

BNL-81884-2008-IR

Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

VM Maslov^{1, 3} P Obložinský² and M Herman²

1 Joint Institute for Nuclear and Energy Research Krasina Street 99, 220109 Minsk-Sosny, Belarus

2 National Nuclear Data Center, Brookhaven National Laboratory Upton, NY, 11973-5000, USA

3 Guest Scientist at National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA

December 2008

The aim of this report is to review and assess preliminary neutron cross section and nubar covariance data for advanced reactor systems recently produced by the National Nuclear Data Center, BNL. The list of materials includes 19 actinides, the incident neutron energies cover the fast region (above about 1keV) up to 20 MeV and include cross sections for elastic, fission ,inelastic, capture and (n,2n) reaction channels, as well as prompt nubars (average number of emitted neutrons per fission). We focus on the diagonal terms of covariances matrices, that is, on cross section and nubar uncertainties. We found that quite a few of the preliminary BNL uncertainties should be improved and we propose such improved values. We also point out that in several instances, in particular 238-Pu and 242,244-Cm, basic ENDF/B-VII.0 evaluations are fairly poor and should be improved.

Notice: This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Abstract

In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project "Nuclear Data Needs for Advanced Reactor Systems". The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports [1, 2]. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future.

Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides (^{233,234,236}U, ²³⁷Np, ^{238,240,241,242}Pu, ^{241,242m,243}Am and ^{242,243,244,245}Cm) and 4 major actinides (²³²Th, ^{235, 238}U and ²³⁹Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

Contents

1. Introduction
2. Elastic Scattering
(n,el) plots for 19 actinides
3. Fission Cross Sections
(n,f) plots for 19 actinides
4. Inelastic Scattering1
(n,n') plots for 19 actinides
5. Capture Cross Sections
(n,γ) plots for 19 actinides
6. (n,2n) Cross Sections 22
(n,2n) plots for 19 actinides
7. Prompt Fission Neutron Multiplicities
v-bar plots for 19 actinides
8. Conclusions
References
Appendix A: Tables of cross section covariances, from [1,2]
Appendix B: Tables of v-bar covariances, from [1,2]

List of Figures

Chapter 2: Elastic Scattering

2.1	232 Th(n, el)
2.2	238 U(n, el)
2.3	236 U(n, el)
2.4	234 U(n, el)
2.5	238 Pu(n, el)
2.6	240 Pu(n el)
2.0	242 Pu(n el)
2.7	$^{242}Cm(n, el)$
2.0	$^{244}Cm(n, cl)$
2.9	
2.10	235 U(n, el)
2 11	233 U(n el)
2.11	239 Pu(n el)
2.12	241 Pu(n, el)
2.13	1 u(11, C1)
214	243 (m a1)
2.17	243 Cm(n, el)
2.15	245 Cm(n, el) 245 Cm(n,el)
2.15 2.16	243 Cm(n, el) 245 Cm(n, el) 237 Np(n, el)
2.15 2.16 2.17	245 Cm(n, el) 245 Cm(n, el) 237 Np(n, el) 241 Am(n, el)
2.15 2.16 2.17 2.18	 ²⁴³Cm(n, el) ²⁴⁵Cm(n,el) ²³⁷Np(n, el) ²⁴¹Am(n, el) ²⁴³Am(n, el)

Chapter 3: Fission Cross Sections

- ²³²Th(n, f) 3.1 ²³⁸U(n, f) 3.2
- ²³⁶U(n, f) 3.3
- $^{234}U(n, f)$ 3.4
- 238 Pu(n, f) 3.5
- ²⁴⁰Pu(n, f) 3.6
- 242 Pu(n, f) 3.7
- ²⁴²Cm(n, f) 3.8
- ²⁴⁴Cm(n, f) 3.9
- ²³⁵U(n, f) 3.10
- 3.11
- $^{233}U(n, f)$ $^{239}Pu(n, f)$ 3.12
- 241 Pu(n, f) 3.13
- ²⁴³Cm(n, f) 3.14
- ²⁴⁵Cm(n, f) 3.15
- 3.16
- 3.17
- 3.18
- $^{237}Np(n, f)$ $^{241}Am(n, f)$ $^{243}Am(n, f)$ $^{242m}Am(n, f)$ 3.19

Chapter 4: Inelastic Scattering

- ²³²Th(n, n' 4.1 ²³⁸U(n, n') 4.2 ²³⁶U(n, n') 4.3 ²³⁴U(n, n') 4.4 ²³⁸Pu(n, n') 4.5 240 Pu(n, n') 4.6 242 Pu(n, n') 4.7 $^{242}Cm(n, n')$ 4.8 ²⁴⁴Cm(n, n') 4.9 ²³⁵U(n, n') 4.10
- 4.11 233 U(n, n')
- 4.12 239 Pu(n, n')
- 4.13 241 Pu(n, n')
- 4.14 243 Cm(n, n')
- 4.15 245 Cm(n, n')
- 4.16 237 Np(n, n')
- 4.17 241 Am(n, n')
- 4.18 243 Am(n, n')
- 4.19 242m Am(n, n')

Chapter 5: Capture Cross Sections

- 5.1 232 Th(n, gamma)
- 5.2 238 U(n, gamma)
- 5.3 236 U(n, gamma)
- 5.4 234 U(n, gamma)
- 5.5 238 Pu(n, gamma)
- 5.6 240 Pu(n, gamma)
- 5.7 242 Pu(n, gamma)
- 5.8 242 Cm(n, gamma)
- 5.9 244 Cm(n, gamma)
- 5.10 235 U(n, gamma)
- 5.11 233 U(n, gamma)
- 5.12 239 Pu(n, gamma)
- 5.13 ²⁴¹Pu(n, gamma)
- 5.14 ²⁴³Cm(n, gamma)
- 5.15 ²⁴⁵Cm(n, gamma)
- 5.16 237 Np(n, gamma)
- 5.17 241 Am(n, gamma)
- 5.18 243 Am(n, gamma)
- 5.19 242m Am(n, gamma)

Chapter 6: (n,2n) Cross Sections

- 6.1 232 Th(n, 2n)
- 6.2 238 U(n, 2n)
- 6.3 $^{236}U(n, 2n)$
- 6.4 $^{234}_{238}$ U(n, 2n)
- 6.5 $\frac{^{238}}{^{240}}$ Pu(n, 2n)
- 6.6 240 Pu(n, 2n)
- 6.7 $^{242}_{242}$ Pu(n, 2n)
- 6.8 242 Cm(n, 2n)
- 6.9 244 Cm(n, 2n)
- $6.10 \quad {}^{235}U(n, 2n)$
- 6.11 233 U(n, 2n)
- $6.12 \quad {}^{239}$ Pu(n, 2n)
- 6.13 241 Pu(n, 2n)
- 6.14 243 Cm(n, 2n)
- 6.15 245 Cm(n, 2n)
- 6.16 237 Np(n, 2n)
- 6.17 241 Am(n, 2n)
- 6.18 ²⁴³Am(n, 2n)
- 6.19 242m Am(n, 2n)

Chapter 7: Prompt Fission Neutron Multiplicities

- 7.1 232 Th nubar
- 7.2 238 U nubar
- 7.3 ²³⁶U nubar
- 7.4 234 U nubar
- 7.5 ²³⁸Pu nubar
- 7.6 240 Pu nubar
- 7.7 242 Pu nubar
- 7.8 242 Cm nubar
- $7.9 \, ^{244}$ Cm nubar
- 7.10 ²³⁵U nubar
- 7.11 233 U nubar
- 7.12 ²³⁹Pu nubar
- 7.13 ²⁴¹Pu nubar
- $7.14 \quad {}^{243}Cm nubar$
- 7.15 245 Cm nubar
- 7.16 ²³⁷Np nubar
- 7.17 241 Am nubar
- 7.18 ²⁴³Am nubar
- 7.19 242m Am nubar

Chapter I

Introduction

The NNDC produced preliminary uncertainties and correlation matrices for 15 actinides, including ^{233,234,236}U, ²³⁷Np, ^{238,240,241,242}Pu, ^{241,242m,243}Am, ^{242,243,244,245}Cm [1, 2]. These results are cross-checked by making comparisons with measured cross section data and newly calculated data for fission, capture, elastic, inelastic, (n,2n) cross sections and neutron multiplicities of major (²³²Th, ^{235,,238}U, ²³⁹Pu) and minor actinides in the unresolved resonance region (URR) and fast neutron energy region.

Notwithstanding the years of experimental and theoretical efforts, the evaluated capture, (n,2n), neutron inelastic and inelastic scattering cross sections of most thoroughly investigated nuclides like ²³²Th, ²³⁵U, ²³⁸U or ²³⁹Pu in major data libraries differ a lot. Since these cross sections are obtained (or might be obtained) via Hauser-Feshbach model calculations, the part of the differences might be attributed to the unjustified simplifications in modeling excited nucleus (either composite, compound or residual) energy spectra or neutron-nucleus interactions. For fissile target nuclides ²³⁵U or ²³⁹Pu the spectroscopic properties of the transition states at inner and outer saddles deformations of fissioning ²³⁶U or ²⁴⁰Pu nuclides, respectively, are of key importance. Though the relative contributions of transition states to the fission cross section are much affected by the target spin value I^π =7/2⁻ for ²³⁵U and 1/2⁺ for ²³⁹Pu and relative heights of the inner and outer fission barrier humps [3, 4, 5], the fair description of ²³⁵U(n,f) (I^π=7/2⁻) [3], ²³⁷U(n,f) (I^π=1/2⁺) [5], ²³³U(n,f) (I^π=5/2⁺) and ²³⁹Pu(n,f) (I^π=1/2⁺) allows to reproduce measured data on capture and inelastic scattering rather reliably. That approach paves the way to prediction of fission, capture, elastic and inelastic scattering cross sections at 1 keV – 5 MeV energy range for fissile minor actinide nuclides.

Major source of discrepancies in case of inelastic scattering on ²³²Th or ²³⁸U targets are the coupling strengths of the deformed optical potential [6, 7]. Experimental data on inelastic neutron scattering are analyzed in a Hauser-Feshbach-Moldauer approach using a coupled channel estimates of the direct inelastic scattering. For the direct excitation of the ²³⁸U ground state rotational band levels with $I^{\pi} = 0_1^+$, 2^+ , 4^+ , 6^+ , 8^+ the rigid rotator model was used, whereas for the direct excitation of members of the β -, γ - ($K^{\pi}=0_2^+$, 0_2^+ , 2_2^+) and the first octupole band $K^{\pi}=0^-$, a soft-deformable rotator model was used [6, 7]. Quadrupole, octupole, hexadecapole and gamma-deformation parameters were defined by consistent analysis of excited rotational-vibrational band structures and excitation cross section of the relevant excited levels of ²³²Th or ²³⁸U. Structures evident in measured neutron emission

spectra for En ~1 - 6 MeV are correlated with excitation of levels of $K^{\pi}=0^{-}$ and $K^{\pi}=0_{2}^{+}$, 0_{2}^{+} , 2_{2}^{+} bands. That approach was used for the ²³²Th and ²³⁸U inelastic scattering data analysis. Similar quality of inelastic data description was obtained. That means we have a viable tool for inelastic cross section prediction for even-even target nuclides. While compound scattering component is influenced mainly by the fission competition, in case if high fissility Pu or Cm nuclides the role of direct excitation of vibrational levels will be much enhanced. That should be taken into account when making the uncertainty estimates of the relevant cross sections.

For neutron capture reactions on even-even U, Pu and Cm nuclei in unresolved resonance and fast neutron energy ranges the methods, proven in case of 232 Th(n, γ) and 238 U(n, γ) [8, 9] data analysis would be used. Advances of the present approach over previous evaluations are due to precise treatment fission and neutron emission competition, which depends on the (Z, N)-composition of the compound nuclei.

²³⁵U(n,xn) and ²³⁸U(n,xn) reaction cross sections and prompt fission neutron spectra (PFNS) are affected by the emissive fission chances distribution $\beta_x = \sigma(n,xnf)/\sigma(n,F)$ of ²³⁵U(n,F) [10] and ²³⁸U(n,F) [11, 12, 13], respectively. In present approach β_x are based on consistent description of the cross section database and PFNS, they differ a lot from the evaluations of ENDF/B-VII.0 [14] and JEFF-3.1 [15]. That peculiarity influences most the (n, xn) cross section discrepancies. In case of poorly investigated minor actinides the β_x differences defines the (n,xn) cross section differences and relevant uncertainties.

Recently released ENDF/B-VII.0 evaluated data library [14] much contributed to recognition of the need of re-examining the major principal reactions, such as neutron capture on ²³⁸U or inelastic scattering on ²³⁵U and ²³⁹Pu, to tell nothing about prompt fission neutron spectra. The assessment of the preliminary covariance data produced by the NNDC for minor actinides should be based on educated expectations, which are grounded mostly on the accumulated knowledge of major actinide data analyses. It is exemplified in the ENDF/B-VII.0 [14], JENDL-3.3 [16], JEFF-3.1 [15] evaluated data files and data files, produced by Maslov et al. [17-34] (a number of these minor actinide data files are adopted for JENDL-3.3, JEFF-3.1 and ENDF/B-VII.0 data libraries, in case of major fertile nuclides, i.e. ²³⁸U and ²³²Th the evaluations by Maslov et al. [19, 23] were in many respects followed later on in other data libraries) as well as calculations specifically made during that report compilation.

Disentangling of the model deficiencies, when measured data fits are rather poor, and model parameter uncertainties, turned out to be a major problem. The calculations with the EMPIRE code [35], used in [1, 2] were fitted to the evaluated data of ENDF/B-VII.0 [14] data library, except ²³⁵U, ²³⁸U

and ²³⁹Pu nuclides. However, in a number of cases these evaluated data are much different from the newest measured data (stemming from direct neutron or surrogate measurements) or calculations, made with the modern theoretical approaches (see Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, France, 22-27 April 2007). That happens either for poorly investigated nuclides like ^{242,244}Cm, ²³⁸Pu or major fissile nuclides like ²³⁵U or ²³⁹Pu. Though in latter case covariance estimates were adopted from JENDL-3.3 data library, the same conclusion applies for JENDL-3.3 library as well. In a number of cases recent ENDF/B-VII.0 evaluations are much different from those of JENDL-3.3. These peculiarities might influence the realistic estimate of covariances, whatever would be the adopted evaluated data file, however, the deficiencies of the models, used for the specific data evaluation, can not be simulated by enlarging the uncertainties of the model parameters.

For actinide nuclides the most important correlation of the parameters, which is frequently ignored, is imposed by the fission cross-section description constraint. One of the purposes of the present analysis is to clear out the cases, when say ~20% estimate of the relative standard deviations (r.s.d) is claimed for cross sections (or nu-bars), which differ from the experimental data or other evaluations, which seem quite reasonable, by ~50-200%. The important point is that those "other evaluations" are often produced using more refined approaches as compared to those previously used. Similar situation occurs for many minor actinide cross sections. Otherwise, we should assume that r.s.d refers to some virtual "true " cross section. That is the point where the question of model simplification comes into play. For example, there is some systematic for capture cross sections for 233 U, 235 U and 237 U, which is violated in ENDF/B-VII.0 [14] for 237 U. Surrogate measurements for 237 U(n, γ) and 237 U(n,2n)) at LLNL, when available, might provide guidance for similar predictions for Pu and Cm targets.

The review and assessment of relative standard deviations is provided below for the 15-group representation for fission, capture, elastic, inelastic, (n,2n) cross sections and prompt fission neutron multiplicities.

Chapter 2

Elastic scattering

It was a common practice for major actinides not long ago and it still is for some minor actinides (²⁴⁴Cm data file of ENDF/B-VII.0, borrowed from JENDL-3.3, for example) to obtain the elastic cross section as a difference of the total cross section and all partial neutron cross section. In that case the uncertainty of the elastic cross section depends in a rather sophisticated fashion upon the uncertainties of the involved partial cross sections.

In another case, when the elastic scattering cross section is defined as a sum of shape elastic cross section plus a compound elastic scattering cross section, the uncertainty of the evaluated/calculated elastic scattering cross section would be defined by the uncertainties of the calculated elastic cross section and that of the measured elastic scattering data if available. The contribution of the compound elastic scattering cross section much depends on the fissility of the compound nuclides. In case of high fissility Cm even-odd compound nuclides ^{243,245}Cm the contribution of the compound elastic scattering might be relatively low, but it still will impose rather high uncertainty on the lumped inelastic scattering cross section. In summary, it might be argued there is no justification, that the elastic scattering cross section r.s.d of U, Pu of Cm could be more optimistic than those of ²³⁸U or ²³²Th.

