, b
−1], Rk is computable and b is transcendental over

Rk, by Lemma 3.25 Rk+1 is computable.

If Tk+1 = Tk ∪ {σk+1}, and we let Qk+1 = Qk[aσk+1
, bσk+1

] and
Rk+1 = Rk, then we have Qk+1 = (Rk[aσk , bσk�n]n=1,2···|σk|])[aσk+1

, bσk+1
]

= Rk[aσk+1
, aσk , bσk+1�n]n=1,2···|σk+1|, and since aσk = aσk+1

bσk+1
we have

aσk ∈ Rk[aσk+1
, bσk+1�n]n=1,2···|σk+1| so Rk[aσk+1

, aσk , bσk+1�n]n=1,2···|σk+1| =

Rk[aσk+1
, bσk+1�n]n=1,2···|σk+1|, therefore Qk+1 = Rk[aσk+1

, bσk+1�n]n=1,2···|σk+1| =

Rk+1[aσk+1
, bσk+1�n]n=1,2···|σk+1|.

The set {bσk+1�n | n = 1, 2 · · · |σk|} is independent over Rk+1 = Rk, since
it is a subset of variables at step k. The set {aσk+1

, bσk+1
} is independent over

Rk+1[bσk+1
� n] in virtue of Corollary 3.21. By Lemma 2.46, {aσk+1

, bσk+1�n, |
n = 1, 2 · · · |σk+1|} is independent over Rk+1.

The rings defined in Construction 4.19 are UFDs. We will make use of
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this property extensively in later stages of our proof.

Proposition 4.21. Each ring in the sequence 〈Qi〉i∈ω is a UFD.

Proof. First we show that the rings in the sequence 〈Ri〉i∈ω are UFDs. We use
induction on i. R0

∼= Q, R0 is a UFD since it is isomorphic to a field, and a
field is vacuously a UFD.

Assume Rk is a UFD. We look at step k + 1. If Rk+1 = Rk we are done.
If Rk+1 = Rk[bσ, b

−1
σ ] = (Rk[bσ])[b−1

σ ], we use Proposition 2.43, since bσ is
independent over Rk, to obtain that Rk[bσ] is a UFD. Then, by Lemma 2.25,
the localization of Rk[bσ] on bσ, Rk[bσ]bσ must be a UFD. By Proposition 2.39,
Rk[bσ]bσ

∼= (Rk[bσ])[b−1
σ ], so the latter must be a UFD.

So Rk+1 is a UFD.
Since at step k we have computable ring Qk = Rk[aσk , bσk�n]n=1,2···|σk|,

where Rk is a UFD and the elements presented are algebraically indepen-
dent over Rk, by Proposition 2.43 we deduce that Qk is a UFD.

This shows that each ring in the sequence must be a UFD.

As a corollary, each Qi must be an integral domain.

Corollary 4.22. Each ring in the sequence 〈Qi〉i∈ω is an integral domain.

Proof. By Proposition 4.21.

The obvious consequence is that Qω must be an integral domain.

Proposition 4.23. The ring Qω is an integral domain.

Proof. Suppose a·Qω b = 0Qω with a 6= 0Qω and b 6= 0Qω . Then a·Qnb = 0Qω and
neither elements are zero in Qn, where Qn can be chosen as the smallest ring
in the sequence containing all three elements. Such a ring must exist because
all elements are added at finite stages, and they all contain the element 0Qω .

So an element in the sequence (Qi)i∈ω is not an integral domain, which
contradicts Corollary 4.22.

Since we are working in RCA0, the structures we define need to be com-
putable. This is the motivation behind the following proposition.

Proposition 4.24. The sequence of rings (Qi)i∈ω is uniformly computable.
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Proof. By Proposition 4.18 and Construction 4.19, the set U = {(q, n) | q ∈
Qn} is computable.

We need to show that the sets P = {(p, q, r, k) | p = q +Qk r} and T =

{(p, q, r, k) | p = q ·Qk r} are computable. So let q, r ∈
⋃
i∈ω

Qi. Since U is

computable, we can find the least k1, k2 ∈ ω such that q ∈ Qk1 and r ∈ Qk2 .
Let k = max(k1, k2) and since Qi < Qi+1 for all i, we can see that q +Qk r =

q +Qt r and q ·Qk r = q ·Qt r, for any t ≥ k. Therefore, (p, q, r, t) ∈ P and
(v, q, r, t) ∈ T if and only if t ≥ k, q +Qk r = p and q ·Qk r = v. Note that if
p /∈ Qk or v /∈ Qk, the corresponding pairs are not in P or T respectively.

We argue that Construction 4.19 is computable. Construction 4.19 ap-
peals to Corollaries 3.19 and 3.21. By Remarks 3.20 and 3.22 these results
are effective, which means there is an effective procedure for passing from
effective descriptions of the inputs to effective descriptions of the outputs.

We need to argue that the function taking k to:
(i) aσk , bσk ,
(ii) a computable index for Qk,
(iii) a computable index for Rk,
(iv) a computable index for the isomorphism between Rk[y, x̄] and Qk,
is computable. This is done by induction on k.
In particular, at Step 0 we take a computable set Q0 and put a ring struc-

ture on it such that Q0
∼= Q. Step 1 describes a process that takes the com-

putable ring Q0 and its computable superset Q1 and outputs a computable
ring structure onQ1 and an element a ∈ Q1 transcendental overQ0 such that
Q1 = Q0[a]. These steps are executed once, so uniformity is not an issue.

Assume this has been done up to k. We can effectively tell from Con-
struction 4.19 what σk+1 is, and so which of the two cases holds. In each
case we explain how to effectively get (i), (ii), (iii) and (iv).

Step k+ 1, in the first case Tk+1 = Tk, σk+1 = σ−k ; we first find the greatest
m < k such that σk+1 = σm.