 232 Th: Fig. 2.1 shows, that the uncertainty estimate in the 3d group (first minimum of the elastic scattering cross section) for the data file adopted for ENDF/B-VII.0 [36] should be decreased to the level of 2% (similar to adjacent groups) and increased in some lower energy groups due to uncertainty of the total cross section mostly. In fact, in case of 232 Th [19] and 238 U [23] there is no robust justification to increase the cross section uncertainty at first minimum (see also [37], as predicted in BNL evaluation [1, 2], though the measured data [38-46] scatter a lot (see Fig. 2.1).

²³⁸U: Fig. 2.2 shows, that the elastic scattering cross section uncertainty estimate of JENDL-3.3 data file [16] is much higher than that of ²³²Th data file, adopted for ENDF/B-VII.0 data library. It should be mentioned that the relevant measured data base for these two nuclides, ²³²Th [38-46] and ²³⁸U [46-52] are rather similar. The compound elastic scattering contribution/uncertainty are similar as well. That means we can impose the r.s.d. at incident neutron energy above 2 keV equal to 2% (see Fig. 2.2).

²³⁶U: the r.s.d., shown on the Fig.2.3 gives increased uncertainty in the first minimum around 2 MeV and in the incident neutron energy range of 200-500 keV. Evidently, the r.s.d should be less optimistic than in case of either ²³⁸U or ²³²Th, especially around 100 keV and at lower energies. At this

energy range ENDF/B-VII.0 estimate is much discrepant with previous evaluations. The contribution of the compound elastic scattering at 1 keV is just as high as in case of ²³²Th, i.e. the inelastic/capture cross section uncertainty contributes to the r.s.d. in a similar way (see Fig. 2.3).

²³⁴U: the r.s.d. of [1, 2], which is shown on the Fig. 2.4 gives increased uncertainty in the first minimum and around incident neutron energy of 10-50 keV. The r.s.d should be less optimistic than in case of ²³⁶U, ²³⁸U or ²³²Th, because there is no precise data on capture and no inelastic scattering data at higher energies to fix the compound contribution to the elastic scattering cross section. At the MeV-energy range the ENDF/B-VII.0 estimate is very similar to previous evaluations of JENDL-3.3 and evaluation by Maslov et al. [21], adopted for JEFF-3.1 [15]. The increased cross section uncertainty at first minimum should be discarded as for other nuclides just considered (see Fig. 2.4).

 238 Pu: Fig. 2.5 shows that for the incident neutron energies 1-67.4 keV the r.s.d. value for ENDF/B-VII.0 [1, 2] should be increased up to 20 % because of discrepancy of ENDF/B-VII.0 with most recent evaluation by Maslov et al. [32], which is adopted for JENDL-3.3 [16]. The r.s.d of 3 % at higher energy looks reasonable. Discrepancy of JENDL-3.2 data with other evaluations in no way can be perceived as a justification for the increase of the r.s.d. values in the 200 keV – 2 MeV energy range, proposed in BNL covariance evaluation [1, 2] (see Fig. 2.5).

²⁴⁰**Pu:** in that nuclide case the drop of r.s.d. in the 1st group does not look justified. Here the r.s.d is assumed to be similar to that of 234 U (see Fig. 2.6).

²⁴²**Pu:** Fig. 2.7 shows, that in that case the ENDF/B-VII.0 (ENDF/B-VI) evaluation is compatible with most recent evaluation by Maslov et al. [33]. The drop of r.s.d. in 1st and 2nd groups does not look justified, as well as increase of r.s.d. in 3d and 4th groups. The r.s.d is assumed similar to that of ²³⁴U. The guidance comes from the ²³⁸U elastic scattering analysis [23]. There is no justification, that the r.s.d of ²⁴²Pu could be more optimistic than those of ²³⁸U or ²³²Th (see Fig. 2.7).

²⁴²Cm: in the 1st group the uncertainty should increased up to 10%, as shown on Fig. 2.8. At lower energies the discrepancy of ENDF/B-VII.0 evaluation with present and BROND estimates give estimates of r.s.d. In the group of 9-2 keV the BNL [1, 2] estimate of r.s.d should be decreased. At these low energies major uncertainty comes from the compound elastic scattering cross section. The compound elastic scattering cross sections of BROND [53] and present calculations are rather close, since they produce similar estimates of the fission cross section in keV-energy range and up to 1 MeV (see Fig. 2.8).

²⁴⁴Cm: JENDL-3.3 evaluation [16] is accepted for the ENDF/B-VII.0 [14] library. Decrease of r.s.d. in the fast neutron energy range from 10% to 5% and eventually 3 % is justified by small discrepancy of JENDL-3.3 data at one hand an BROND and present calculation at the other hand. Evidently, in JENDL-3.3 data file the elastic cross section is obtained as a difference of the total cross section and partial neutron cross sections (see Fig. 2.9).

²³⁵U: in case of fissile nuclides the contribution of the compound elastic scattering cross section is much lower than in case of even-even targets, as well as its influence on the r.s.d. values (see Fig. 2.10). The covariances of JENDL-3.3 and data file itself are adopted for BNL report [1, 2]. The discrepancy of JENDL-3.3 data with present calculation and measured data [46, 47, 54-57] scattering and systematic differences, gives guidance to increase the r.s.d. at incident neutron energies higher than 498 keV (see Fig. 2.10).

²³³U: ENDF/B-VII.0 and present estimates are systematically different in the energy range 1-700 keV, at higher energies both evaluations are consistent with each other and Haouat et al. [46] data within 3% (see Fig. 2.11). The non-smooth shape of the elastic scattering cross section of ENDF/B-VII.0 at E_n <70 keV differs very much from the present estimate. The non-smooth behavior of evaluated cross sections of JENDL-3.3 and ENDF/B-VII.0 seem to be due to normalizations to measured data on competing reactions. Our estimate is based on optical and statistical model fits of total, fission and capture cross sections. The same approach was pursued in case of ²³⁵U and ²³⁹Pu, in both cases consistent fits were obtained. The r.s.d. values for ENDF/B-VII.0 evaluation should be fixed to 10-12 % in 1 keV-1.5 MeV, while at higher energies 2-3% value looks justified (see Fig. 2.11).

²³⁹Pu: in case of ²³⁹Pu target nuclide the contribution of the compound elastic scattering cross section around 1 keV is higher than in case of ²³⁵U target, as shown on Fig. 2.12. That is due to lower fission cross section of ²³⁹Pu in keV energy range. The covariances of JENDL-3.3 and data file itself are adopted for the BNL report [1, 2]. The discrepancy of JENDL-3.3 data with present calculation and measured data [46, 47, 57, 58, 59] gives guidance to decrease the r.s.d., as shown on Fig. 2.12

²⁴¹**Pu**: ENDF/B-VII.0 and present estimates are systematically different in the energy range 40-1000 keV, at higher energies both evaluations are roughly consistent with each other, but non-smooth shape is a clear indication, that ENDF/B-VII.0 data were adjusted to be consistent with total and partial cross sections. That means the procedure to estimate the r.s.d. values for ENDF/B-VII.0 data file should be different from that adopted in case of ²³⁹Pu. Present r.s.d. estimate is fixed at 10-11% at 1 – 1500 keV energy range and 2-3 % at higher energies (see Fig. 2.13). ²⁴³Cm: in ENDF/B-VII.0 data file, the evaluation by Maslov et al. [26] was adopted. In JENDL-3.3 [16] basically the same evaluation is adopted, but the fission cross section was deliberately renormalized (increased by approximately 30 %) to Fursov et al. [60] data at 0.1-14.9 MeV energy range, while the elastic scattering was adjusted to be consistent with total and partial cross sections, adopted from Maslov et al. [26] evaluation. That will influence mainly the compound elastic scattering contribution, however recent surrogate measurements of ²⁴³Cm(n,F) cross section supported the data by Fomushkin et al. [61, 62], on which the evaluation by Maslov et al. [26] was based. Note, that because of high fissility of ²⁴⁴Cm compound nuclide the influence of the uncertainty of compound elastic scattering on the lumped elastic scattering cross section would be diminished. In fact, there is no other evaluations or experimental data on elastic scattering to be compared with. Values of r.s.d are fixed at 3% in fast neutron energy range. Note, that procedure adopted to estimate the r.s.d. values for ENDF/B-VII.0 data file of ²⁴³Cm should be different from that adopted in case of major actinides like ²³⁵U or ²³⁹Pu. That difference complicates severely the overall reliability of r.s.d. estimates for minor actinides (see Fig. 2.14).

²⁴⁵Cm: in ENDF/B-VII.0 data file, the evaluation by Maslov et al. [27] was adopted. In JENDL-3.3 [16] basically the same evaluation is adopted, but the fission cross section was deliberately renormalized (increased by approximately 5 %) to Fursov et al. [60] data at 14.9 MeV, the elastic scattering was adjusted to be consistent with total and partial cross sections, adopted from Maslov et al. [27] evaluation. In fact, there is no other evaluations or experimental data on elastic scattering to be compared with. Values of r.s.d are fixed at 3% in the fast neutron energy range (see Fig. 2.15).

²³⁷Np: present calculation is compatible with ENDF/B-VII.0 [14] calculations within 2 or 3 % at $E_n>100$ keV (see Fig. 2.16). At lower energies the 20% difference is observed between present calculation and ENDF/B-VII.0 [14] and JENDL-3.3 [16] evaluations. In the two latter cases the elastic scattering was adjusted to be consistent with total and partial cross sections. That is a questionable procedure, since the evaluated inelastic cross sections of ENDF/B-VII.0 and JENDL-3.3 evaluations is in severe disagreement with measured data by Kornilov et al. [63] on the inelastic scattering of neutrons, while our approach produces consistent description of (n,f), (n,n') and (n, γ) measured data. However, our estimate of the elastic scattering is quite consistent with the estimate for the ²⁴¹Am target nuclide by Maslov et al. [17]. In case of ²³⁷Np and ²⁴¹Am the compound elastic scattering contributions are rather similar and they should be similar, since the measured databases of competing reactions are quite similar.

²⁴¹Am: there are signatures of the ENDF/B-VII.0 [14] elastic scattering adjustments to be consistent with total and partial cross sections. The JENDL-3.3 [16] compilers did the same, i.e., the elastic scattering was adjusted to be consistent with total and partial cross sections, adopted from Maslov et al. [17] evaluation, while fission cross section was slightly renormalized. In summary, r.s.d will be fixed at 10 % level in 1 - 100 keV energy range and 2-3 % at higher energies, which is quite similar to ²³⁷Np case (see Fig. 2.17).

²⁴³Am: there are signatures of the ENDF/B-VII.0 [14] elastic scattering adjustments to attain consistency with total and partial cross sections. The JENDL-3.3 [16] compilers did the same, i.e., the elastic scattering was adjusted to be consistent with total and partial cross sections, adopted from Maslov et al. [18] evaluation, while fission cross section was slightly renormalized. In summary, r.s.d will be fixed at 20 % level in 1 - 100 keV energy range and 5 % at higher energies. There is no reasonable explanation for the saw-tooth pattern of the r.s.d. of BNL [1, 2] estimate (see Fig. 2.18).

^{242m}Am: ENDF/B-VII.0 [14] and present estimates are pretty consistent in the energy range below 1 MeV, at higher energies the 10% discrepancies are noticed in minima and maximum of the cross sections. In summary, r.s.d will be fixed at 1 % level in 1 - 1000 keV energy range and 10 % at higher energies (see Fig. 2.19).

Chapter 3

Fission cross sections

 232 Th: in fast energy range (in 1st and 2nd energy groups) r.s.d estimate of BNL should be increased up to 3 %, in accordance with the measured data [64-70] scatter (see Fig. 3.1). In other groups it looks reasonable. In our approach 232 Th(n,F) fission cross section was calculated consistently with relevant (n,xn) and (n,f) reaction cross sections and prompt fission neutron spectra with proper description of the surrogate data [71, 72] on the 231 Th(n,f) reaction by Maslov [4].

²³⁸U: Fig. 3.2 shows, that in the fast energy range (in 1st – 4th energy groups) r.s.d estimate of BNL [1, 2] should be increased at least up to 1 %, in other cases it looks reasonable. In our approach 238 U(n,F) fission cross section was calculated consistently with relevant (n,xn) and (n,f) reaction cross section [69, 73-75] data and prompt fission neutron spectra with proper description of the 2006'surrogate data [76, 77] on the 237 U(n,f) reaction in 2005 [5]. Note drastic discrepancies of partial fission chances contributions to the observed fission cross section of 238 U(n, F) reaction for present [11,12, 13] and other [14, 78] approaches. These discrepancy would have a strong influence on the 238 U(n,xn) reaction cross section uncertainty estimates.

²³⁶U: ENDF/B-VII.0 evaluation and present calculations of ²³⁶U(n, F) fission cross sections are quite consistent with each other and measured data base [73, 75, 80], r.s.d are changed only slightly. Nonetheless, drastic discrepancies of partial fission chances contributions to the observed fission cross section of ²³⁶U(n,F) reaction for present and other approaches of ENDF/B-VII.0 [14] and JEFF [15] will influence substantially the ²³⁶U(n, 2n) reaction cross section estimate (see Fig. 3.3).

 234 U: Fig. 3.4 shows, that main discrepancies of ENDF/B-VII.0 [11] evaluation and present calculations of 234 U(n, F) fission cross sections [73, 81-90], which are the same as those by Maslov et al. [21], are in 1st and 2nd groups, the r.s.d. values are changed only slightly. Drastic discrepancies are noticed between partial fission chances, which should influence the 234 U(n, 2n) reaction cross section.

²³⁸Pu: as shown on Fig. 3.5 evaluated data file by Maslov et al. [32] describes the deep subthreshold data by Alam et al. [91] and data by Budtz-Jorgensen et al. [92] up to (n,nf) fission threshold (see Fig. 3.6). Data by Fursov et al. [60] were not available at the moment of data evaluation [32], nonetheless, they are quite compatible with the evaluated curve below and above fission threshold, except 100-500 keV energy range. The discrepancy of the evaluated curve with the measured data by Fursov et al. [60] could be attributed to the erroneously increased contribution of ²³⁸Pu(n,nf) reaction to
the observed fission cross section ²³⁸Pu(n, F). The latter is due to erroneously increased fission probability of ²³⁸Pu. In 1996 it was done to decrease the discrepancy of the calculated fission cross section with the data by Budtz-Jorgensen et al. [92]. However, the final conclusion was that the data by Budtz-Jorgensen et al. [92] can not be fitted above the (n,nf) reaction threshold. As in case of ²⁴³Am(n,F) reaction (see below) the measured fission cross section data [92] are higher than neutron absorption cross section. Near the ²³⁸Pu(n,2nf) reaction threshold the calculated cross section is compatible with data by Ermagambetov and Smirenkin [93, 94] and newest data by Fursov et al. [60], the other data [95-97] are also shown.

New measurements of the 238 Pu(n,F) reaction cross section from 10 keV up to 14 MeV would be rather important, moreover so that most of previous evaluations, including that adopted for ENDF/B-VII.0, are higher than the newest data by Alam et al. [91] in the deep sub-threshold energy range and data by Fursov et al. [60] in the vicinity of (n,nf) reaction threshold. Values of r.s.d. should be strongly increased at low energies.

^{240,242}Pu: as shown on Figs. 3.7, 3.8, 3.9, 3.10 present calculation (²⁴⁰Pu), evaluation (²⁴²Pu) and ENDF/B-VII.0 evaluations of ²⁴⁰Pu(n,F) and ²⁴²Pu(n,F) fission cross sections are quite consistent, except 1st energy group. However, the discrepancy is well within a data scatter for ²⁴⁰Pu [98-104] and ²⁴²Pu [99, 103, 104,105, 106, 107, 108, 109, 110] and there is no need to change r.s.d., defined in BNL report [1, 2].

²⁴²Cm: Figs. 3.11, 3.12 show that in case of ²⁴²Cm(n,F) the BNL r.s.d. [1, 2], estimated in 15 energy groups needs severe modifications, since ENDF/B-VII.0 [14] evaluation is much discrepant with the measured data at the deep sub-threshold energies [91] and up to 1 MeV [111]. BNL [1, 2] r.s.d. estimates seem to be rather optimistic in both energy ranges, especially in the former one. In case of $n+^{242}$ Cm the ²⁴²Cm (n, F) cross section shape predicted by Maslov [112] was supported by the surrogate measurements [113], presented at ND2007 [114]. The key point is the predicted over-threshold quasi-resonance shape, similar to that observed in ²⁴⁴Cm(n,f) reaction [60,115, 116, 117].