(i): aσk+1
= aσm and bσk+1

= bσm , which by induction we already have.
(ii): first note that by induction we have an index for a computable iso-

morphism between Qk and Rk[y, x̄] over Rk. The argument given in the
construction shows how to effectively obtain a computable index for the set
{〈c,m〉 ∈ Qk×ω | bmσk | c}. We have a computable index for the setQk+1 since
〈Qn〉 is uniformly computable by Proposition 4.18, a computable index for
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Rk by induction, and we have bσk also by induction. Then we have all the
inputs needed for Corollary 3.19 and we effectively get an index for Qk+1

from Remark 3.20.
(iii): we have indices for Rk, Qk by induction, and Qk+1 obtained pre-

viously, we have bσk and indeed the sequence a, b̄ also by induction. By
Remark 3.26, we get effectively a computable index for Rk+1.

(iv): an index for an isomorphism from Rk+1[y, x̄] to Qk+1 is found
effectively given indices for Rk+1, Qk+1 and given aσk+1

, bσk+1�1,2···|σk+1| which
we already have. This is done by observing that Remark 3.8 is uniform:
given indices for R and Q, and given ā, we get an index for the map
〈f, ā〉 7→ f(ā).

Finally, step k+ 1, in the second case Tk+1 = Tk∪{σk+1}, and σk+1 is new.
(i) and (ii): by induction we have indices for Rk and Qk, and we have

a, b̄. This gives us a computable index for Rk[b̄] by Remark 3.24. We have an
index for the set Qk+1. So by Remark 3.22, we effectively get an index for
Qk+1, and also we get the elements aσk+1

and bσk+1
.

(iii): Rk+1 = Rk and by induction we have an index for Rk.
(iv): exactly as above.

Computability of Qω follows from Proposition 4.24.

Proposition 4.25. The ring Qω is computable.

Proof. Given q, r ∈ Qω, by Proposition 4.24, the sets {(q, n) | q ∈ Qn},
{(p, q, r, k) | p = q +Qk r} and {(p, q, r, k) | p = q ·Qk r} are computable.

So one can find k1, k2 ∈ ω, such that q ∈ Qk1 and r ∈ Qk2 . If
k = max(k1, k2), then becauseQk < Qω, q+Qω r = q+Qk r and q ·Qω r = q ·Qk r.

We will observe that bσ is invertible in Qω if σ is terminal in T . Further,
an element will be invertible in Qω if it was explicitly made invertible in a
ring Qn in the sequence.

Remark 4.26. p is invertible in Qω if and only if it is invertible in Qn, for some
n ∈ ω. Furthermore, if p is invertible in Qn, then it is invertible in all Qm

with m ≥ n.
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Proof. Suppose p ·Qω p−1 = 1. Then p ·Qn p−1 = 1 in some Qn.
Since Qn < Qm for all m > n, p, p−1 ∈ Qm and furthermore p ·Qm p−1 = 1.

As we noted above, if σ is terminal there will be a stage k of Construction
4.19 at which we make bσ a unit of Qk+1.

Lemma 4.27. Suppose σ is terminal in T . Then there is some stage s such that bσ
is a unit of Qs+1.

Proof. Proposition 4.13 together with the fact that σ is terminal imply there
exist stages s with s ≥ k such that σs+1 does not extend σ.

Choose s ≥ k to be the least such stage.
By the choice of s, we have in Construction 4.3: σs = σk and σs+1 = σ−k .
This means bσk is made a unit of Qs+1.

The units bσ of Qω are precisely the b elements indexed by terminal ele-
ments of T .

Lemma 4.28. bσ is a unit of Qω if and only if σ is terminal in T .

Proof. Suppose σ is terminal. By Proposition 4.27, there is stage k for some
k ∈ ω such that bσ is a unit of Qk. Since Qk < Qω, bσ is a unit of Qω.

Conversely, suppose σ is non-terminal in T . Let k be the step at
which σ is added to the union, so σk = σ, so we have the ring Qk =

Rk[aσk , bσk�n]n=1,2···|σk| where the presented variables form an independent
set over Rk.

Since σ is non-terminal, by Remark 4.13, for all n > k, σn � σk = σ and
thus σ is an initial segment of σn, and so, in Qn, bσ is transcendental over
Rn, since all initial segments σ of σn index elements bσ in the independent
set that generates Rn.

Therefore, by Remark 2.48, bσ is not invertible in Qn. By Remark 4.26, bσ
is not invertible in Qω.

The structure of the ascending chain of rings 〈Qi〉i∈ω makes it possible
to factorize an element aσ using elements aτ and bτ where τ are strings de-
scending from σ. This will produce an infinite descending chain in divis-
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ibility, along the infinite path of T . We refer to these factorizations in the
following propositions.

Proposition 4.29. If τ ≺ σn and τ0, τ1 · · · τt ∈ T is the sequence such that

τ0 = τ , τt = σn and τi = τ−i+1 for 0 ≤ i < t, then aτ = aσn
t∏
i=1

bτi in Qn =

Rn[aσn , bσn�m]m=1,2···|σn|.

Proof. For each i ∈ {1, 2 · · · t}, let n(i) be the least such that τi = σn(i). Then
by Construction 4.19, in Qn(i), aτi−1

= aτibτi . Note that n(i) ≤ n for each i,
so aτi−1

= aτibτi in Qn as well. By induction on k ≤ t we see that in Qn,

aτ = aτk
k∏
i=1

bτi .

Proposition 4.30. If τ ≺ σ and τ0, τ1 · · · τt ∈ T is the sequence such that

τ0 = τ , τt = σ and τi = τ−i+1 for 0 ≤ i < t, then aτ = aσ
t∏
i=1

bτi in Qω.

Proof. Let σ = σn for some n ∈ ω. By Proposition 4.29, aτ = aσ
t∏
i=1

bτi .