²⁴⁴**Cm:** JENDL-3.3 evaluation is adopted for the ENDF/B-VII.0 data library. Measured subthreshold data by Maguire et al. [118] are compatible with Fomushkin et. al. [115, 116] data. Newest data by Fursov et al. [60] are systematically higher than data by Fomushkin et. al. [115, 116] and can not be reconciled with sub-threshold data by Maguire et al. [118] within a statistical theory calculations (see Fig. 3.13, 3.14). Present calculation fits sub-threshold data by Maguire et al. [118] and data [115, 116, 119, 120, 121]. We will define the r.s.d based on the discrepancy of ENDF/B-VII.0 (JENDL-3.3 evaluation is adopted) evaluation with present calculation (see appropriate graph).

 235 U: fission cross section of 235 U(n,F) is a standard one. While different evaluations reproduce roughly the same database [75, 122, 123], drastic discrepancies are noticed between partial fission chances, which should influence the (n, 2n) and (n,3n) reaction cross sections, as well as prompt fission neutron spectra [10, 14] (see Fig. 3.15).

 233 U: fission cross section of 233 U(n,F), measured in [124-131], in ENDF/B-VII.0 [11] data file is higher than evaluated data by Maslov et al. [22] by up to 5% in 1st group, r.s.d. should be increased up to 5% as well, since there are a newest, still unpublished n-TOF data [132], which support the lower cross section values (see Fig. 3.16). In fact, that means the cross section shape might be different. The partial fission chances contributions in ENDF/B-VII.0 [14] and Maslov et al. [19] data files are rather similar.

²³⁹Pu: Figs. 3.17, 3.18 show that fission cross section data [88, 98, 101, 106, 124, 133, 134, 135] could be reproduced almost within errors (r.s.d.) from 1 keV up to 20 MeV. That provides a reliable constraint for capture, inelastic and elastic scattering, and (n, 2n) reaction cross section prediction. Values of r.s.d of JENDL-3.3 [16] look reasonable.

²⁴¹**Pu:** fission cross section data [88, 97, 127, 136, 137, 138, 139, 140] could be reproduced almost within errors (r.s.d.) from 1 keV up to 20 MeV (see Fig. 3.19, 3.20). That provides a reliable constraint for capture, inelastic and elastic scattering, and (n, 2n) reaction cross section prediction. Values of r.s.d of BNL in 1^{st} , 2^{nd} and 3d groups could be somewhat decreased.

²⁴³Cm: in ENDF/B-VII.0 data file, the evaluation by Maslov et al. [26] was adopted. In JENDL-3.3 [15] basically the same evaluation is adopted, but the fission cross section was deliberately renormalized (increased by approximately 20 %) to Fursov et al. [60] data at 0.1- 14.9 MeV energy range (see Fig. 3.21). Measured data base for ²⁴³Cm(n,f), ²⁴⁵Cm(n,f) and ²⁴⁷Cm(n,f) reaction cross sections became much more extensive after data by Fursov et al. [60] became available. Two-quasiparticle states of even fissioning nuclide ²⁴⁴Cm might be pronounced in ²⁴³Cm(n,f) data at E_n > 0.05 MeV. That estimate of the two-quasi-particle states excitation threshold E_2 comes from the fission barrier values estimate based on cross section data in first "plateau" region. Unfortunately, at E_n < 0.2 MeV there is no reliable data of ²⁴³Cm(n,f) reaction cross section. The four-quasi-particle states of even fissioning nuclide ²⁴⁴Cm influence the fission cross section at $E_n = 1 \sim 3$ MeV. The bomb-shot data by Silbert [141] were used to derive the average resonance parameters. Average fission value $\langle \Gamma_f \rangle = 0.355$ eV governs the absolute cross section value in keV-energy range. Calculated ²⁴³Cm(n,F) cross section could be fitted to data by Fursov et al. [60], which are are much discrepant with data by Fomushkin et al. [61, 62] in the first plateau region. The shape of the data by Fursov et al. [60] could be reproduced up to (n,nf) reaction threshold, but in that case at lower energies the consistency of the calculated data with measured data by Silbert [114] will be severely deteriorated.

At excitations higher than the emissive fission threshold it is hardly possible to reproduce the shape of measured data by Fursov et al. [60], since the neutron absorption cross section is lower than the observed fission data. The fission probability of 243 Cm, fissioning in the reaction 243 Cm(n,nf), was defined using data on 242 Cm(n,f) [112] (see above).

Fortunately, the ²⁴³Cm (n,f) shape predicted by Maslov et al. [26] was supported by the surrogate measurements, presented at ND2007 [114]. At present r.s.d values are severely decreased, as compared with BNL estimate.

²⁴⁵Cm: in ENDF/B-VII.0 data file, the evaluation by Maslov et al. [27] was adopted. In JENDL-3.3 basically the same evaluation is adopted, but the fission cross section was deliberately renormalized (increased by approximately 5 %) to Fursov et al. [60] data at 14.9 MeV (see Fis. 3.22, 3.23). In case of ²⁴⁵Cm(n,F) reaction the measured data in the first plateau region are quite compatible (see data by Fursov et al. [60] and Fomushkin et al. [142], but discrepant with data by Moore et al. [117]. At incident neutron energies higher than $E_n \sim 8$ M₃B to reproduce the measured data by White and Browne [143] and Fomushkin et al. [144] is hardly possible. The reason for that are the same as in case of ²⁴³Cm(n,F) reaction – measured data at $E_n = 14$ MeV are higher than the neutron absorption cross section. The fission probability of ²⁴⁵Cm, fissioning in the reaction ²⁴⁵Cm(n,nf), was defined using data on ²⁴⁴Cm(n,f) by Fomushkin et al. [115, 116].

 237 Np: In case of 237 Np(n,f) cross section, for which there are systematic discrepancies in measured data [145-153], which were not removed by recent measurement by Tovesson et al. [153], the estimated r.s.d. is over-optimistic (see Figs. 3.24, 3.25, 3.26). That would influence the estimates of 237 Np(n,n') [63] and 237 Np(n,2n) r.s.d [154, 155]. The r.s.d. are increased in the first groups almost twice. Present partial chance fission cross sections are much different from those of ENDF/B-VI evaluation, unfortunately, they are not provided for the ENDF/B-VII.0 evaluation.

²⁴¹Am: Measured data on ²⁴¹Am(n,F) [120, 156-168] cross section emerging from different experiments are scattering a lot, the systematic differences are also quite appreciable (see Figs. 3.27,

3.28, 3.29).. Data by Dabbs et al. [157] could be easily reproduced within a statistical theory approach from 1 keV up to 20 MeV, except the energy range in the vicinity of the (n,2nf) reaction threshold. The fission probabilities of ²⁴¹Am and ²⁴⁰Am nuclides, fissioning in ²⁴¹Am(n,nf) and ²⁴¹Am(n,2nf) reactions, are defined using nucleon transfer reaction data by Britt et al [113]. The data by Prindle et al. [164] and Fomushkin et al. [120] at $E_n = 14.8$ MeV are consistent with the calculated cross section. Data on the ²⁴¹Am(n,2n) reaction cross section by Filatenkov et al. [169] are consistent with evaluation by Maslov et al. [17]. That is rather important peculiarity, which is an important evidence of the reliability of the fission chances partitioning. Recent measurement of the ²⁴¹Am(n,2n) in the energy range of 8.8-11.4 MeV by Perdikakis et al. [170] favors our cross section estimate at $E_n < 10$ MeV and by Vieira et al. [171] strongly support fission cross section estimate by Maslov et al. [17, 172]. The r.s.d. is increased in first groups almost twice.

²⁴³Am: Measured data [173-182] on ²⁴³Am(n,F) cross section emerging from different experiments are scattering much more than in case of ²⁴¹Am(n,F), the systematic differences are also much higher (see Figs. 3.30, 3.31, 3.32).. We suppose the data by Knitter et al. [174] and Fursov et al. [173], spanning the energy range of 1 keV up to $E_n = 7.4$ MeV are more reliable than the others. Data by Goverdovskij et al. [175] and Behrens et al. [179] predict a systematically higher cross section values. The fission probabilities of ²⁴³Am and ²⁴²Am, fissioning in the reactions ²⁴³Am(n,nf) and ²⁴³Am(n,2nf) were defined by ^{242m}Am(n,f) μ ²⁴¹Am(n,f) data. The contributions of the (n,xnf) emissive fission cross sections to the observed ²⁴³Am(n,F) fission cross section predict the cross section values at $E_n > 7.4$ MeV, which are systematically lower than the measured data, including the data by Fomushkin et al. [176] at $E_n = 14.5$ MeV. However, the recent measurement of the energy dependence of the ratio of ²⁴³Am/²³⁵U cross sections by Laptev et al. [181] supports our theoretical estimate. The data by Laptev et al. [181], when normalized to the data by Fursov et al. [173] at $E_n = 5.6$ MeV demonstrate nice consistency of the calculated and measured data on ²⁴³Am(n,F) in the $E_n = 0.1$ - 20 MeV energy range. The r.s.d. is increased in first groups almost twice.

^{242m}Am: We suppose the data by Browne et al. [182] and Fursov et al. [183], which predict a systematically lower cross section than that observed in other experiment by Dabbs et al. [184] (see Figs. 3.33, 3.34).. The energy dependence of ^{242m}Am(n,F) reaction cross section in the 0.1-20 MeV energy range is stemming from the data by Browne et al. [182] and Dabbs et al. [185]. The fission probability of the ²⁴²Am, fissioning in the reaction ^{242m}Am(n,nf), is defined by the ²⁴¹Am(n,f) data. The calculated cross section is consistent with data by Browne et al. [182] and Fursov et al. [183] up to $E_n =$

10 MeV, while its energy dependence is consistent with data by Dabbs et al. [184] and Fomushkin et al. [185] at E_n higher than the emissive fission threshold. Summarizing, we argue, that the consistent estimate of the fission probabilities of ²⁴⁴Am, ²⁴³Am and ²⁴²Am nuclides produces a theoretical estimate of the ^{242m}Am(n,F) reaction cross section, which is different from the data by Browne et al. [182] in the same manner as in case of data by White and Browne et al. [143] on ²⁴⁵Cm(n,F). That is quite important observation, since both measurements were made in similar environments. The r.s.d. is increased in first groups almost twice.

²³⁸U FISSION CROSS SECTION

²³⁶U FISSION CROSS SECTION

²³⁴U FISSION CROSS SECTION

²³⁸PU FISSION CROSS SECTION

²³⁸Pu FISSION CROSS SECTION

²⁴⁰Pu FISSION CROSS SECTION

²⁴⁰Pu FISSION CROSS SECTION

²⁴²Cm FISSION CROSS SECTION

E_n, MeV

²⁴⁴Cm FISSION CROSS SECTION

²⁴¹Pu FISSION CROSS SECTION

²⁴³Cm FISSION CROSS SECTION

²⁴⁵Cm FISSION CROSS SECTION

²³⁷Np FISSION CROSS SECTION

CROSS SECTION, BARN

²³⁷Np FISSION CROSS SECTION

²³⁷Np FISSION CROSS SECTION

²⁴¹Am FISSION CROSS SECTION

²⁴¹Am FISSION CROSS SECTION

²⁴³Am FISSION CROSS SECTION

²⁴³Am FISSION CROSS SECTION

²⁴³Am FISSION CROSS SECTION

Chapter 4

Inelastic scattering

²³²Th: For ²³²Th(n,n') [57, 186-188] for the first level r.s.d. estimate of ENDF/B-VII.0 seems to reflect poor fit of measured data by Fujita [188] (see Fig. 4.1). That is why it looks very pessimistic, when compared with ²³⁸U(n,n') r.s.d., which is much lower, or with ²³⁴U(n,n'), which is similar to that of ²³²Th(n,n') at $E_n < 1$ MeV. The data availability for ²³⁸U(n,n') and ²³²Th(n,n') is quite similar, while for ²³⁴U(n,n') there is no measured data. That means better fit of inelastic scattering data for discreet level and their groups, proper direct excitation of vibrational levels [6, 7, 189, 190], might lead to decrease of ²³²Th(n,n') r.s.d. to a few percent level, claimed for ²³⁸U(n,n') at relevant energies. Present values of r.s.d are increased.

 238 U: Though it is assumed that BNL fits approximately reproduces ENDF/B-VII.0 (or JENDL-3.3) cross sections, it is never shown to which extent. Since in case of inelastic scattering, measured in [57, 191, 192] the main competing channel is fission, its uncertainty much depends upon the fission competition and relative role of direct excitation of vibration levels at excitations of 0.6-1.2 MeV (for even targets). Calculations by H.Wienke et al. [193] of emissive neutron spectra demonstrated once again, that omission or weak direct excitation of these levels as in [14] is incompatible with measured data. Specifically, large value of r.s.d for the 2nd group reflects only the approximation, involved in the evaluation procedures (proper direct excitation of vibrational levels), but not the reliability of the inelastic scattering simulation. R.s.d. values are left as they are (see Fig. 4.2).

²³⁶U: The r.s.d. estimates for ²³⁶U(n,n') are too pessimistic, relatively over-optimistic for the 2^{nd} and 3^{rd} groups (the range where the direct excitation of vibrational levels is important, but is omitted in ENDF/B-VII.0 evaluation). Values of r.s.d are modified based on the attained level for the ²³⁸U(n,n') and comparison with present calculation. The latter calculation takes into account direct excitation of vibrational levels and fission competition to the compound inelastic scattering (see Fig. 4.3).

 234 U: The r.s.d. estimates for 234 U(n,n') are too pessimistic, relatively over-optimistic for the 4th group (the range where the discrete levels are murged with continuum excitation). Values of r.s.d are modified based on the attained level for the 238 U(n,n') and comparison with Maslov et al. [21] evaluation. The latter evaluation properly includes direct excitation of vibrational levels and fission competition to the compound inelastic scattering (see Fig. 4.4).

 238 Pu: The r.s.d. estimates for 238 Pu(n,n') too optimistic (low) (note the discrepancies of evaluated cross sections with recent reliable measured fission data in these particular case) and missing of direct excitation of rotational and vibrational levels, the latter is missing also in the evaluation named present, of 1998. Values of r.s.d are severely modified (see Fig. 4.5).

²⁴⁰**Pu:** The r.s.d. estimates for ²⁴⁰Pu(n,n') too optimistic, excessively pessimistic in the 1st group (see Fig. 4.6). Values of r.s.d are severely modified, based on comparison of ENDF/B-VII.0 evaluation with present and BROND evaluations. Note that direct excitation of vibrational levels [6, 7] is missing in all calculations.

²⁴²Pu: The r.s.d. estimates for 242 Pu(n,n') too optimistic for 2nd group, but excessively pessimistic for the in the 1st group (see Fig. 4.7). Values of r.s.d are severely modified, based on comparison of ENDF/B-VII.0 evaluation with the evaluation of 1998 by Maslov et al. [33]. Note that direct excitation of vibrational levels [6, 7] is missing in all calculations.

²⁴²Cm: The r.s.d. estimates for ²⁴²Cm(n,n') too optimistic (low) (note the discrepancies of evaluated cross sections with recent reliable measured fission data in sub-threshold energy range and unpublished surrogate data, presented at ND2007 [114] and missing of direct excitation of rotational and vibrational levels [6], the latter is missing also in present calculation. Values of r.s.d are severely modified (see Fig. 4.8).

²⁴⁴**Cm:** The r.s.d. estimates for ²⁴⁴Cm(n,n') are too optimistic (low) (note the discrepancies of JENDL-3.3 (adopted for ENDF/B-VII.0) evaluated fission cross section with measured fission data by Fomushkin et al. [115, 116]. We consider these data most reliable. Note missing of the direct excitation of rotational and vibrational levels [6, 7], the latter is missing also in present calculation. Values of r.s.d are modified (see Fig. 4.9).

²³⁵U: In case of ²³⁵U (n,n') the discrepancies between different evaluations and measured data [57, 191] are rather large (see Fig. 4.10). That discrepancy should not be reflected just in large relative standard deviation, moreover so that the JENDL-3.3 data files of ²³⁵U and ²³⁸U are not the best fits. In case of other nuclides, when EMPIRE-KALMAN [1, 2] approach is employed, it is said only briefly about the "best fit" parameters for Pu, Am and Cm targets. Values of r.s.d. seem to be similar to those of ²³⁹Pu(n,n'), estimated in that report.

²³³U: In case of 233 U(n,n') [57] the discrepancies between different evaluations are extremely large at energies below 1 MeV (see Fig. 4.11). That discrepancy should be reflected just as large relative

standard deviation, since large cross section in ENDF/B-VII.0 is defined by large direct excitation of rotational levels. Values of r.s.d. seem to be similar to those of 239 Pu(n,n'), estimated in that report.

 239 Pu: In case of 239 Pu (n,n'), measured in [194, 195], the discrepancies between different evaluations are larger than in case of 235 U (n,n') (see Fig. 4.12). Our calculation provides best fits of fission, elastic scattering and capture cross sections. Present values of r.s.d. are decreased in first two groups, but increased in the remaining groups.

²⁴¹**Pu:** In case of ²⁴¹Pu (n,n') the discrepancies between different evaluations at energies below 1 MeV are even larger than in case of ²³³U (n,n') (see Fig. 4.13). Our calculation provides best fit of fission cross section. Present values of r.s.d. are decreased in 1^{st} groups, but increased in the remaining groups.

 243 Cm: in ENDF/B-VII.0 data file, the evaluation by Maslov et al. [26] is adopted. We assume r.s.d. to be similar to those of 245 Cm(n,n'), assuming that the fission cross section is defined correctly and no further renormalizations would be required (see Fig. 4.14).

²⁴⁵**Cm:** in ENDF/B-VII.0 data file, the evaluation by Maslov et al. [27] is adopted. We assume r.s.d. to be similar to those of 235 U(n,n') and 239 Pu(,.n') (see Fig. 4.15).

 237 Np: it seems that 1.5 MeV is a stabilization point of inelastic scattering cross section (see Fig. 4.16). We assume r.s.d to be defined by the deviation of ENDF/B-VII.0 data from present calculation. Present calculation based on the fits of fission and capture cross sections. The evaluated inelastic cross sections of ENDF/B-VII.0 and JENDL-3.3 evaluations are in severe disagreement with measured data by Kornilov et al. [63] on the inelastic scattering of neutrons with excitation of specific groups of levels, while our approach produces consistent description of (n,f), (n,n') and (n, γ) measured data.

²⁴¹Am: We assume r.s.d to be defined by the deviation of ENDF/B-VII.0 data from Maslov et al. [17] evaluation. It is based on fits of total, fission and capture cross sections. R.s.d. changed in accordance with observed trends for U and Pu target nuclides (see Fig. 4.17).

²⁴³Am: We assume r.s.d to be defined by the deviation of ENDF/B-VII.0 data from Maslov et al. [18] evaluation, the same values as those of 241 Am(n,n') look reasonable (see Fig. 4.18).

^{242m}Am: The inelastic scattering cross sections of ENDF/B-VII.0 and Maslov et al. [30] evaluations differ very much in 0.5-5 MeV energy range (see Fig. 4.19). The correlated difference of fission cross sections is much less. Obviously, the problem is with the optical potential parameters employed. That leads to the increase of r.s.d in that energy range.

²³⁸U INELASTIC CROSS SECTION

²³⁶U INELASTIC CROSS SECTION

²³⁴U INELASTIC CROSS SECTION

²³⁵U INELASTIC CROSS SECTION

²⁴³Cm INELASTIC CROSS SECTION

²⁴⁵Cm INELASTIC CROSS SECTION

Chapter 5

Capture cross sections

 232 Th: In case of 232 Th(n, γ) cross section, measured in [196-205], present estimate of r.s.d. for ENDF/B-VII.0 data relies on the analysis of the deficiencies of the capture data fits around 50 keV and in the range of 800-1800 keV [206, 207] (see Figs. 5.1, 5.2).

²³⁸U: As regards capture cross section, fits of capture data [208-215] in JENDL-3.3 as well as ENDF/B-VII.0 cannot be considered unambiguous, especially in the energy range of 50-1000 keV (see Fig. 5.3). In ENDF/B-VII.0 [14] integral tests the indications of ²³⁸U capture under prediction in B-VII.0 by 5-10% in 50 - 1000 keV are revealed. This under prediction in 200-500 keV energy range might be affected by the contribution of the d- and f- partial entrance neutron wave channels, as well as energy dependence of gamma-ray strength function. These effects were noted in case of ²³²Th capture cross section [207] and are applicable here. That means that r.s.d. in the energy range 50-1000 kev should be increased to at least 7%. Only after getting a calculated ²³⁸U capture cross section, which fits Kazakov et al. [215] data in hundreds keV energy range, its uncertainty could be claimed to be 3 % or lower. Combining differential and integral data during the production of covariance data, but not after, implicitly or explicitly, is of the utmost importance.

²³⁶U: the deviations between measured data [208, 216-219] and capture cross sections of ENDF/B-VII.0, present and our previous [220] calculations look very similar to those observed for ²³⁸U target. We assume the same r.s.d. as for the ²³⁸U(n, γ) and ²³²Th(n, γ) cross section (see Fig. 5.4).

²³⁴U: the deviations between capture cross sections of ENDF/B-VII.0 and evaluated data by Maslov et al. [21] are rather large, measured data are scarce [221]. R.s.d. for ENDF/B-VII.0 are somewhat increased to reflect these differences (see Fig. 5.5).

²³⁸Pu: the deviations between capture cross sections of ENDF/B-VII.0 and evaluated data by Maslov et al. [32] are extremely large (see Fig. 5.6). It seems to be due to fission and neutron competition differences in calculation procedures. However, in second energy group the relative standard deviation (r.s.d.) is comparable to that of ²³⁸U target nuclide, and in 3d group it is even better. R.s.d. for ENDF/B-VII.0 should be severely increased to reflect these differences.

²⁴⁰Pu: calculated ²⁴⁰Pu(n, γ) reaction cross section shape is much similar to that, observed experimentally for the ²³⁸U(n, γ) and ²³²Th(n, γ) reaction cross sections (see Fig. 5.7). Differences are due to fission and neutron emission competition, which depends on the (Z,N)-composition of the

compound nuclide. The first Wigner' cusp is observed around first rotation level excitation threshold, another two cusps are due to further increases in neutron and then fission competition. Decreasing trend in Weston and Todd [222] data needs to be checked experimentally. Similar cross section shape is reproduced in JENDL-3.3 data file, absolute differences are due to inherent approximations of evaluation procedures of JENDL-3.3. R.s.d. for ENDF/B-VII.0 should be severely increased at E_n >100 keV to reflect the cross section shape differences.

²⁴²Pu: calculated ²⁴²Pu(n, γ) [223-225] reaction cross section shape is much similar to that, observed experimentally for the ²³⁸U(n, γ) and ²³²Th(n, γ) reaction cross sections (see Fig. 5.8). It resembles the shape of ²⁴⁰Pu(n, γ) reaction cross section, the differences above 100 keV are due to decreased fission competition. Differences are due to fission and neutron emission competition, which depends on the (Z,N)-composition of the compound nuclide. The first Wigner' cusp is observed around first rotation level excitation threshold, another two cusps, which are more prominent, than in case of ²⁴⁰Pu(n, γ) reaction cross section are due to decreased fission competition. Decreasing trend in Wisshak et al. [224] data needs to be checked experimentally. Similar cross section shape is reproduced in JENDL-3.3 evaluation, absolute differences are due to inherent approximations of evaluation procedures of JENDL-3.3. R.s.d. for ENDF/B-VII.0 should be severely increased at E_n>200 keV to reflect the cross section absolute value and shape differences. Moreover so, that BNL estimate for ²⁴²Pu(n, γ) is better than that of ²³⁸U(n, γ) in 2nd and 3rd groups.

²⁴²Cm: calculated ²⁴²Cm(n, γ) reaction cross section shape further demonstrates the influence of the fission competition via (n, γ)/(n, f) and (n, γ f) reactions. The cusps are even less pronounced than in case of ²⁴⁰Pu(n, γ) reaction (see Fig. 5.9). JENDL-3.3 and ENDF/B-VII.0 evaluations severely distort the cross section shape, absolute differences are due to inherent approximations of evaluation procedures of JENDL-3.3. R.s.d. for ENDF/B-VII.0 should be severely increased to reflect the cross section absolute value and shape inconsistencies with theoretical estimates, obtained with proven theoretical methods.

²⁴⁴Cm: calculated ²⁴⁴Cm(n, γ) reaction cross section shape further demonstrates the influence of the fission competition via (n, γ)/(n, f) and (n, γ f) reactions. The cusps are more pronounced than in case of ²⁴²Cm(n, γ) reaction (see Fig. 5.10). JENDL-3.3 evaluation, adopted for ENDF/B-VII.0 data library predict rather exotic cross section shape at E_n>1 MeV. Previous evaluations severely distort the cross section shape, absolute differences are due to inherent approximations of evaluation procedures of JENDL-3.3. R.s.d. for ENDF/B-VII.0 should be severely increased to reflect the cross section absolute value and shape inconsistencies with theoretical estimates, obtained with proven theoretical methods.

²³³U, ²³⁵U, ²³⁹Pu: capture cross sections of fissile nuclides demonstrate most vividly the influence of target spin differences, fission transition states spectroscopy and fission/gamma-emission competition on capture cross section shape and absolute values. In all cases the capture cross sections were obtained via consistent description of fission and elastic/inelastic scattering. In case of ²³⁵U(n, γ) [226-231] reasonable values of average resonance parameters support the high values of capture cross section around 10 keV (see Fig. 5.11). In case of ²³³U(n, γ) [226, 232] reasonable values of average resonance parameters provide a consistent description of capture data in keV- and MeV-energy ranges (see Fig. 5.12). To explain the biases of ²³³U(n, γ) and ²³⁵U(n, γ) evaluations of ENDF/B-VII.0 relative to measured data by Weston et al. [232] and Muradyan et al. [231], respectively, robust argument should be provided. That would make possible to assess the estimates of r.s.d for capture cross sections of other fissile nuclides.

In case of 239 Pu(n, γ) [226, 228, 229, 233, 234, 235] the structure at E_n below 5 keV is defined by fission via 1⁺ sub-threshold transition states (see Fig. 5.13). At E_n around 100 keV there are systematic differences in measured data trends.

R.s.d. for 235 U(n, γ) reaction cross section reflects the differences of JENDL-3.3 evaluated data from measured data and present calculation and ENDF/B-VII.0 evaluation.

R.s.d. for 233 U(n, γ) reaction cross section reflects the differences of ENDF/B-VII.0 evaluated data from measured data and present calculation.

R.s.d. for 239 Pu(n, γ) reaction cross section reflects the differences of JENDL-3.3 evaluated data from measured data and present calculation and ENDF/B-VII.0 evaluation.

²⁴¹**Pu:** Shape of the calculated ²⁴¹Pu(n, γ) capture cross section resemble more closely that of ²³³U(n, γ), than that of ²³⁹Pu(n, γ) (see Fig. 5.14). That is the consequence of the target spin differences, fission transition states spectroscopy and fission/gamma-emission competition. JENDL-3.3 evaluated data differ very much from both from ENDF/B-VII.0 evaluation and present calculation in 100 –1000 kev energy range. measured data and present calculation and ENDF/B-VII.0 evaluation. R.s.d. for ²⁴¹Pu(n, γ) reaction cross section reflects the differences of ENDF/B-VII.0 evaluation from present calculation, which is based on fission data description.

²⁴³Cm: R.s.d. for ²⁴³Cm(n, γ) reaction cross section reflects the differences of JENDL-3.1 evaluated data from data and present calculation adopted for JENDL-3.2 and ENDF/B-VII.0 evaluation (see Fig. 5.15).

²⁴⁵Cm: R.s.d. for ²⁴⁵Cm(n, γ) reaction cross section reflects the differences of JENDL-3.1 evaluated data from data and present calculation adopted for JENDL-3.2 and ENDF/B-VII.0 evaluation (see Fig. 5.16).

 237 Np: R.s.d. for 237 Np(n, γ) reaction cross section reflects the differences of ENDF/B-VII.0 evaluated data from measured data [208, 236-239], other evaluated data and present calculation (see Fig. 5.17).

²⁴¹Am: ENDF/B-VII.0 evaluation is quite compatible with evaluation by Maslov et al. [17], though systematic differences are observed in measured data [240-242]. Some differences are observed only in 4-6 groups. R.s.d. for ²⁴¹Am(n, γ) reaction cross section reflects these differences of ENDF/B-VII.0 evaluated data from evaluation by Maslov et al. [17], much differing from these both early JENDL-2 evaluation was superseded by evaluation by Maslov et al. [17] (see Fig. 5.18).

²⁴³Am: ENDF/B-VII.0 evaluation is a bit less compatible with evaluation by Maslov et al. [18], than in case of ²⁴¹Am(n, γ) reaction (see Fig. 5.19). Systematic differences are observed in measured data [243, 244]. Differences are observed in 4-6 groups. R.s.d. for ²⁴³Am(n, γ) reaction cross section reflects these differences of ENDF/B-VII.0 evaluated data from evaluation by Maslov et al. [18], much differing from these both early JENDL-2 evaluation was superseded by evaluation by Maslov et al. [18].

^{242m}Am: ENDF/B-VII.0 evaluation is much different from evaluation by Maslov et al. [30], differences are observed from 1 keV to 20 MeV (see Fig. 5.20). R.s.d. for $^{242m}Am(n, \gamma)$ reaction cross section reflects these differences of ENDF/B-VII.0 evaluated data from evaluation by Maslov et al. [30], much differing from these both early JENDL-2 evaluation was superseded by evaluation by Maslov et al. [30].

232 Th(n, γ) CROSS SECTION

232 Th(n, γ) CROSS SECTION

 $\sigma(n,\gamma)E^{1/2}, (barn.eV^{1/2})$

²³⁸U CAPTURE CROSS SECTION

²³⁶U CAPTURE CROSS SECTION

NEUTRON ENERGY, MeV

 234 U (*n*, γ) CROSS SECTION

²³⁸Pu CAPTURE CROSS SECTION

²⁴⁰Pu CAPTURE CROSS SECTION

²⁴²Pu CAPTURE CROSS SECTION

242 Cm(n, γ) CAPTURE CROSS SECTION

²⁴⁴Cm(n,γ)

²³⁵U CAPTURE CROSS SECTION

²³³U CAPTURE CROSS SECTION

²³⁹Pu CAPTURE CROSS SECTION

²⁴¹Pu CAPTURE CROSS SECTION

²⁴⁵Cm CAPTURE CROSS SECTION

²³⁷Np CAPTURE CROSS SECTION

²⁴¹Am CAPTURE CROSS SECTION

²⁴³Am CAPTURE CROSS SECTION

^{242m}Am CAPTURE CROSS SECTION

Chapter 6

(n,2n) cross sections

²³²Th: R.s.d. for ²³²Th(n, 2n) reaction cross section are left unchanged, since ENDF/B-VII.0 does not differ much from newest measured data [245-256] and Maslov et al.[19] evaluation (see Fig. 6.1). Both are much differing from early JEFF and JENDL-3.3 evaluations.

 238 U: For that nuclide covariances in BNL report were adopted from JENDL-3.3 data file. For this nuclide (n,2n) cross sections is much different from that of ENDF/B-VII.0 and Maslov et al. [23] data file and newest measured data [169, 257-263] (see Fig. 6.2). R.s.d. for 238 U(n, 2n) reaction cross section is increased up to 30 %.

 236 U: R.s.d. for 236 U(n, 2n) reaction cross section is left unchanged, since ENDF/B-VII.0 does not differ much from present calculation (see Fig. 6.3). However, both are much different from JEFF-3.1 and JENDL-3.3 evaluations.

²³⁴U: R.s.d. for ²³⁴U(n, 2n) reaction cross section is left unchanged, since ENDF/B-VII.0 does not differ much from Maslov et al. [21] evaluation (see Fig. 6.4). However, both are much different from ENDF/B-VI and JENDL-3.3 evaluations.

²³⁸Pu: R.s.d. for ²³⁸Pu(n, 2n) reaction cross section is increased up to 100 %, since the ENDF/B-VII.0 differ much from Maslov et al. [32] evaluation, almost by an order of magnitude. However, both are much different from JEFF and JENDL-3.1 evaluations (see Fig. 6.5).

²⁴⁰Pu: R.s.d. for ²⁴⁰Pu(n, 2n) reaction cross section is decreased down to 10 %, since the ENDF/B-VII.0 data, present calculation and JEFF and JENDL-3.3 evaluations are not much different from each other (see Fig. 6.6).