Intuitively, for all elements σ terminal in T , we make bσ a unit. This
will make aσ and its terminal ancestors associates, while also providing an
associate aτ for aσ, where τ belongs to the infinite path. We use this trick to
ensure the non-wellfoundedness of divisibility in Qω.

Lemma 4.31. If σ, σak ∈ T are non-terminal and τ < σa0, k > 0, then aτ ∼ aσ

in Qω.

Proof. Let τ0, τ1 · · · τk ∈ T be the finite sequence such that τ0 = τ , τk = σ and
τi+1 = τ−i for 0 ≤ i ≤ k − 1.

From Proposition 4.30, aσ = aτ
k−1∏
i=0

bτi .

Since τi � σa0, by Proposition 4.10, τi is terminal for all 0 ≤ i < k. By
Lemma 4.28, bτi are all invertible in Qω.

The fact that the product of finitely many units is a unit is proved by Σ1

induction.
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No aσ in Qω is a unit or irreducible. Hence aλ does not have an irre-
ducible factorization.

Proposition 4.32. For any σ ∈ T , aσ is not a unit of Qω.

Proof. Suppose some aσ is a unit of Qω, with σ = σm. Then by Re-
mark 4.26, it is a unit of some element of the sequence 〈Qi〉i∈ω, Qk =

Rk[aσk , bσk�n]n=1,2···|σk|. We can choose k such that k > m.
By Lemma 4.31, if σ is terminal, then aσ ∼ aτ such that τ is non-terminal;

here, τ is the longest non-terminal initial-segment of σ. τ exists by Lemma
4.11.

So we may assume that σ is non-terminal.
By Remark 4.13, σk � σ, and so by Proposition 4.30 aσk | aσ. But then aσk

is a unit, but this is impossible due to Remark 2.48.

Lemma 4.33. For all σ ∈ T , no aσ is irreducible in Qω.

Proof. In the first case, if σ is non-terminal, by Proposition 4.15 there is some
τ non-terminal such that σ ≺ τ . But then by Remark 4.30, aτ | aσ. But we
know aτ cannot be a unit by Proposition 4.32, and we know bτ is also not a
unit by Lemma 4.28, and so the division aτ | aσ must be proper.

If σ is terminal, then we can find the longest initial segment τ of σ that
is not. By Lemma 4.31, there is invertible b ∈ Qω such that aτb = aσ. This
reduces the proof to the first case.

Since every ring Qi in our sequence is a UFD, we will use unique factor-
ization to our advantage in inferring that all factorizations must be along a
path in T . We give the consequence of unique factorization here.

Proposition 4.34. Let σ ∈ T . If σ is non-terminal and aσ ∈ Qk, then the only
irreducible factorization of aσ in Qk is [aσk , bσk�n | n = |σ|+ 1, |σ|+ 2 · · · |σk|],
where Qk = Rk[aσk , bσk�n]n=1,2···|σk|.

Proof. In this proof, irreducible will mean irreducible in Qk.
Note that by Remark 4.13, σ � σk.
By Remark 2.50, the elements aσk and bσk�n are irreducible.
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By Proposition 4.30, aσ = aσk

|σk|∏
n=|σ|+1

bσk�n.

By Proposition 4.21, Qk is a UFD, so any factorization of aσ into irre-
ducibles must be equal up to association to [aσk , bσk�n | n = |σ| + 1, |σ| +
2 · · · |σk|].

As note above, aλ has no irreducible factorization. This implies that Qω

is non-Atomic.

Corollary 4.35. Qω is non-Atomic.

Proof. We claim aλ has no irreducible factorization in Qω. Suppose the con-
trary, and let [pi | i ≤ n] be such a factorization. Find the minimum k such
that Qk contains all pi with i ≤ n. We know Qk = Rk[aσk , bσk�n]n=1,2···|σk|.

Note the mentioned elements are irreducible in Qω, we argue by contra-
positive they are irreducible in Qk. Note that aσk divides aλ in Qk. Because
aσk is a prime element of Qk, there is some i such that aσk divides pi in Qk,
and so divides it in Qω as well; but aσk is reducible in Qω, and so pi too is
reducible in Qω.

We need the following Lemma for proving a few of the upcoming results.
It essentially states that along the chain of rings 〈Qi〉i∈ω, the irreducibles
remain irreducible or become units.

Lemma 4.36. If p ∈ Qn is irreducible and aσn -Qn p, then either:
1. p ∈ Q×n+1 or
2. p is irreducible in Qn+1 and aσn+1 -Qn+1 p.

Proof. We have Qn = Rn[aσn , bσn�m]m=1,2···|σn|.
According to Construction 4.19 there are two cases to consider:

Qn+1 = Qn[b−1
σn ] and Qn+1 = Qn[aσn+1 , bσn+1 ] with aσn+1 · bσn+1 = aσn .

Suppose Qn+1 = Qn[b−1
σn ] = Rn[bσn , b

−1
σn ][aσ−n , bσn�m]m=1,2···|σn|−1.

By Proposition 2.39, Qn+1 is isomorphic to the localization of Qn by
{btσn | t ∈ ω}, and by Lemma 2.23 and the fact that Qn is a UFD we have that
p is either prime or unit in Qn+1.
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Now suppose Qn+1 = Qn[aσn+1 , bσn+1 ] where aσn+1 · bσn+1 = aσn .

Write a1 = aσn+1 , b1 = bσn+1 , a2 = aσn , b̄ = bσn�m for m = 1, 2 · · · |σn|,
R = Rn[b̄] and ȳ = y1, y2 · · · y|σn|.

We have Qn = R[a2] with a2 transcendental over R and Qn+1 = R[a1, b1]

with {a1, b1} independent over R and a1 · b1 = a2.

By Proposition 2.44, let ϕ : R[y, z] → Qn+1 be an isomorphism over R,
with ϕ(y) = a1 and ϕ(z) = b1. Similarly, let ψ : R[x] → Qn be an isomor-
phism over R with ψ(x) = a2.