²⁴²Pu: R.s.d. for ²⁴²Pu(n, 2n) reaction cross section is left unchanged, it corresponds to differences of ENDF/B-VII.0 data from Maslov et al. [33] evaluation (see Fig. 6.7). Shape of the cross section in ENDF/B-VII.0 data should be updated strongly.

²⁴²Cm: R.s.d. for ²⁴²Cm(n, 2n) reaction cross should be increased 10 times, since the ENDF/B-VII.0 orders of magnitude different from present calculation, which reliably predicts fission cross section. The latter is confirmed by surrogate fission data [114], presented at ND2007 conference. Both are much different from JEFF and JENDL-3.3 evaluations (see Fig. 6.8). ²⁴⁴Cm: R.s.d. for ²⁴⁴Cm(n, 2n) reaction cross should be decreased to 30 %, to reflect actual differences of present calculation, which reliably predicts fission cross section, from JENDL-3.3 data, adopted for ENDF/B-VII.0 (see Fig. 6.9).

 235 U, 239 Pu: For two nuclides – 235 U [263-265] and 239 Pu [263, 265, 266, 267] - covariances in BNL report were adopted from JENDL-3.3. For these nuclides (n,2n) cross sections are different from those of ENDF/B-VII.0 and Maslov [10, 268] calculations and measured data as well (see Figs. 6.10, 6.12). Without understanding the uncertainties of relatively well-investigated (n,2n) cross sections, only next to nothing could be said about poor investigated nuclides. However, it should be stated that mild consistency of different evaluations does not reflect the predictive powers of different approaches, since predicted fission chances contributions differ very much. In a number of cases, predicted r.s.d. is over-conservative (233 U(n,2n), 234 U(n,2n), for example) or over-optimistic (242 Cm(n,2n), for example)). R.s.d for 235 U and 239 Pu are fixed at 10% and 29% level, respectively.

²³³U: R.s.d. for ²³³U(n, 2n) reaction cross is left unchaged, it reflects the consistency between ENDF/B-VII.0 and Maslov et al. [22] evaluations, other evaluations should be severely modified (see Fig. 6.11).

²⁴¹**Pu:** R.s.d. for ²⁴¹Pu(n, 2n) reaction cross is left un-changed, it reflects the differences between present calculation and previous evaluations, which should be severely modified (see Fig. 6.13).

²⁴⁵Cm: R.s.d. for ²⁴⁵Cm(n, 2n) reaction cross section is left unchanged, since Maslov et al. [27] evaluation is adopted for JEFF, JENDL-3.3 and ENDF/B-VII.0 data libraries and there is no modern data files to compare with. However, it is much different from early JENDL evaluation (see Fig. 6.14).

²⁴³Cm: R.s.d. for ²⁴³Cm(n, 2n) reaction cross section is left unchanged, since Maslov et al. [26] evaluation is adopted for JEFF, JENDL-3.3 and ENDF/B-VII.0 data libraries and there is no modern data files to compare with (see Fig. 6.15). However, it is much different from the early JENDL evaluation.

 237 Np, 241 Am, 243 Am: There are a number of (n,2n) cross sections, which might be of minor importance, but they give one a confidence that the whole pipe-line is working properly, since extensive measured data are available only for 237 Np(n,2n) 2361 Np reaction [269-274] (see Figs. 6.16, 6.17, 6.18). One of them is 241 Am(n,2n) [275-277], its newest measurement, reported at ND2007 by Vieira et al. [171], nicely confirmed older evaluation by Maslov et al. [17], that data file afterwards was accepted for JENDL-3.3(2). As regards 243 Am(n,2n) feeding 242m Am(J=5) (141 y) and 242g Am(J=1) (16 h) there is a measurement by Gancarz [278] referred by Chadwick et al. [14]. Unfortunately, the exact reference to

that measurement is missing. However, the quoted Gancarz [278] data point gives the yield of $^{242g}Am(J=1)$ (16 h) at 15 MeV as 0.2 barn. It would be quite compatible with estimate of $^{243}Am(n,2n)^{242(m+g)}Am$ of 0.3 barn, granted that branching ratio of m/g or (long-lived-to-short/lived) is similar to that in $^{237}Np(n,2n)$ reaction. Only in that case the r.s.d. of $^{243}Am(n,2n)$ cross section could be claimed to be equal to 30% or even to that of $^{241}Am(n,2n)$, otherwise it should increased to 100 %. In ENDF/B-VII.0 there is some misunderstanding with the $^{243}Am(n,2n)$ and $^{243}Am(n,F)$ data, if Gancarz [278] measurement is activation/radiochemistry and not the mass-spectroscopy and gives the yield of $^{242g}Am(J=1)$. Besides all, it would be a strong constraint for the $^{243}Am(n,F)$ fission cross section estimates, which are quite controversial. In case of $^{243}Am(n,2n)$ in Maslov et al. [18] and ENDF/B-VII.0 evaluation the cross sections are very different. The problem is with the branching ratio of g.s./m.s. It should be like in case $^{237}Np(n,2n)$, that is quite evident, while in ENDF/B-VII.0 [14] case it is much different. Gaussian random sampling would not produce reasonable estimate of r.s.d. in that case.

We did in 1987 (Ignatyk et al. [154]) the analysis for 237 Np(n, 2n), feeding short-lived 236 Np (J=1) with a branching ratio of long-lived(J=6)-to-short-lived(J=1) at 14 MeV of 0.35 (measured data by Myers et al. [279] fitted as well as near-threshold 237 Np(n,2n) 237s Np high-precision data measured by Kornilov et al. [272]. In case of 237 Np(n,2n) 236s Np reaction, where there are precise data in a threshold region, i.e. r.s.d. can not be 3 times worse than at 14 MeV [155].

R.s.d. for ²³⁷Np(n, 2n) reaction cross section should be increase to 20% to reflect the differences of ENDF/B-VII.0 evaluated data from measured data and present calculation.

R.s.d. for ²⁴¹Am(n, 2n) reaction cross section reflects the differences of ENDF/B-VII.0 evaluated data from measured data and evaluation by Maslov et al. [17] and is left unchanged.

R.s.d. for ²⁴³Am(n, 2n) reaction cross section is increased to 50 % to reflect the differences of ENDF/B-VII.0 evaluated data from evaluation by Maslov et al. [18] and proper treatment of measured data in that latter evaluation.

^{242m}Am: R.s.d. for ²⁴²Am(n, 2n) reaction cross section reflects the differences of ENDF/B-VII.0 evaluated data from measured data and evaluation by Maslov et al. [30] and is left unchanged (see Fig. 6.19).

²³²Th(n,2n) CROSS SECTION

²⁴⁴Cm (n,2n) REACTION CROSS SECTION

²³⁹Pu(n,2n) CROSS SECTION

Chapter 7

Prompt fission neutron multiplicities

In some cases, described in BNL reports [1, 2], the prompt fission neutron multiplicities (nubars) relative standard deviations, based on linear [280] or more complex fits of measured data are too optimistic. Present analysis would be based on the energy balance model, which takes into account the pre-fission (n, xnf) neutron emission in an approximate, but explicit way. The prompt neutron multiplicity v_p covariance, just as that of fission cross sections, should be strictly "correlated" with the underlying absolute values. That means both v_p and r.s.d of v_p for neighboring nuclides should be self-consistent. To follow that "rule" one should interpret the variation of the slope dv_p/dE as dependent on (Z,N)-composition of the fissioning nuclides and E_n of the incident neutron. Since the linear approximation of $dv_p/dE=$ const is often employed in evaluated data files, one should understand the nature of various violations of that simple linear behavior. One of them is encountered in case of ²³²Th(n,F) reaction [281-296]. Bump in v_p around 7 MeV is due to the (n,nf) pre-fission neutrons of second-chance fission reaction. Of similar nature, but less pronounced, effect is anticipated in case of ²⁴³Am(n,F) reaction, while it is missing in case of ²³⁸U(n,F) [297-301] or ²³⁶U(n, F) [298, 302-303] reactions.

The pre-equilibrium emission of the (n,nf) pre-fission neutrons of second-chance fission at higher incident neutron energies leads to general decrease of dv_p/dE , that conclusion is supported by the multiplicity data base, as opposed to Howerton [280] systematic. This effect is important for the error propagation with the incident neutron energy increase. In case of ^{238,240,242}Pu nuclides, ²⁴⁰Pu data are adopted for the BNL covariance files [1, 2] from JENDL-3.3, the r.s.d. in first, second and some lower groups is rather low, since they are compatible with measured data by Khokhlov et al. [304]. For the ²⁴²Pu nuclide r.s.d. is even lower, while the discrepancies with measured data of JENDL-3.3 evaluations, which are based on liner extrapolation from low to higher energies, tend to increases. In case of ²³⁸Pu nuclide, in JENDL-3.3 Maslov et al. [32] evaluation is adopted, similar approach provides good fit in case of ²⁴²Pu as well (Maslov et al. [33]). These fits are attained by taking into account pre-equilibrium emission of the (n,nf) pre-fission neutrons of second-chance fission. The conclusion is that with increase of the incident neutron energy the r.s.d estimates for ^{238,240,242}Pu nuclides should be correlated with the measured data fits and systematic. The analysis of evaluated curves discrepancies with each other, at high energies and at lower energies, may lead to wrong estimates of r.s.d. for neighbor even nuclides.

In case of ^{242,243,244,245}Cm nuclei, the estimate of r.s.d. for ²⁴³Cm seem to be too optimistic, as compared with that of ²⁴⁵Cm. The calculated slope of $dv_p/dE = 0.135$ for ²⁴³Cm is considerably lower than that of Howerton [280] systematic prediction. However, it is consistent with dv_p/dE for neighboring nuclei. The Madland-Nix [305] model calculations, used in Maslov et al. [26, 27] evaluation predict non-linear shape of $v_p(E)$ above emissive fission threshold. The influence of pre-equilibrium pre-fission neutrons manifests in additional appreciable decrease of dv_p/dE above 12 MeV.

For ^{238,242}Pu, ^{241,242m,243}Am, ^{243,245}Cm our previous analysis (Maslov et al. [23, 24]) was based on Madland-Nix [305] model calculations with pre-equilibrium pre-fission neutron in the exit channel, new analysis, based on the refined treatment of pre-fission neutron emission and energy balance model would be of interest.

In case of ^{241,242m,243}Am nuclides the r.s.d. estimates also seem to be rather optimistic, having in mind data scatter and increase of the model parameter uncertainties with incident neutron energy increase.

²³²Th: r.s.d are increased in 1st and 2nd groups up to 3 and 5%, respectively, to reflect the differences of ENDF/B-VII.0 evaluated data from measured data and evaluation by Maslov et al. [19] (see Fig. 7.1).

²³⁸U: r.s.d are left unchanged, since they reflect the differences of ENDF/B-VII.0 evaluated data with measured data and evaluation by Maslov et al. [23] (see Fig. 7.2).

²³⁶U: **r.s.d** are fixed as those of ²³⁸U, except 1^{st} , 2^{nd} and 3^{rd} groups, where 3 % values are assumed. That reflect the differences of ENDF/B-VII.0 evaluated data with measured data and previous evaluations (see Fig. 7.3).

²³⁴U: r.s.d are fixed as those of ²³⁶U, except 1st, 2nd and 3rd groups, where 3 % values are assumed (see Fig. 7.4). That reflects the differences of ENDF/B-VII.0 evaluated data with previous evaluations of JENDL-3.3 and by Maslov et al. [21]. Data by Mather et al. [285] cover only the first chance fission energy range.

²³⁸Pu: r.s.d are increased in 1st group to 5 % values, but decreased in other groups. That reflect the differences of ENDF/B-VII.0 evaluated data with evaluation by Maslov et al. [32]

(see Fig. 7.5).

²⁴⁰**Pu: r.s.d** are left unchanged, since they reflect the differences of ENDF/B-VII.0 evaluated data with measured data and previous evaluations (see Fig. 7.6).
²⁴²Pu: r.s.d are increased in 1st and 2nd groups, where 10% and 3 % values are assumed, respectively (see Fig. 7.7). That increase reflects the differences of ENDF/B-VII.0 evaluated data with measured data and previous evaluations.

²⁴²Cm: r.s.d are increased roughly up to 10 %, to reflect the differences of ENDF/B-VII.0 evaluated data with previous evaluations (see Fig. 7.8).

²⁴⁴Cm: r.s.d are increased roughly up to 10 %, to reflect the differences of ENDF/B-VII.0 evaluated data with previous evaluations (see Fig. 7.9).

²³⁵U: nu-bar data [286, 306-309] are fitted with an energy balance model by Maslov et al. [10, 11], the partial contributions of (n, xnf) fission chances are distinguished (see Fig. 7.10). The perfect fit above (n, xnf) fission thresholds might be obtained by fine-tuning of nu-bars for the relevant emissive fission chances. That might be helpful for prediction of nu-bars of poorly investigated nuclides. R.s.d. values are left as they are.

²³³U: nu-bar data [297, 310-320] is fitted with an energy balance model by Maslov et al. [10, 11, 22], the partial contributions of (n, xnf) fission chances are distinguished and compared with those of 235 U(n, F) (see Fig. 7.11). R.s.d. values are left as they are.

²³⁹**Pu:** nu-bar data [308] are described with an energy balance model by Maslov et al. [10, 11], the partial contributions of (n, xnf) fission chances are distinguished (see Fig. 7.12). The first iteration curve is shown on the graph. The perfect fit above (n, xnf) fission thresholds might be obtained by fine-tuning of nu-bars for emissive fission chances. That would be helpful for fitting nu-bar of ²³⁹Pu(n, f) above emissive fission threshold by slight increase of dv_p/dE for ²³⁹Pu fissioning nuclide. R.s.d. values are left as they are.

²⁴¹Pu: R.s.d. values, based on [308] data fit, are left as they are (see Fig. 7.13).

²⁴³**Cm:** The Madland-Nix [305] model calculations, used in Maslov et al. [26] evaluation, predict non-linear shape of $v_p(E)$ above emissive fission threshold, similar to that, predicted for ²⁴⁵Cm(n,F) (see Fig. 7.14). The influence of pre-equilibrium pre-fission neutrons manifests in additional appreciable decrease of dv_p/dE above 12 MeV. R.s.d. values are left as they are.

²⁴⁵**Cm:** The Madland-Nix [305] model calculations, used in Maslov et al. [27] evaluation of measured data [304, 321-323] predict non-linear shape of $v_p(E)$ above emissive fission threshold (see Fig. 7.15). The influence of pre-equilibrium pre-fission neutrons manifests in additional appreciable decrease of dv_p/dE above 12 MeV. R.s.d. values are left as they are.

 237 Np: nu-bar data [304, 306, 289, 325] are roughly reproduced with an energy balance model [10, 11], the partial contributions of (n, xnf) fission chances are distinguished (see Fig. 7.16). Better fit might be obtained by fine-tuning of nu-bars for emissive fission chances. R.s.d. values are increased in the first group to reflect the non-linear slope of nu-bar.

²⁴¹Am: nu-bar data [304, 322, 324] is reproduced with an energy balance model by [10, 11], the partial contributions of (n, xnf) fission chances are distinguished (see Fig. 7.17). Better fit might be obtained by fine-tuning of nu-bars for emissive fission chances. Present fit it rather different from the previous evaluation by Maslov et al. [17]. R.s.d. values should be assumed equal to 3% over the whole energy range to reflect the non-linear slope of nu-bar and data spread.

 243 Am: nu-bar of ENDF/B-VII.0 is quite compatible with Maslov et al. evaluation [18] and measured data by Frehaut er al. [326], revealing the systematic error in Khohlov et al. [304] in 241 Am(n,F) reaction as well (see Fig. 7.18). R.s.d. values are left as they are.

^{242m}Am: nu-bar of ENDF/B-VII.0 is adopted from the evaluation by Maslov et al. evaluation [30], which is based on [321, 322, 327, 328] data description (see Fig. 7.19). R.s.d. values are left as they are.

²³²Th(n,F), PROMPT NEUTRON MULTIPLICIY

²³²Th(n,F) PROMPT NEUTRON MULTIPLICITY

²³⁶U(n,F) PROMPT NEUTRON MULTIPLICITY

²³⁴U(n,F) PROMPT NEUTRON MULTIPLICITY

²⁴²Pu(n,F) PROMPT NEUTRON MULTIPLICITY

²⁴⁴Cm(n,F) PROMPT NEUTRON MULTIPLICITY

²³⁵U(n,F) PROMPT NEUTRON MULTIPLICIY

 233 U(n,F) PROMPT NEUTRON MULTIPLICITY

²³⁹Pu(n,F) PROMPT NEUTRON MULTIPLICIY

²⁴⁵Cm(n,F) PROMPT NEUTRON MULTIPLICITY

Chapter 8 Conclusions

The improvements of the nuclear reaction modeling and nuclear parameter systematic, developed based on neutron data description of major actinides 232 Th, 233 U, 235 U, 238 U and 239 Pu is shown to provide a sound basis for critical assessment of the fission, capture, inelastic scattering, (n,xn) reaction cross sections of minor actinides. The main reasons of improvements are justified by: a) refined treatment of the spectra of collective states at equilibrium and saddle deformations; b) consistent description of (n,F) as a superposition of (n, f) and (n, xnf) reactions, (n,xn) reaction cross sections and prompt fission neutron spectra of 235 U, 238 U and 232 Th; c) refined treatment of the collective and intrinsic excitations influence on the level densities at equilibrium and saddle deformations; d) calculation of the exclusive neutron spectra of (n,xn) and (n,xnf) reactions. Conclusive evidence of the reliability of the approach employed comes from the confirmation of the predicted 237 U(n,F) reaction cross section [7] by the surrogate measurements of the ratio of 238 U/ 236 U fission probabilities [77].

For neutron capture reactions on even-even U, Pu and Cm nuclei in unresolved resonance and fast neutron energy ranges the methods, proven in case of 232 Th(n, γ) and 238 U(n, γ) data analysis were used. For example, calculated 240 Pu(n, γ) reaction cross section shape is much similar to that, observed for the 238 U(n, γ) and 232 Th(n, γ) reaction cross sections. Differences are due to fission and neutron emission competition, which depends on the (Z, N)-composition of the compound nucleus. The first Wigner' cusp is observed around first rotation level excitation threshold, another two cusps are due to further increases in neutron and then fission competition. Decreasing trend in Weston and Todd [222] data needs to be further checked experimentally. Similar cross section shape is reproduced in JENDL-3.3 evaluation, absolute differences are due to inherent approximations of evaluation procedures of JENDL-3.3.

For fissile targets ²³⁹Pu, ²³³U, ²³⁵U capture cross sections of fissile nuclides demonstrate most vividly the influence of target spin differences, fission transition states spectroscopy and fission/gamma-emission competition on capture cross section shape and absolute values. In all cases the capture cross sections were obtained via consistent description of fission and elastic/inelastic scattering, (n, γ f) reaction being included. In case of ²³⁹Pu(n, γ) the structure at E_n below 5 keV is defined by fission via 1⁺ sub-threshold transition states. At E_n around 100 keV there are systematic differences in measured 239 Pu(n, γ) data trends. In case of 235 U(n, γ) reasonable values of average resonance parameters support the high values of capture cross section around 10 keV, the measured data inconsistencies should be addressed. In case of 233 U(n, γ) reasonable values of average resonance parameters provide a consistent description of capture data in keV- and MeV-energy ranges. To explain the biases of 233 U(n, γ) and 235 U(n, γ) evaluations of ENDF/B-VII.0 relative to measured data by Weston et al. [232] and Muradyan et al. [231], respectively, robust argument should be found.

Fission cross section of 242 Cm(n,F) was predicted based on the sub-threshold neutron data and surrogate data at higher excitation energies. Fission cross section of 238 Pu(n,F) was be predicted based on the neutron data in the non-emissive fission domain and surrogate data for 237 Pu(n,f) at excitation energies higher than emissive fission threshold. The latest 238 Pu(n,F) data by Fursov et al. [60] discards the previous extremely high fission cross section estimates in E_n=6-20 MeV range. The same problem of inconsistency we are facing for Cm targets, where the (n, F) reaction data are higher than the modern estimates of the neutron absorption cross section.

Fission cross section fits serve as a constraint for the (n,xn) reaction prediction. One of them is ²⁴¹Am(n,2n), its measurement, reported at ND2007 by Vieira et al. [171], nicely confirmed the older evaluation by Maslov et al. [17] of 1997, evaluated data file afterwards was accepted for JENDL-3.3. As regards ²⁴³Am(n,2n) reaction feeding ^{242m}Am(J=5) (141 y) and ^{242g}Am(J=1) (16 h) there is a measurement by Gangarz referred by Chadwick et al. [14]. The quoted Gancarz data point gives the yield of ^{242g}Am(J=1) (16 h) at 15 MeV as 0.2 barn. It would be quite compatible with estimate of ²⁴³Am(n,2n)^{242(m+g)}Am of 0.3 barn, granted that branching ratio of m/g or (long-lived-to-short/lived) is similar to that in ²³⁷Np(n,2n) reaction. Only in that case the uncertainty of ²⁴³Am(n,2n) cross section could be claimed to be equal to 30% or even to that of ²⁴¹Am(n,2n), otherwise it should increased to 100%. Disentangling of the model deficiencies, when measured cross section and nubar data fits are rather poor, and model parameter uncertainties, turned out to be a major problem. Realistic assessment of the relative standard deviations is provided based on use of state-of-the-art nuclear reaction theory.

The state-of –the-art of minor actinide data files (^{233,234,236}U, ²³⁷Np, ^{238,240,241,242}Pu, ^{241,242m,} ²⁴³Am, ^{242,243,244,245}Cm) dictates that their improvement based on new measured neutron data, either direct or surrogate) and advanced nuclear reaction modeling and nuclear parameter systematic will provide a sound basis for critical assessment of the fission, capture, inelastic scattering, (n,xn) reaction cross sections and relevant uncertainties. That will largely help to avoid substituting possible model deficiency uncertainties by enlarging the uncertainties of conventional nuclear model parameters. In a number of minor actinides the uncertainty estimation of cross sections and prompt fission neutron spectra should be preceded with the robust neutron data re-evaluation. Otherwise, in case of poorly investigated Np, Pu, Am, Cm targets the artificially large cross section uncertainty estimates will be unavoidable.

The following tables summarize the possibility to use the available ENDF/B-VII.0 evaluated data files of minor actinides for the estimation of current uncertainties in evaluated nuclear data, as accomplished in [1, 2]. Sign '-' means that the uncertainties of (n,el) (n,f) (n,n') (n, γ) (n,2n) v_p are unacceptable, notwithstanding they are overoptimistic or too conservative, or evaluated data are inexplainable, sign "+" means the uncertainties of [1, 2] quite correspond to the actual knowledge database. In fact, a score of 5 or 4 "-" in case of ²³⁸Pu, ²⁴²Cm, ²⁴⁴Cm nuclides means the data files should be replaced. Other nuclides should be considered on a case-by-case basis, for example, ²³⁷Np with a score of five "-" needs severe modification. The prompt fission spectra representation in all data files needs severe modification, as described in [3, 10, 11, 12, 13]. That is inforced by the high sensitivity of the core neutronics to the prompt fission neutron spectra, as mentioned by M. Salvatores (see [329] and references therein).

Table 8.1. Status of the uncertainty estimates for 15 minor actinides produced for Subgroup 26. Sign '-' means poor quality, sign '+' indicates good quality. The present report proposed improvements for all estimates of type '-' as well as small adjustments of estimates '+'. It should be noted that basic ENDF/B-VII.0 evaluations for ²³⁸Pu, ²⁴²Cm, ²⁴⁴Cm are very poor and must be improved.

Material	(n,el)	(n,f)	(n,n')	(n, γ)	(n,2n)	ν _p
²³³ U	-	+	-	-	+	+
²³⁴ U	-	+	-	-	+	-
²³⁶ U	-	+	-	-	+	-
²³⁷ Np	-	+	-	-	-	-
²³⁸ Pu	-	-	-	-	-	-
²⁴⁰ Pu	-	+	-	-	-	+
²⁴¹ Pu	-	-	-	-	+	+
²⁴² Pu	-	+	-	-	+	-
²⁴¹ Am	-	-	+	-	+	-
^{242m} Am	-	-	-	-	+	+
²⁴³ Am	-	-	-	+	-	+
²⁴² Cm	-	-	-	-	-	+
²⁴³ Cm	-	-	-	+	+	+
²⁴⁴ Cm	-	-	-	-	-	+
²⁴⁵ Cm	-	+	-	+	+	+

Table 8.2. Status of the uncertainty estimates for the ENDF/B VII.0 evaluations of major actinides. For explation see the table above.

Material	(n,el)	(n,f)	(n,n')	(n, γ)	(n,2n)	ν
²³² Th	+	+	+	-	+	-
²³⁵ U	-	+	+	-	+	+
²³⁸ U	-	-	+	-	-	+
²³⁹ Pu	-	+	-	-	+	+

References

- 1. Rochman D., Herman M., Oblozinsky P., Mughabghab S.F., BNL Report: BNL-77407-2007-IR.
- 2. Rochman D., Herman M., Oblozinsky P., Mughabghab S.F., BNL Report: BNL-77407-2007-IR-Suppl. 1.
- 3. Maslov V.M., ^{235m}U and ²³⁵U neutron-induced fission. —In: Abstracts of International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, p.54.
- Maslov V.M. Pairing effects in ²³²Th neutron-induced fission cross section. Nucl.Phys. A743 (2004) 236.
- 5. Maslov V. M. ²³⁷U neutron-induced fission cross section. Physical Review C 72 (2005) 044607.
- Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kornilov N.V., Kagalenko A.B. Neutron Scattering on ²³⁸U and ²³²T. In: Proc. of International Conference on Nuclear Data for Science and Technology, October 7-12, 2001, Tsukuba, Japan, p. 148, 2002.
- Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A., Tetereva N.A. Excitation of octupole, beta- and gamma-vibration band levels of ²³⁸U by inelastic neutron scattering, Nuclear Physics A 764 (2006) 212-245.
- Maslov V.M., Porodzinskij Yu.V.Baba M., Hasegawa A. Neutron Capture Cross Section of ²³²Th, Journal of Nuclear Science and Engineering, 143 (2003) 177.
- 9. Maslov V. M. ²³²Th neutron capture cross section. Proc. of the 13th International Seminar on Interaction of Neutrons with Nuclei, May 25-28, 2005, Dubna, Russia, p. 43.
- 10. Maslov V.M., Kornilov N.V., Kagalenko A. B., Tetereva N.A. Prompt fission neutron spectra of ²³⁵U up above emissive fission threshold. Nucl. Phys. A760 (2005) 274.
- 11. Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kornilov N. V., Kagalenko A.B., Tetereva N.A. Prompt fission neutron spectra of ²³⁸U(n,f) and ²³²Th(n,f) above emissive fission threshold, Phys. Rev. C69 (2004) 034607.
- 12. Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kornilov N. V., Kagalenko A. B., Tetereva N.A. Prompt fission neutron spectra of ²³⁸U(n,f) above emissive fission threshold, EuroPhysics Journal A18 (2003) 93-102.
- 13. Maslov V.M. "Prompt fission neutrons spectra of ²³⁸U". Physics of Atomic Nuclei, 71, 9, 2008.
- 14. Chadwick M.B., P. Oblozinsky, M. Herman et al., "ENDF/B-VII.0: Next generation evaluated data library for nuclear science and technology", Nucl. Data Sheets, 2006, v. 107, p. 2931-3060.
- 15. The JEFF-3.1 Nuclear Data Library, Edited by A. Koning, R.Forrest, M. Kellett e.a., NEA No. 6190, OECD.
- 16. Shibata K., Kawano T., Nakagawa T. et al., "Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3", Jour. Nucl. Sci. Technol., 2002, v. 39, p. 1125-1199.
- 17. Maslov V.M., Porodzinskij Yu.V. e.a. Evaluation of neutron data for Americium-241.— INDC(BLR)-005/G, Vienna, IAEA, 1996.
- 18. Maslov V.M., Porodzinskij Yu.V. e.a. Evaluation of neutron data for Americium-243.— INDC(BLR)-006/G, Vienna, IAEA, 1996.
- 19. Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kagalenko A. B., Kornilov, N.V, Tetereva N.A. Neutron Data Evaluation of ²³²Th. INDC(BLR)-16, IAEA, Vienna, 2003, 241 pp.
- 20. Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kagalenko A. B., Kornilov N.V, Tetereva N.A. Neutron Data Evaluation of ²³²U. INDC(BLR)-15, IAEA, Vienna, 2003, 129 pp.
- 21. Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kagalenko A. B., Kornilov N.V, Tetereva N.A. Neutron Data Evaluation of ²³⁴U. INDC(BLR)-17, IAEA, Vienna, 2003, 135 pp.

- 22. Maslov V.M., Baba M., Hasegawa A., Kagalenko A. B., Kornilov N.V, Tetereva N.A. Neutron Data Evaluation of ²³³U. INDC(BLR)-18, IAEA, Vienna, 2003. 133 pp. Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kagalenko A. B., Kornilov
- 23. N.V, Tetereva N.A. Neutron Data Evaluation of ²³⁸U. INDC(BLR)-14, IAEA, Vienna, 2003, 239 pp.
- 24. Maslov V.M., Baba M., Hasegawa A., Kagalenko A. B., Kornilov N.V, Tetereva N.A. Neutron Data Evaluation of ²³¹Pa. INDC(BLR)-19, IAEA, Vienna, 2004, 121 pp.
- 25. Maslov V.M., Baba M., Hasegawa A., Kagalenko A. B., Kornilov N.V, Tetereva N.A. Neutron Data Evaluation of ²³³Pa. INDC(BLR)-20, IAEA, Vienna, 2004, 115 pp.
- 26. Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Klepatskij A.B., Morogovskij G.B. Evaluation of Neutron Data for Curium-243. INDC(BLR)-2, 1995.
- 27. Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Klepatskij A.B., Morogovskij G.B. Evaluation of Neutron Data for Curium-245. INDC(BLR)-3, 1996.
- 28. Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Morogovskij G.B. Evaluation of Neutron Data for Curium-246. INDC(BLR)-4, 1996.
- 29. Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Klepatskij A.B., Morogovskij G.B. and Kikuchi Y. New Evaluation of Minor Actinide Nuclides. In: Proc. International Conference on the Physics of Reactors, September 16-20,1996, Mito, Ibaraki, Japan, vol.3, p.F1.
- 30. Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Morogovskij G.B. Evaluation of Neutron Data for Americium-242m. INDC(BLR)-7, 1997.
- 31. Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Morogovskij G.B. Evaluation of Neutron Data for Americium-242g. INDC(BLR)-8, 1997.
- 32. Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Morogovskij G.B. Evaluation of Neutron Data for Plutonium-238. INDC(BLR)-9,1997.
- 33. Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Morogovskij G.B. Evaluation of Neutron Data for Plutonium-242. INDC(BLR)-10, 1997.
- Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh. Evaluation of Neutron Data for Neptunium-238. INDC(BLR)-11, 1998.
- 35. Herman M., Mughabghab S., Oblozinsky P. et al.. In: Abstracts of International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, p. 61.
- 36. Capote R., Sin M., Trkov A. In: Abstracts of International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, p.150.
- 37. Lagrange Ch., NEANDC(E) 228 "L" INDC(FR) 56/L, 1982.
- 38. Cox S.A. and Dowling E.E., ANL-7935 (1972).
- 39. Walt M. and Barshall H.H., Phys. Rev. 93,1062 (1954).
- 40. Iwasaki T., Baba M., Hattori K. et. al., NEANDC(J)-75 (1981).
- 41. Hudson C.I. JR, Walker W.S., Berko S., Phys. Rev., 128,1271 (1962).
- 42. Batchelor R., Gilboy W.B., Towle J.H., Nuclear Physics, 65, 236 (1965).
- 43. Smith W., Phys. Rev., 126, 718 (1962)
- 44. Kazakova L.Ya., Kolesov V.E., Popov V.I. et. al., EANDC-50 (1965).
- 45. Popov V.I., Atomnaya Energya, 3, 498 (1957).
- 46. Haouat G. et. al., NEANDC(E)-196 (1978).
- 47. Allen R.C., Walton R.B., Perkins R.B., Olson R.A., Taschek R.F., Phys. Rev., 104, 731 (1956).
- 48. Barnard E., Ferguson A.T.G., McMurray W.R., Vanheerden I.J, Nucl. Phys., 80, 46 (1966).
- 49. Batchelor R., Gilboy W.B., Towle J.H., Nucl. Phys., 65, 236 (1965).
- 50. Li Jingde, Xie Daquan, Ma Gonggui et al., 86Harrog, 1, 229 (1986).
- 51. Shen Guanran, Cao Zhong, Wang Hui-Zhu et al., 81Grenob, 512 (1981).