Let h ∈ R[x] with h = ψ−1(p), so h(a2) = p. Since p is irreducible in Qn, h
is irreducible in R[x]. Since a2 does not divide p in Qn, x = ψ−1(a2) does not
divide h inR[x]. This means that the constant coefficient of h is nonzero. Let
ĥ = h(yz) ∈ R[y, z]. Since a2 = a1b1 and h(a2) = p, we see that ĥ(a1, b1) = p.
Hence ĥ = ϕ−1(p).

We show that p is irreducible in Qn+1. To do that, let s, t ∈ Qn+1 and
suppose that p = s · t; we need to show that either s or t is a unit of Qn+1.
Let f = ϕ−1(s) and g = ϕ−1(t); equivalently, we need to show that either f
or g is a unit of R[y, z]. Since p = st, applying the isomorphism ϕ−1 we have
ĥ = fg.

There are several cases to consider:

(i) deg(h) = 0,

(ii) degy(f), degy(g) > 0 (this case is analogous to degz(f), degz(g) > 0,
which we therefore omit),

(iii) degy(f) = degz(f) = 0, i.e. f ∈ R (analogous to g ∈ R), and

(iv) degy(f), degz(g) > 0, degz(f) = degy(g) = 0 (analogous to the case
with y and z exchanged).

Case (i): in this case h = ĥ ∈ R, and therefore f, g ∈ R also. Since h is
irreducible in R[x], it is irreducible in R, and so fg = ĥ = h implies that
either f or g is a unit of R and certainly this implies that f or g is a unit of
R[y, z].

Case (ii): write f =
e∑
i=0

fi(z)yi and g =
d∑
i=0

gi(z)yi, for d, e ∈ ω and gi, fi ∈

R[z] and fe, gd 6= 0.

By Proposition 2.34, there is some α ∈ R× such that fe(α) 6= 0 and
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gd(α) 6= 0. Let f̄(x) = f(xα−1, α) =
e∑
i=0

α−ifi(α)xi and similarly let ḡ(x) =

g(xα−1, α) =
d∑
i=0

α−igi(α)xi. Since fe(α) 6= 0 and gd(α) 6= 0, we have that

degx(f̄) = e > 0 and degx(ḡ) = d > 0. Since the units of R[x] are the same as
the units of R by Proposition 2.30, neither f̄ nor ḡ are units of R[x].

We have h = h(xα−1 · α) = ĥ(xα−1, α) = f̄ ḡ in R[x]. So in R[x] h is the
product of two non-units, which contradicts the assumption that it is an
irreducible. Thus, case (ii) cannot happen.

Case (iii): if f ∈ R, then the monomials which appear in g are the same

as the monomials which appear in ĥ = fg. Write h =
v∑
i=0

hix
i with hi ∈ R

and hv 6= 0; then ĥ =
v∑
i=0

hiy
izi, and so g =

v∑
i=0

γiy
izi, with hi = f · γi for all i.

Let ḡ =
v∑
i=0

γix
i ∈ R[x]; so h = fḡ ∈ R[x]. We assume that case (i) does

not hold, and so v > 0, and so ḡ is not a unit of R[x]. Since h is irreducible
in R[x], it follows that f is a unit of R[x], hence a unit of R, and so is also a
unit of R[y, z].

Case (iv): this is the interesting case, in which we use the assumption
that x does not divide h. In this case f ∈ R[y] and g ∈ R[z] are nonconstant.
The constant coefficient of ĥ is the same as the constant coefficient h0 of h,
which by assumption is nonzero. Since fg = ĥ, this implies that both the
constant coefficient f0 of f and the constant coefficient g0 of g are nonzero,
as h0 = f0g0. Let d = degy(g), and let fd be the leading coefficient of f . Then
g0fdz

d is a monomial of fg = ĥ, which is impossible, since the monomials
of ĥ are all of the form hiy

izi, for hi ∈ R. Thus case (iv) cannot happen either.

We still need to show that aσn+1 - p.

Again, we consider the casesQn+1 = Qn[b−1
σn ] andQn+1 = Qn[aσn+1 , bσn+1 ].

If Qn+1 = Qn[b−1
σn ], then σn+1 = σ−n , write a1 = aσn+1 , b1 = bσn+1 , a2 =

aσn , b2 = bσn .

Note that a2b2 = a1 so a2b2 - p in Qn. Suppose a1 | p in Qn+1, so there is
γ ∈ Qn+1 such that a1 ·γ = p, so a2b2 ·γ = p. By Proposition 2.38, γ = c/bk2 for
some c ∈ Qn, k ∈ ω. Then, a2b2c = bk2p, so a2 | bk2p in Qn. By Proposition 2.50,
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a2 is irreducible in Qn, by Proposition 4.21 Qn is a UFD, so by Proposition
2.10 a2 is prime in Qn. Which means a2 | bk2 or a2 | p in Qn. The second is
impossible by assumption, so a2 | bk2 in Qn, so a2 | b2. By Proposition 2.50, b2

is irreducible in Qn, so either a2 is a unit of Qn or a2 = b2. The first case is
impossible by Proposition 2.48, and the second is impossible because a2 is
transcendental over R, by Construction 4.19.

Now suppose Qn+1 = Qn[aσn+1 , bσn+1 ], where {aσn+1 , bσn+1} is indepen-
dent over Qn and aσn+1 · bσn+1 = aσn . If aσn+1 | p in Qn+1, then aσn+1γ = p for
some γ ∈ Q×n+1. From Construction 4.19, Q×n+1 = Q×n , so pγ−1 ∈ Qn, which
means aσn+1 ∈ Qn, a contradiction.

If an element is irreducible or prime in a ring in the sequence 〈Qi〉i∈ω,
then it is either a unit or an irreducible/prime in Qω.

Lemma 4.37. If p is prime in someQn and p /∈ Q×ω , with aσn -Qn p, then p is prime
in Qω and no aσ |Qω p, for any σ ∈ T .

Proof. By induction on m ≥ n we see that p is prime in Qm and aσm does not
divide p in Qm. For if this holds for Qm, then by Lemma 4.36 it holds for
Qm+1, unless p is a unit of Qm+1. But in that case, p is a unit of Qω, which we
assumed is not the case.

Now let c, d ∈ Qω and suppose that p | cd inQω. Letm ≥ n be sufficiently
large so that c, d ∈ Qm and p | cd in Qm. Then p | c or p | d in Qm, and so p | c
or p | d in Qω. Hence p is prime in Qω.

Let σ ∈ T , and suppose that aσ | p in Qω. Since aσ ∼ aτ for some nonter-
minal string τ by Lemma 4.31, we may assume that σ is non-terminal. Let
m ≥ n be sufficiently large so that σ ∈ Tm and aσ divides p in Qm. By Propo-
sition 4.29 4.25, aσm divides aσ in Qm, and so aσm divides p in Qm, contrary
to what we just showed.

Any elements of Qω that are not divisible by an aσ admit a prime factor-
ization in Qω.

Proposition 4.38. If p ∈ Qω such that aσ -Qω p for all σ ∈ T , then p has a
prime decomposition in Qω.
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Proof. If p ∈ Qn then aσn -Qn p. Since Qn is a UFD, by Proposition 2.10 p has
a prime decomposition in Qn, B = [pi | i ≤ t].

By Lemma 4.37 and since aσn - p so aσn - pi, each pi is a prime or a unit of
Qω.

In a ring, a sequence (ni)i∈ω stabilizes if there exists k∗ ∈ ω such that for all
k ≥ k∗, nk+1 = nk. If rather nk+1 = unk for some unit u, we say the sequence
stabilizes up to association. If the ring is ω, we say the sequence is increasing
if nk+1 > nk for all k ∈ ω. We say the sequence is non-increasing if nk+1 ≤ nk

for all k ∈ ω.

Proposition 4.39. Let (ni)i∈ω be a non-increasing sequence in ω. Then, this
sequence stabilizes.

Proof. Suppose the sequence does not stabilize, so it has a subsequence
(mj)j∈ω such that mk 6= mt for k 6= t. Then, for k > 1, mk < n0,mk+1 <

n0 − 1 · · ·mk+n0 < 0, a contradiction.

If an element aσ is in Qn and σ is a descendant of σn in T , then aσ and the
generator aσn of Qn are associates in Qn.

Lemma 4.40. If aσ ∈ Qn and σn ≺ σ in T , then aσn ∼ aσ in Qn.

Proof. Let σ ∈ T . If σ ∈ Tm+1 \ Tm for some m ≥ n, then aσ ∈ Qm+1 \ Qm.
Hence, if aσ ∈ Qn then σ ∈ Tn.

Suppose that σn ≺ σ. Let k be the least such that σ = σk; since σ ∈ Tn we
have k ≤ n, and since σ 6= σn we have k 6= n, so k < n.

Let s be the least such that σs does not extend σ; then s ≤ n. Then
σs−1 = σ and σs = σ−, and bσ is a unit of Qs. Hence bσ is a unit of Qn.

Now let σ ∈ Tn properly extending σn, and write σn = τ0, τ1, · · · τt = σ,

with τi = τ−i+1. By Proposition 4.29, aσn = aσ
t∏
i=1

bτi inQk, where σ ∈ Tk \Tk−1.

Since k < n, this equation holds in Qn as well, and by the argument just
given, each bτi for i ≥ 1 is a unit of Qn, and so aσ ∼ aσn in Qn.

The generator aσn of Qn divides in Qn any element aσ that belongs to Qn.
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Proposition 4.41. If aσ ∈ Qn, then aσn |Qn aσ.

Proof. There are three cases to consider:

(i) σ � σn,

(ii) σn ≺ σ and

(iii) σ | σn.

If (i) σ � σn, by Proposition 4.29, the result follows.

If (ii) σn ≺ σ, by Lemma 4.40, the result follows.

If (iii) σ | σn, by Proposition 4.13 σ is terminal. Take the longest non-
terminal τ such that τ ≺ σ and τ � σn. Since σ ∈ Tn, τ is the longest
non-terminal initial segment of σ.

By Lemma 4.40, if τ = σm with σ ∈ Tm, aτ and aσ are associates in Qm

with Qm < Qn, hence they associate in Qn.

By Proposition 4.29, aσn | aτ . The result follows by transitivity.

If d ∈ Qn and the generator aσn of Qn does not divide d, it follows that
no other a element divides d in Qω.

Proposition 4.42. Let Qn be a ring in the sequence (Qi)i∈ω. If for some d ∈
Qn, aσn -Qn d, then for all δ ∈ T aδ -Qω d.

Proof. Suppose aδ |Qω d. Then aδ |Qm d for some m ∈ ω such that m > n.
Since aδ ∈ Qm, by Proposition 4.41 aσm |Qm aδ, so aσm |Qm d.

Let d = up1p2 · · · pt be an irreducible factorization of d inQn. Since aσn -Qn
d, we have aσn -Qn pi for 1 ≤ i ≤ t, and by iterating Lemma 4.36 each pi

is either a unit of Qm or irreducible in Qm with aσm -Qm pi. Since aσm is
irreducible in Qm, aσm -Qm d, a contradiction.

Next, we give a general form for the elements of Qω. This will be useful
when dealing with infinite descending chains in divisibility.

Lemma 4.43. Every element of Qω is of the form danσ for some σ ∈ T , n ∈ ω and
d ∈ Qω not divisible by any aτ .
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Proof. Let q ∈ Qω; let m ∈ ω such that q ∈ Qm. Let k be the greatest power of
aσm which divides q inQm; so d = q/akσm ∈ Qm and aσm does not divide q/akσm
in Qm. By Proposition 4.42, no aτ divides d in Qω, and we have q = d · akσm in
Qω.