- 52. Voignier J., CEA-3503, 1968.
- 53. Bakhanovich L.A., Klepatskij A.B., Maslov V.M. et al., INDC(CCP)-366, p. 19, 1994
- 54. Vertebnij V.P., Gnidak N.L., Grebnev A.V. et al. Proc. 5th All-Union Conf. Neutron Physics,Kiev, Soviet Union, September 15-19, 1980, vol. 2, 254 Atomizdat (1980).
- 55. Knitter H.-H., Islam M.M., Coppola M., Zitschrift fur Physik, 257, 108 (1972) 1972
- 56. Smith A.B. and Whalen J.F., Search for Structure in the fast neutron interaction with ²³⁵U, Nucl. Sci. Eng., 18, 126, 1964.
- 57. Smith A.B., Guenter P.T., McKnight R.D., Proc. Int. Conf. Nuclear Data for Science and Technology, Antwerpen, Belgium, September 6-10,1982, p. 39, K.H. Bockhoff, Ed., Holland (1982).
- 58. Yue G., O'Connor M., Egan J.J., Kegel G.H.R. "Neutron scattering angular distributions in ²³⁹Pu at 570 and 700 keV". Nucl. Sci. Eng., 122, 366 (1996).
- 59. Knitter H.H., Coppola M. "Elastic neutron scattering measurements on ²³⁹Pu in the energy range between 0.19 MeV and 0.38 MeV" Zeischrift fur Physik 228, 286 (1969).
- 60. Fursov B.I., Polynov V.N., Samylin B.F., Shorin V.S. Fast neutron-induced fission cross sections of some minor actinides. In: Proc. of International Conference on Nuclear Data for Science and Technology, Trieste, Italy, 19-24 May 1997, p. 488.
- 61. Fomushkin E.F., G.F. Novoselov, Y.I. Vinogradov et al., Atomnaya Energiya, 62, 278 (1987).
- 62. Fomushkin E.F., G.F. Novoselov, Y.I. Vinogradov et al., Atomnaya Energiya, 69, 258 (1990).
- 63. Kornilov N.V., Kagalenko A.V., Baryba V.Ya. et al., "Inelastic neutron scattering and prompt fission neutron spectra for ²³⁷Np", Nucl. Phys. A 27, 1643 (2000).
- 64. J.W. Meadows, Proc. Int. Conf. on Nuclear Cross Sections for Technology, Knoxville, Tennessee, 22-26 Oct 1979, 479 (1979).
- 65. Meadows J.W. "the fission cross sections of ²³⁰Th, ²³²Th, ²³³U, ²³⁴U, ²³⁶U, ²³⁸U, ²³⁷Np, ²³⁹Pu and ²⁴²Pu relative to ²³⁵U at 14.74 MeV neutron energy" Ann. Nucl. Energy, 15, 421 (1988).
- 66. A.A. Goverdovskij, A.K. Gordjushin, Kuzminov B.D. et al., Sov. Atom. Energ., 60, 494 (1986).
- 67. A.A. Goverdovskij, A.K. Gordjushin, Kuzminov B.D. et al., Sov. Atom. Energ., 61, 985 (1987).
- 68. B.I. Fursov, E.Yu. Baranov, M.P. Klemyshev et.al., Sov. Atom. Energ., 71, 827 (1992).
- Shcherbakov O.A., Donets A., Evdokimov A., Fomichev A., Fukahori T., Hasegawa A., Laptev A., Maslov V., Petrov G., Soloviev S., Tuboltsev Yu., Vorobyev A., Proc. International Conference on Nuclear Data for Science and Technology, October 7-12, 2001, Tsukuba, Japan, p. 230, 2002.
- 70. J.W. Behrens, Browne J.C., Ables E. Nucl. Sci.Eng., 81, 512 (1982).
- 71. Younes W. and Britt H.C. Neutron-induced fission cross sections simulated from (t,pf) results. Phys. Rev. C67 (2003) 024610.
- 72. Younes W. and H.C. Britt. Simulated neutron-induced fission cross sections for various Pu, U, and Th isotopes. Phys. Rev. C64 (2001) 034610.
- 73. Behrens J.W., Carlson G.W. Nucl. Sci. Eng., 63, 250 (1977).
- 74. J.W. Meadows, Nucl. Sci.Eng., 58, 255 (1975).
- 75. P.W. Lisowski, A. Gavron, W.E. Parker, J.L. Ullmann, S.J. Balestrini, A.D. Carlson, O.A. Wasson, N.W. Hill, Proc. Specialists'Meeting on Neutron Cross Section Standards for the Energy Region above 20 MeV, Uppsala, Sweden, May 21-23, 1991, p. 177, OECD, Paris, 1991.
- 76. Plettner C., Ai H., Beausang C.W. et al. Estimation of (n,f) cross sections by measuringreaction probability ratios. Phys. Rev. C71 (2005) 051602(R).
- 77. J.T. Burke et al., Phys. Rev. C 73, 054604 (2006).
- 78. T. Kawano, T. Ohsawa, M. Baba and T. Nakagawa, Phys. Rev. C 63, 034601 (2001).
- 79. Lopez Jimenez M.J., Morillon B., Romain P., Triple-humped fission barrier model for a new ²³⁸U neutron cross sections evaluation and first validations. Ann. Nucl. Energy, 32 (2005) 195.

- 80. Fursov B.I., Baranov E.Yu., Klemyshev M.P., Samylin B.F., Smirenkin G.N., Turchin Yu.M. Atomnaya Energya, 71, 320 (1991).
- 81. Goverdovskiy A.A., Gordyushin A.K., Kuz'minov B.D., Mitrofanov V.F., Sergachev A.I. Atomnaya Energya, 60, 416 (1986).
- 82. Goverdovskij A.A., Gordyushin A.K., Kuz'minov B.D., Mitrofanov V.F., Sergachev A.I. Atomnaya Energya, 63, 60 (1987).
- 83. Goverdovskiy A.A., Gordyushin A.K., Kuz'minov B.D., Mitrofanov V.F., Sergachev A.I. Atomnaya Energya, 62, 190 (1987).
- 84. Kanda K., Imaruoka H., Yoshida K., Sato O., Hirakawa N.Radiation Effects, 93, 233 (1986).
- 85. Lamphere R. Nucl. Phys., 38, 561 (1962).
- 86. Meadows J.W. Nucl. Sci. Eng., 65, 171 (1978).
- 87. Meadows J.W. Ann .Nucl. Ener., 15, 421 (1988).
- 88. White P.H. and Warner G.P. J. "The fission cross sections of ²³³U, ²³⁴U, ²³⁶U, ²³⁸U, ²³⁷Np, ²³⁹Pu, ²⁴¹Pu relative to that of ²³⁵U for neutrons in the energy range 1-14 MeV", Nucl. Energy, 21, 671 (1967).
- 89. Arlt et al., Proc. International Conference on Nuclear Data for Science and Technology, October 7-12, 1979, Knoxville, USA, p. 995, 1979.
- 90. James G.D., Dabbs J.W.T., Harvey J.A., Hill N.W. Phys. Rev. C, 15, 2083 (1977).
- Alam B., Block R.C., Slovacek R.E., Hoff R.W. Measurement of the Neutron-Induced Fission Cross Sections of ²⁴²Cm and ²³⁸Pu. Nucl. Sci. Eng. 99 (1988) 267.
- Budtz-Jorgensen C., Knitter H.-H. and Smith D.L. In: Proc. Int. Conf. Nuclear Data for Science and Technology, Antwerpen, Belgium, September 6-10, 1982, p. 206, D/ Reidel Publishing Co., Boston (1983).
- 93. Ermagambetov S.B., Smirenkin G.N. JETP Letters, 9, 309 (1969).
- 94. Ermagambetov S.B., Smirenkin G.N. Sov. At. Energy, 25, 1364 (1969).
- 95. Fomushkin E.F., Gutnikova E.K. Sov. J. Nucl. Phys. 10, 529 (1970).
- 96. Barton D.M. and Koontz P.G. Phys. Rev., 162, 1070 (1967).
- 97. Aleksandrov B.M., Solovjev S.M., Soloshenkov P.S. et al. "The neutron fission cross sections for ²⁴¹Am, ²³⁸Pu, ²⁴⁰Pu and ²⁴¹Pu", Nuclear Constants, 1(50), p.3, 1983 (in Russian).
- 98. K. Kari and S. Cierjacks, Neutron Physics and Nuclear Data for Reactors and applied purposes, Harwell, UK, p. 905, OECD, Paris, 1978.
- 99. Staples P., Morley K., "Neutron-induced fission cross section ratios for ²³⁹Pu, ²⁴⁰Pu, ²⁴²Pu and ²⁴²Pu relative to ²³⁵U from 0.5 MeV to 400 MeV", Nucl. Sci. Eng. 129 (1998) 149.
- 100.Budtz-Jorgensen C., Knitter H.-H. "Neutron-Induced Fission crosss ection of ²⁴⁰Pu in the energy range from 10 keV to 10 MeV" Nucl. Sci. Eng. 79 (1981) 380.
- 101.Weston L.W., Todd J.H., "Neutron fission cross section of ²³⁹Pu and ²⁴⁰Pu relative to ²³⁵U", Nucl. Sci. Eng. 84 (1983) 248.
- 102.Meadows J.W., "The fission cross section of plutonium-240 relative to uranium-235 from 0.35 to 9.6 MeV", Nucl. Sci. Eng. 79 (1981) 233.
- 103.Kupriyanov V.M., Fursov B.I., Maslennikov B.K. et al. "The measurement of Pu-240 and Pu-242 fission cross section relative to that of U-235 in the .127-7.4 MeV neutron energy interval", Sov J. At. Energy, 46, 35 (1979).
- 104.Behrens J.W., Newbury R.S., Magana J.W. "Measurements of the Neutron-induced fission cross sections of ²⁴⁰Pu, ²⁴²Pu, and ²⁴⁴Pu relative to 235U from 0.1 to 30 MeV", Nucl. Sci. Eng. 66, 433 (1978).
- 105.Iwasaki T., Wanabe F., Baba M. et al. J. Nucl. Sci. Tech.27, 885 (1990).

- 106.Meadows J.W. "The fission cross section of plutonium-239 and plutonium-242 relative to uranium-235 from 0.1 to 10 MeV", Nucl. Sci. Eng. 68, 360 (1978).
- 107. Weigmann H., Wartena J.A., Burkholz C. Nucl. Phys. A438, 333 (1985).
- 108.Cance M., Grenier G., "Absolute measurements of the ²⁴⁰Pu(n,f), ²⁴²Pu(n,f) and ²³⁷Np(n,f) cross sections at 2.5 MeV incoming neutron energy ". In:Proc. Int. Conf. Nuclear Data for Science and Technology, Antwerpen, Belgium, September 6-10,1982, p. 51, K.H. Bockhoff, Ed., Holland (1982).
- 109.Arlt R., Josch M., Musiol G., et al. "Absolute measurement of fission cross sections at neutron energies at about 8.5 MeV". Isotopenpraxis 21, 344 (1985).
- 110.Arlt R. et al. "Absolute determination of fission cross sections of ²³³U, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁹Pu and ²⁴²Pu at 14.7 MeV", Sov J. At. Energy, 55, 656 (1984).
- 111.Vorotnikov P.E., Dmitriev S.V., Molchanov Yu.D. et al., "Cross section measurements for fission of ²⁴²Cm induced by neutrons with energies of 0.1 – 1.4 MeV, performed with nanogram amounts of substance" Yadernaya Fyzika, 40 (1984) 1141.
- 112.Maslov V.M., "Fission Level Density and Barrier Parameters for Actinide Neutron-Induced Cross Section Calculations", INDC(BLR)-013/L, 1998, IAEA, Vienna.
- 113.Britt H.C., Wilhelmy J.B. Simulated (n,f) cross sections for exotic Actinide nuclei. Nucl. Sci. Eng. 72, 222 (1979).
- 114.B. Jurado, G. Kessedjian, M. Aiche et al., Abstracts of International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, p.6.; Kessedjian, M. Aiche, G. Barreau et al., Abstracts of International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, p.186.
- 115.Fomushkin E.F., Novoselov G.F., Vinogradov Yu. I. Yadernaya Fyzika, 31 (1980) 39.
- 116.Fomushkin E.F., Novoselov G.F., Vinogradov Yu. I. Yadernaya Fyzika, 36 (1982) 582.
- 117.Moore M.S. and Keyworth G.A. "Analysis of the Fission and Capture Cross Sections of the Curium Isotopes". Phys. Rev. C3 (1971) 1656.
- 118.Maguire Jr. H.T., Stopa C.R.S., Block R.C. et al. Neutron-Induced Fission Cross-Section Measurements of ²⁴⁴Cm, ²⁴⁶Cm, and ²⁴⁸Cm. Nucl. Sci. Eng. 89 (1985) 293
- 119.Vorotnikov P.E., Kozlov L.D., Molchanov Yu.D., Shuf G.A., "The fission neutron cross sections of ²⁴⁴Cm in energy range 0.4 – 1.3 MeV" Atomnaya Energiya, 57 (1984) 61.
- 120.Fomushkin E.F., Gutnikova E.K., Zamyatnin Yu.S., Maslennikov B.K., et al. Cross sections and fragment angular anisotropy in fast neutron fission of some isotopes of plutonium, americium and curium", Sov. J. Nucl.Phys. 5, 689,(1967).
- 121.I.A.Ivanin, Yu.A.Khokhlov, V.I.In'kov, Yu.I.Vinogradov, E.F.Fomushkin, L.D.Danilin, V.N Polynov "Measurements of fission cross section for curium isotopes". Int. Conf. Nucl. Data for Sci. and Technology, Triest, Italy, 19-24 May 1997.
- 122.W.P. Poenitz, Nucl. Sci. Eng., 64, 894 (1977)
- 123.B. Leugers, S. Cerjacks et al., Proc. NEANDC/NEACRP Spec. Meeting on Fast Neutron Fission Cross Sections of ²³³U, ²³⁵U, ²³⁸U and ²³⁹Pu. ANL, June 28-30, 1976. ANL-76-90, 1976,183.
- 124.G.W. Carlson and J.W. Behrens, Nucl. Sci. Eng., 66 (1978) 205.
- 125.M. Cance et al., Nucl. Sci. Eng. 68 (1978) 197.
- 126.Dushin V.N., Fomichev A.V., Kovalenko S.S. et al., Atomnaya Energiya, 55, (4), 218 (1983).
- 127.Fursov B.I., Kuprijanov V.M., G.N.Smirenkin.,"Fission cross section measurement for U-233 and Pu-241 relative to U-235 fission cross section in the energy range 0.024-7.4 MeV" Atomnaya Energiya, 44, (3), 236, (1978).
- 128.Carlson G.W., Behrens J.W. Nucl. Sci. Eng., 66, 205 (1978).
- 129.Meadows J.W., Nucl. Sci. Eng., 54, 317 (1974).