By an infinite descending chain in divisibility in a ring we mean a sequence
(ci)i∈ω such that for all i, ci+1 properly divides ci.

Any infinite divisibility descending sequence of Qω whose terms do not
have an aσ factor must stabilize.

Lemma 4.44. Suppose (ci)i∈ω is a sequence of elements of Qω such that ck+1 | ck,
for all k ∈ ω. Then, if for all σ ∈ T , aσ - c0, there is some k∗ ∈ ω such that for all
k ≥ k∗ ck ∼ ck+1.

Proof. Since for all σ ∈ T aσ - c0 and every ck divides c0, it follows that aσ - ck
for all k ∈ ω.

By Proposition 4.38, for all k ∈ ω, ck ∼
∏
Bk where Bk = [pk,i | i ≤ nk],

for nk ∈ ω, where each pk,i is non-unit and prime.
By Proposition 2.12 we have Bk+1 ⊆ Bk up to association, and since

each Bk is finite, the sequence |Bk|must stabilize; hence the sequence (ci)i∈ω

stabilizes up to association.

An essential ingredient to our proof: an infinite descending chain in di-
visibility of Qω must compute the Halting Problem.

Proposition 4.45. Any infinite descending chain in divisibility of Qω com-
putes ∅′.

Proof. Let (ci)i∈ω be such a chain. We claim we can write non-effectively
each ck as ck = dk

∏
b∈Bk

b · amkεk , where Bk is a multiset of elements bσ, for σ

non-terminal, and dk is not divisible in Qω by any aσ and by any bσ with σ

non-terminal.
By Lemma 4.43 there is some d′k and some εk ∈ T and mk ∈ ω such that

no aσ divides d′k in Qω and such that ck = d′ka
mk
εk

.
By Proposition 4.38, d′k has a prime decomposition D′k in Qω. Let Bk be

the multiset of primes p ∈ D′k such that p ∼ bσ for some non-terminal σ ∈ T .
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Then let dk =
∏

(D′k \Bk) = d′k/
∏
Bk.

We claim dk+1 | dk. Take m sufficiently large so Qm contains
dk, dk+1, aεk , aεk+1

and each element of Bk and Bk+1 such that ck+1 |Qm ck

and σm is a correct string with σm /∈ Tm−1. Then for all σ with bσ ∈ Qm, σ is
correct if and only if σ � σm if and only if bσ is prime in Qm; if bσ ∈ Qm and
σ � σm then bσ is a unit of Qm.

In Qm, let Dk and Dk+1 be prime decompositions of dk and dk+1 re-
spectively, and let Ak and Ak+1 be prime decompositions of amkεk and a

mk+1
εk+1

respectively. So Ak ∪ Bk ∪ Dk is a a prime decomposition of ck in Qm, and
similarly for k+1. So ck+1 |Qm ck means thatAk+1∪Bk+1∪Dk+1 is a subset of
Ak ∪Bk ∪Dk up to association. Now all the primes which appear in Ak ∪Bk

(and in Ak+1 ∪ Bk+1) are associates of either aσm or bσ for some σ � σm, and
no such primes can occur in Dk or in Dk+1. Hence we can conclude that
Dk+1 ⊆ Dk up to association, and so dk+1 | dk in Qm, and so dk+1 | dk in Qω.
We also see that aσm does not appear in Bk∪Dk (or Bk+1∪Dk+1) but appears
(up to association) with multiplicity mk in Ak, and mk+1 in Ak+1. Then the
fact that Ak+1 ∪ Bk+1 is a subset of Ak ∪ Bk (up to association) implies that
mk+1 ≤ mk.

Write c′k = ck+K/dK and note that 〈ck〉 computes the sequence 〈c′k〉. To
avoid excess notation, write ck instead of c′k, and it remains to show that the
new 〈ck〉 computes ∅′.

For the multiset B of elements of T , if S = [σ | bσ ∈ B], we write
B(S) = B.

Claim (i). Let S be a finite multiset of strings from T and let ρ ∈ T . We
claim there exist S ′ and and ρ′ such that:

(a) all of the strings in S ′ ∪ [ρ′] are comparable, and

(b) aρ′ and aρ are associates in Qω, and

(c)
∏

b∈B(S)

b associates with
∏

b∈B(S′)

b in Qω.

Proof: let R be the collection of initial segments of strings in S ∪ [ρ], so R
is a finite subtree of T . Let τ be the rightmost leaf of R. Then, every σ ∈ R
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which is not extended by τ is terminal, hence by Lemma 4.28, bσ is a unit of
Qω. We let S ′ = [σ ∩ τ | σ ∈ S] and let ρ′ = ρ ∩ τ .

Let S and S ′ be multisets of strings of T and let ρ, ρ′ ∈ T .

Claim (ii). There is a multiset S̄ of strings of T and a string ρ̄ ∈ T such
that:

(a) amkρ′ ·
∏
B(S ′) ∼ amkρ̄

∏
B(S̄),

(b) for all σ ∈ S̄, σ � ρ̄ and

(c) either ρ′ � ρ̄ or ρ′ lies lexicographically to the left of ρ̄, i.e. if σ = ρ′ ∩ ρ̄
then σa0 � ρ′ and σas � ρ̄ for some s > 0.

Proof: let R be the collection of initial segments of S ∪ S ′ ∪ [ρ, ρ′]. Let τ
be the rightmost leaf of R. Let ρ̄ = τ and let S̄ = [σ ∩ τ | σ ∈ S ′] ∪mK · [σ |
(ρ′ ∩ τ) ≺ σ � τ ].

Using this claim we can find, computably from 〈ck〉, by recursion a se-
quence 〈Sk, ρk〉 such that for all k:

(a’) skσmkρk
∏
B(Sk),

(b’) for all σ ∈ Sk, σ � ρk, and

(c’) either ρk � ρk+1 or ρk lies lexicographically to the left of ρk+1.

Let ηk = ρk∩ρk+1, and let ρ̄k be longest correct initial segment of ρk. Note
that the sequence 〈ηk〉 is computable from 〈ck〉.

Property (c’) above implies that ρ̄k � ηk: this certainly holds if ρk � ρk+1,
otherwise, because ρk+1 witnesses that ηak 0 � ρk is terminal. Hence ρ̄k �
ρ̄k+1, as ρ̄k is a correct initial segment of ρk+1.

Further, we note that property (b’) above implies that ρ ∈ Sk is correct if
and only if ρ � ρ̄k. Let S̄k = [σ ∈ Sk | σ � ρ̄k], then ck ∼ amKρ̄k

∏
B(S̄k).

Note that in the model of RCA0 in which we work, the sequence 〈S̄k〉
may not exist, but it is definable.

Claim (iii). For all σ � ρ̄k, mσ(Sk+1) ≤ mσ(Sk).

Proof: let n be large, so that ck+1 | ck in Qn and all the elements
mentioned are in Qn. Since ρ̄k+1 is correct, it is an initial segment of σn.
Let Ak be an irreducible factorization of amKρ̄k in Qn, so Ak ∪ B(S̄k) is an
irreducible factorization of ck in Qn. We also have that B(S̄k+1) is a set of
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primes of Qn and
∏
B(S̄k+1) | ck in Qn, as

∏
B(S̄k+1) | ck+1 in Qn, and so

B(S̄k+1) ⊆ Ak ∪ B(S̄k up to association. However, for σ � ρ̄k, bσ /∈ Ak, as
bτ ∈ Ak implies ρ̄k ≺ τ . Hence mσ(S̄k+1) ≤ mσ(S̄k). Since σ � ρ̄k, ρ̄k+1,
mσ(Sk) = mσ(S̄k) and similarly for k + 1.

Claim (iv). If ηk is not correct, then there is some correct σ � ηk such
that mσ(Sk) < mσ(Sk+1).

Proof: the assumption implies that ρ̄k = ρ̄k+1 is a proper initial segment
of ηk, and so

amKρ̄k ·
∏

B(S̄k) ∼ ck | ck+1 ∼ amKρ̄k+1
·
∏

B(S̄k+1)

implies that

∏
B(S̄k) |

∏
B(S̄k+1),

and the division is proper. However, if for all σ � ρ̄k we have
mσ(Sk) ≤ mσ(Sk+1), then by Claim (iii) we would have S̄k = S̄k+1, so the
division would not be proper.

Now define a string ζk as:
ζk = ηk if for all σ � ηk, mσ(Sk+1) = mσ(Sk). Otherwise, let ζk be the

shortest initial segment σ of ηk such that mσ(Sk+1) < mσ(Sk). Claim (iv) im-
plies each ζk is correct. It follows that the strings ζk are pairwise comparable.

Now define the string µk as the longest string in {ζj | j ≤ k}. So each µk
is correct and µk � µk+1.

Claim (v). Suppose that ζk = ηk and mηk(Sk) = mηk(Sk+1). In other
words for all σ � ηk we have mσ(Sk) = mσ(Sk+1). Then ρ̄k+1 � ηk.

Proof: suppose for a contradiction that ρ̄k+1 = ηk = ρ̄k. The assumption
on k implies that S̄k = S̄k+1. And then:

ck ∼ amKρ̄k

∏
B(S̄k) = amKρ̄k+1

∏
B(S̄k+1) ∼ ck+1,

contrary to our assumption that the division ck+1 | ck is proper.
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Claim (vi). For all k ∈ ω, for all m ≥ k, ρ̄k � ρm.

Proof: by induction on m ≥ k. Note that the sequence 〈ρm〉m≥k exists,
and so the statement is both Σ1 and Π1 as ρ̄k is fixed.

For the base case, m = k and note that ρ̄k � ρ̄m. Let m ≥ k and
suppose ρ̄k � ρm. Since ρ̄k is correct, we have ρ̄k � ρ̄m. We know that
ρ̄m � ρ̄m+1 � ρm+1 so ρ̄k � ρm+1.

It follows that for all k, for all m ≥ k, ζk � ρm, so ζk � ρ̄m. It then follows
that for all k, µk � ρk, since µk = ζj for some j ≤ k. Since µk is correct,
µk � ρ̄k.

Claim (vii). For all σ � µk, mσ(Sk) ≥ mσ(Sk+1).

Proof: immediate from Claim (iii), since µk � ρ̄k.

Claim (viii). Now let k ∈ ω and n = |Sk|+ 3. We claim |µk+n| > |µk|.

Proof: we see that n > |Sk| + 2 together with Claim (vii) implies that
there are at least two i, j ∈ {k, k + 1, · · · , k + n− 1} such that for all σ � µk,
mσ(Si) = mσ(Si+1) and similar for j. If ηi � µk then ζi � µk and we are
done. Otherwise, ηi = µi and by Claim (vi) ρ̄i+1 ≺ µi. By Claim (vi),
ρ̄i+1 � ρ̄j , and we know that ρ̄j � ηj , so ηj � µk, and so ζj � µk, and we are
done.

Now we know that for all i there is some j > i such that µi ≺ µj . By
recursion we define a sequence 〈µ′k〉; given µ′k = µi for some i, we let µ′k+1 =

µj for some j > i such that µi ≺ µj . Then µ′k ≺ µ′k+1, and so by Lemma 4.17,
〈µ′k〉 computes ∅′. This completes our proof.

We now put all of our previous work together to show that there exists
a ring that satisfies the conditions of the contrapositive of Theorem 1.3 and
some sequence in the ring computes the Halting Problem.
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Proposition 4.46 (RCA0). There exists a computable integral domain Q, not
Atomic, such that any sequence 〈ci〉i∈ω from Q, with ck+1 properly dividing
ck for all k, computes ∅′.

Proof. Let Q = Qω. By Proposition 4.35, it is non-Atomic. By Proposition
4.45, any chain 〈ci〉i∈ω of Q with ck+1 properly dividing ck computes ∅′.

Finally, we obtain our desired result.

Theorem 4.47 (RCA0). Theorem 1.3 is equivalent to ACA0.

Proof. The proof of Theorem 1.3, carried inACA0 provides the first direction
of the equivalence.

LetM be a model ofRCA0+ Theorem 1.3. LetX ∈M , we showX ′ exists.
Note thatM is closed under Turing reducibility. InM , from Proposition 4.46
and X , obtain an X-computable ring Q which is non-Atomic and if 〈ci〉i∈ω
from Q with ∀k ck+1 | ck and they do not associate then X ⊕ 〈ci〉 ≥T X ′.

By Theorem 1.3, there is such a sequence in M . So X ′ ∈ M . This shows
Theorem 1.3 implies ACA0.

This concludes our proof. We have shown that Theorem 1.3 is equivalent
to ACA0, over the base system RCA0.

4.4 Conclusion

We have investigated the proof-theoretic strengths of Theorems 1.2 and 1.3.
We have found that Theorem 1.2 is provable withinRCA0 and that Theorem
1.3 is equivalent to ACA0 over the base system RCA0.

The proof of Theorem 1.2 in RCA0 is straight-forward and relies on a
Σ1-induction argument. A good open question here would be establishing
an equivalence between RCA0 and Theorem 1.2 over a weaker base system.

The proof of the equivalence with ACA0 was accomplished by proving
Theorem 4.46, which gives a non-Atomic integral domain in which any de-
scending chain in divisibility computes ∅′. The conjunction of this result and
Theorem 1.3 proves the existence of ∅′ in any ω-model of RCA0+ Theorem
1.3.
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One thing to notice here is that the direct proof in ACA0 of Theorem 1.3
uses ∅′′ as an oracle, so it is natural to ask whether a version of Theorem 4.46
that implies the existence of ∅′′ holds. Hence, we state this as a question.

Question 4.48. Does there exist a computable integral domain Q, non-Atomic,
such that any sequence 〈ci〉i∈ω from Q, with ck+1 properly dividing ck for all k,
computes ∅′′?
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[8] A. Fröhlich and J.C. Sheperdson, Effective procedures in field theory. Phi-
los. Trans. Royal Soc. London Ser. A, 248, (1956), 407-432.

[9] J. A. Gallian, Contemporary Abstract Algebra. Houghton Mifflin Com-
pany, Boston, 2nd edition, 2006.

[10] A. Grams, Atomic Rings and the Ascending Chain Condition for Principal
Ideals. Proceedings of the Cambridge Philosophical Society, 75, (1974),
321-329.

[11] K. Hatzikiriakou, Commutative algebra in subsystems of second order arith-
metic. PhD Thesis, Penn. State University, 1989.

[12] M. Kneser, Bemerkung über die Primpolynomzerlegung in epdlich vielen
Schritten. Math. Z., 57, (1953), 238-240.

81



82 BIBLIOGRAPHY

[13] S. Lang, Undergraduate Algebra. Undergraduate texts in mathematics,
Springer, 2004.

[14] A. I. Mal’cev, Constructive algebra I. Russ. Math. Surv., 16, (1961), 77-129.

[15] G. Metakides and A. Nerode, Effective content of field theory. Ann. Math.
Logic, 17, (1979), 289-320.

[16] R. Mines, F. Richman and W. Ruitenburg, A course in constructive alge-
bra. Springer, New York, 1988.

[17] A. Montalbán, Open Questions in Reverse Mathematics. manuscript, 2010.

[18] J. Mott, The Theory of Divisibility. in Factorization in Integral Domains,
Marcel Dekker Inc., New York, 1997.

[19] A. Nerode and N. Greenberg The theory of the donut. Elliptic curves for
undergraduates. manuscript, 2012.

[20] M. O. Rabin, Computable algebra, general theory and theory of computable
fields. Trans. Amer. Math. Soc., 95, (1960), 341-360.

[21] M. O. Rabin, Computable algebraic systems, in Summer Institute for Sym-
bolic Logic, Cornell University. Institute for Defence Analyses, 1957.

[22] J. Rao and S.G. Simpson, Factorization in subsytems of second order arith-
metic, quoted in Handbook of Recursive Mathematics. Elsevier, 1998.

[23] S. G. Simpson, Subsystems of Second Order Arithmetic. Cambridge Uni-
versity Press, 2nd edition, 2010.

[24] S. G. Simpson and J. Rao, Reverse Algebra, in Handbook of Recursive Math-
ematics. Elsevier, 1998.

[25] S. G. Simpson and R. L. Smith, Factorization of polynomials and Σ0
1 Induc-

tion. Ann. Pure Appl. Logic, 31, (1986), 289-306.

[26] V. Stoltenberg-Hansen and J. V. Tucker, Computable rings and fields, in
Handbook of Computability Theory. Elsevier, 1999.

[27] R. I. Soare, Recursively Enumerable Sets and Degrees. Springer-Verlag,
New York, 1987.

[28] D. R. Solomon, Reverse Mathematics and Ordered Groups. PhD Thesis,
Cornell University, 1998.

[29] B.L. van der Waerden, Eine Bemerkung über die Unzerlegbarkeit von Poly-
nomen. Math. Ann., 102, (1930), 738-739.


	Introduction
	Background
	Effective and Reverse Algebra
	Results

	Elements of Algebra
	Divisibility
	Localization
	Polynomial Rings
	Independence and Generation

	Reverse Mathematics and Logic
	Notions from Computability Theory
	Reverse Mathematics
	Subsystems of Z2
	Computability and Algebra

	Equivalent characterizations of UFDs
	The theorems
	A tree encoding '
	Equivalence with ACA0
	Conclusion