- 130.Adamov V.M., Aleksandrov B.M., Alkhazov I.D. et al., Yadernye Konstanty 24(8) (1977).
- 131.Zasadny K.R., Agrawal H.M., Mahdavi M., Knoll G.F."Measurement of the 14-MeV fission cross sections for ²³³U and ²³⁷Np". Trans. Amer. Nucl. Soc. 47, 425 (1984).
- 132.Calviani M., Genninni P., Colonna N. In: Proc. 4th Workshopn on Neutron measurements, Evaluations and Aplications, October 16-18, 2007, Prague, Czech Republic., p. 15.
- 133.Fursov B.I., Kuprijanov V.M., Ivanov V.I. G.N.Smirenkin.,"Measurement of ²³⁹Pu to ²³⁵U cross section ratio for neutrons energy range 0.024-7.4 MeV" Atomnaya Energiya, 43, 261 (1977).
- 134.Merla K., Hausch P., Herbach C.M., et al. "Measurement of neutron-induced fission cross section ratiosat the Karlsruhe isochronous cyclotron". In: Proc. Int. Conf. Nuclear Data for Science and Tech., Julich, Germany, 1991, p. 94.
- 135.S. Cerjacks, B. Leugers, et al., Proc. NEANDC/NEACRP Spec. Meeting on Fast Neutron Fission Cross Sections of ²³³U, ²³⁵U, ²³⁸U and ²³⁹Pu. ANL, June 28-30, 1976. ANL-76-90, 1976,183.
- 136.Behrens J.W., Carlson G.W. "Measurement of the fission cross section of ²⁴¹Pu relative to ²³⁵U for neutron energies from 1 keV to 30 MeV" Nucl. Sci. Eng., 68, 128 (1978).
- 137.Kaeppeler F., Pfletchinger "Measurement of the fission cross section of ²⁴¹Pu relative to ²³⁵U" Nucl. Sci. Eng., 51 124 (1973).
- 138.Adamov V.M., Gusev S.E., Drapchinskij L.V. et al., "Absolute measurements of fission cross sections for U-234, U-236, Pu-240, Pu-241 and Am-243 by the neutrons of Cf-252fission spectrum", Proc. 6th All-Union Conf. Neutron Physics, Kiev, Soviet Union, October 2-6, 1983, 2, 134, Atomizdat (1984).
- 139.Smith H.L., Smith R.K., Henkel R.L. "Neutron-induced fission of ²⁴¹Pu", Phys. Rev. 125, 1329 (1962)
- 140.Szabo I., Filippi G., Huet J.L., et al., "New absolute measurements of neutron-induced fission cross sections of 235U, 239Pu and 241Pu from 17 keV to 1 MeV", Proc. Meeting on Fast Neutron Cross Sections of U-233,-235, -238 and Pu-239, Argonne, 28-30 June 1976, p. 208.
- 141.Silbert M.G., LA-6239-MS (1976).
- 142.Fomushkin E.F., G.F. Novoselov, Y.I. Vinogradov et al., Atomnaya Energiya, 63, 242 (1987)
- 143. White R.M., Browne J.C., In: Proc. Int. Conf. Nuclear Data for Science and Technology (North-Holland, 1983), p.281
- 144.Fomushkin E.F., Novoselov G.F., Gavrilov G.F. et al. Measurement of highly active isotope fission cross sections with nuclear explosion neutrons. In: Proc. Int. Conf. On Nuclear Data for Science and Technology (Springer-Verlag, 1992), p. 439.
- 145.Kuprijanov V.M., Fursov B.I., Ivanov V.I. G.N.Smirenkin.,"The measurement of ²³⁷Np/²³⁹Pu and ²⁴¹Am/²³⁹Pu fission cross section ratios in the 0.13-7.0 MeV neutron energy interval" Atomnaya Energiya, 45, 440 (1978).
- 146.Behrens J.W., Browne J.C., Walden J.C. "Measurement of the neutron-induced fission cross section of the ²³⁷Np relative to ²³⁵U from 0.02 to 30 MeV". Nucl. Sci. Eng., 80, 239 (1982).
 147.Meadows J.W., "The fission cross section of ²³⁷Np relative to ²³⁵U from 0.1 to 10 MeV". Nucl. Sci.
- 147.Meadows J.W., "The fission cross section of ²³/Np relative to ²³⁵U from 0.1 to 10 MeV". Nucl. Sci. Eng., 85, 271 (1983).
- 148.Kanda K., Sato O., Yoshida K. et al. "Measurement of the fast neutron induced fission crosss section", JAERI-M-85-035, 1985, p. 220.
- 149.Terayama H., Karino Y., Manabe F. et al. "Measurement of fast neutron-induced fission cross section of ²³⁶U, ²³⁷Np and ²⁴³Am relative to ²³⁵U from 0.7 to 7 MeV", NEANDC(J)-122, 1986.
 150.Goverdovskij A.A., Gordyushin A.K., Kuz'minov B.D. et al. "²³⁷Np to ²³⁵U fission cross section
- 150.Goverdovskij A.A., Gordyushin A.K., Kuz'minov B.D. et al. "²³⁷Np to ²³⁵U fission cross section ratio measurement for neutrons in the energy range 4-11 MeV" Atomnaya Energiya, 58, 137 (1985).

- 151.Goverdovskij A.A., Gordyushin A.K., Kuz'minov B.D. et al. "²³⁷Np to ²³⁵U fission cross section ratio measurement by the method of isotope impurities" Proc. 6th All-Union Conf. on Neutron Physics, Kiev, 1983, vol.3, 115 (1983).
- 152.Alkhazov I.D., Ganza E.A., Drapchinskij L.V., et al. "Absolute measurements of the fission ccross sections for some heavy isotopes by the neutrons with energies 2.6, 8.4, 14.7 MeV". Proc. Of the 3d All-Union Conference on the Neutron Radiation Metrology at Reactors and Accelerators, Moscow, 1983, CNIIAtominform, 1983, vol. 2., p. 201.
- 153.Tovesson F. and Hill T.S., Phys. Rev. C 75, 034610 (2007).
- 154.Ignatyuk A.V., Kornilov N.V., Maslov V.M. "Isomer ratio and ²³⁷Np(n,2n) reaction cross section" Atomnaya Energiya 63, 110 (1987).
- 155.Maslov V.M. "Analysis of the ²³⁷Np fission cross sections and (n,xn) reactions". INDC(CCP)-366, р. 27, 1994 (translated from Маслов В.М. Анализ сечений деления и (n,xn) реакций для ²³⁷Np. Вопросы Атомной Науки и Техники (сер. Ядерные константы) 4 (1987) 19.).
- 156.Bowman J.C., Auchampaugh G.F., Fultz S.C., Hoff R.W. Phys. Rev. 166, 1216 (1968).
- 157.Dabbs J.W.T., Johnson C.H., Bemis Jr. C.E. Measurement of the ²⁴¹Am Neutron Fission Cross Section. Nucl. Sci. Eng. 83 (1983) 22.
- 158.Shpack D.L., Ostapenko Yu.B., Smirenkin G.N. JETP Lett. 10, 175 (1969)
- 159.Gayther D.B. and Thomas B.W. Proc. 4th All-Union Conf. Neutron Physics, Kiev, Soviet Union, April 18-22, 1977, III, 3, Atomizdat (1977).
- 160.Wisshak K., Kappeler Nucl. Sci. Eng. 76, 148 (1980)
- 161.Hage W., Wisshak K., Kappeler Nucl. Sci. Eng. 78, 248 (1981)
- 162.Knitter H.-H., Budtz-Jorgensen C. Atomkernenergie. Kerntechnik, 3, 205 (1979).
- 163.Behrens J.W., Browne J.C. Measurement of the Neutron-Induced Fission Cross Sections of Americium-241 and Americium-243 Relative to Uranium-235 from 0.2 to 30 MeV. Nucl. Sci. Eng. 77 (1981) 444.
- 164.Prindle A.L., Sisson D.H., Nethaway D.R., Kantelo M.V., Sigg R.A. Fission of ²⁴¹Am with 14.8-MeV Neutrons. Phys. Rev. C20 (1979) 1824.
- 165.Cance M., Grenier G., CEA-N-2194, 1981
- 166.Protopopov A.N., Selitskij Yu.A., Solov'ev S.M. Sov. J. At. Energy 6, 36 (1959)
- 167.Kazarinova M.I., Zamyatnin Yu.S., Gorbachev V.M. Sov. J. At. Energy 8, 125 (1960).
- 168. Fomushkin E.F., Gutnikova E.K., Zamyatnin Yu.S. et al. Yadernaya Fyzika, 5, 917 (1969).
- 169. Filatenkov A.A., Chuvaev S.V., Aksenov V.N. et. al., Report of INDC(CCP)-402, 1997.
- 170.Perdikakis et al. Phys. Rev. C 73, 067601 (2006).
- 171. Vieira D.J., Jandel M., Bredeweg T.A. e. a. Neutron capture and (n,2n) measurements on ²⁴¹Am.— In: Abstracts of International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, p.31.
- 172.Maslov V.M., Porodzinskij Yu.V., Sukhovitskij E.Sh., Morogovskij G.B. Neutron Data Evaluation for Americium-241-242,-242m,-243. In: Proc. International Conf. Nuclear Data for Science and Technology, May 19-24, 1997, Trieste, Italy, p. 1317.
- 173.Fursov B.I., Baranov E.Yu., Klemyshev M.P. et al. Sov. J. At. Energy 59, 899 (1985).
- 174.Knitter H.-H., Budtz-Jorgensen C. Nucl. Sci. Engng. 99, 1 (1988).
- 175.Goverdovskij A.A., Gordyushin A.K., Kuzminov B.D. et al. Sov. J. At. Energy 67, 524 (1990).
- 176.Fomushkin E.F., Novoselov G.F., Vinogradov Yu.I. et al. Yadernye Konstanty 57(3), 17 (1984).
- 177.Wisshak K., Kappeler Nucl. Sci. Eng. 85, 251 (1983)
- 178.Butler D.K. and Sjoblom R.K. Phys. Rev. 124, 1129 (1961)
- 179.Behrens J.W., Browne J.C. Nucl. Sci. Engng. 77, 444 (1981).

- 180.Kanda K., Imaruoka H., Terayama H. et al., Journal of Nucl. Sci. Tech., 24, 423 (1987).
- 181.Laptev A.B., Donetz A.Yu., Dushin V.N., at al. Neutron-Induced Fission Cross Sections of ²⁴⁰Pu, ²⁴³Am and ^{nat}W in the energy range 1-200 MeV. In: Proc. of the International Conference on Nuclear Data for Science and Technology, September 26 October 1, 2004, Santa Fe, USA, p. 865.
- 182.Browne J.C., White R.M., Howe R.E. et al. ^{242m}Am Fission Cross Section. Phys. Rev. 29 (1984) 2188
- 183.Fursov B.I., Samylin B.F., Smirenkin G.N., Polynov V.N., Nuclear Data for Science and Technology, Proc. of the Int. Conf., Gatlinburg, Tennessee, USA, May 9-13, 1994, v.I, p. 269.
- 184.Dabbs J.W., Bemis C.E., Raman S., et al., Nucl. Sci. Engng. 84, 1 (1983).
- 185.Fomushkin E.F., Novoselov G.F., Vinogradov Yu.I., et al. Yad. Fyz., 33, 620 (1981).
- 186.Glazkov N.P., Atomnaya Energ. 14, (4), 400, (1963).
- 187.Smith W., Phys. Rev, 126, 718 (1962)
- 188.Fujita Y., Ohsawa T., Bugger R.M. et al., J. of Nucl. Sci. and Tech., 20, 983 (1983).
- 189. Маслов В.М., Породзинский Ю.В., Баба М. И Хасегава А. Рассеяние нейтронов на ядрах U и Th с возбуждением коллективных уровней ядер. Изв. Академии Наук, Серия физическая, 67 (2003) 1597.
- 190.Maslov V. M, Baba M., Hasegawa A., Kornilov N.V., Kagalenko A. B., Tetereva N.A. U-Th fuel cycle neutron data. In: Proc. of the International Conference on Nuclear Data for Science and Technology, September 26 October 1, 2004, Santa Fe, USA, p. 191.
- 191.Kornilov N.V., Kagalenko A.B., Nucl. Sci. Eng., 120, 55 (1995).
- 192.Baba M. et al., J. Nucl. Sci. Technol. 27, 7, 601 (1990).
- 193.Wienke H. et al., In: Abstracts of International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, p.222.
- 194.Batchelor R., Wyld K. "Neutron Scattering by ²³⁵U and ²³⁹Pu for incident neutrons of 2, 3 and 4 MeV". AWRE-0-55/69, 1969.
- 195.Andreev V.N. "Inelastic scattering of neutrons of the fission spectrum and neutrons with an energy of 0.9 MeV in ²³⁹Pu". Nejtronnofizicheskie issledovaniya v USSR, 1961, No. 4, p. 287.
- 196.Wisshak K., Voss F., Kaeppeler F., Nucl. Sci. Eng., 137 (2001) 183.
- 197.Karamanis D., Petit M., Andriamonje S. et al., Nucl. Sci. Eng., 139 (2001) 282.
- 198.Poenitz W.P., Smith D.L., Report ANL-NDM-42, 1978.
- 199.Lindner M., Nagle R.J., Landrum J.H., Nucl. Sci. Eng., 59 (1976) 381.
- 200. Anand R.P., Jain H.M., Kailas S., et. al., Annals of Nucl. Energy, v.16(2), p.87, 1989.
- 201.Kobayashi K., Fujita Y., Yamamuro N., Nucl. Sci. Techn., 18 (1981) 823.
- 202.Macklin R.L., R.R. Winters Nucl. Sci. Eng., 78 (1981) 110.
- 203.Macklin R.L., Halperin J., Nucl. Sci. and Eng., 64 (1977) 849.
- 204.Aerts G., Abbondanno U. and the n_TOF Collaboration, Measurement of the ²³²Th Neutron capture cross section at the CERN n_TOF facility. Proc. of the International Conference on Nuclear Data for Science and Technology, September 26 October 1, 2004, Santa Fe, USA, p. 1470.
- 205.Volev K., Kuymdjieva N., Brusegan A., Borella A., Siegler P., Janeva N., Lukyunov A., Leal L., and Schillebeeckx P. Evaluation of the ²³²Th neutron cross sections between 4 keV and 140 keV. In: Proc. of the International Conference on Nuclear Data for Science and Technology, September 26 – October 1, 2004, Santa Fe, USA, p. 87
- 206.Maslov V.M. et al., Nucl. Sci. and Eng., 143 (2003) 177.
- 207.V.M. Maslov, ⁽²³²Th neutron capture cross section", Proc. of the 13th International Seminar on Interaction of Neutrons with Nuclei, May 25-28, 2005, Dubna, Russia, 2006.

- 208.Buleeva N.N., Davletshin A.N., Tipunkov O.A., et al., "Neutron radiation capture cross sections for ²³⁶U, ²³⁸U and ²³⁷Np measured by the activation metod". Atomnaya Energya, 65, 348 (1988).
- 209.Lindner M., Nagle R.J. and Landrum J."(n,2n) cross sections for 238U and 237Np in the region of 14 MeV". Nucl. Sci. Eng. 59, 381 (1976).
- 210.Quang E., Knoll G.F., Nucl. Sci. Eng. 110, 282 (1991).
- 211. Voignier J., Joly S. and Grenier G., Nucl. Sci. Eng. 93, 43 (1986).
- 212.Davletshin A.H., Tipunkov A.O. and Tolstikov V.A., Neutron Physics, Proc. All-Union Conference, Vol. 4, p.109, Tsniiatominform, Moscow 1975) [in Russian].
- 213.Poenitz W.P., Fawcett, Jr., L.R. and Smith D.L. Nucl. Sci. Eng. 78, 239 (1981).
- 214.Poenitz W.P., Nucl. Sci. Eng., 57, 300 (1975).
- 215.Kazakov L.E., Kononov V.N., Manturov G.N., et al. "Neutron capture cross section measurements for ²³⁸U in the energy range from 4 to 460 keV", Yadernye Konstanti, 3, 37 (1986).
- 216.Adamchuk Yu.V., Voskanyan M.A., Muradyan G.V. et al., in: Proc. Int. Conf. on Neutron Physics, Kiev, 1987, v.2, 242 (1988).
- 217.Trofimov A.N. Sov. At. Energy, 64, 179 (1988).
- 218.Davletshin A.N., Tipunkov S.V., Tikchonov C.V. et al., Atomnaya Energiya, 58, 183 (1985).
- 219.Gudkov A.N., Davletshin A.N., Zhivun V.N. et al., Sov. J. At. Energy 61, 956(1987)
- 220.Maslov V.M., Porodzinskij Yu. V., Baba M., Hasegawa A. "Actinide neutron capture cross sections" Proc. of Eleventh International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, September 2-6, Prague, 2002, pp. 757-760.
- 221. Muradian G.V., Furman W.I. Private communication, 1998.
- 222. Weston L.W. and Todd L.H., Nucl. Sci. Eng. 63, 143 (1977).
- 223. Wisshak K., Kappeler F. Nucl. Sci. Eng. 66, 363 (1978).
- 224. Wisshak K., Kappeler F. Nucl. Sci. Eng. 69, 39 (1979).
- 225.Hockenbury R.W., Sanislo A.J., Kaushal N.N. Proc. Conf. on Neutron Cross Sections and Technology, Washington, vol. 2, 1972, 584.
- 226.Hopkins, B.C. Diven, Nucl.Sci.Eng. \textbf{12}, 169 (1962).
- 227.F. Corvi et al., NEANDC(E)-232, 5 (1982)
- 228.B. Spivak et al., Sov. J. At. Energy \textbf{1}, 26 (1956).
- 229.V.M. Andreev, Sov. J. At. Energy \textbf{4}, 247 (1958).
- 230.V.M. Kononov et al., Sov. J. At. Energy \textbf{32}, 85 (1972).
- 231.G.V. Muradyan et al. In: Fourth All-Union Conf. on Neutron Physics, Kiev, 1977}. (Moscow, 1978) vol. 3, p. 119.
- 232.Weston L.W., Gwin R., De Saussure G., Fullwood R.R., Hockenbury R.W. Nucl. Sci. Eng., 34, 1 (1968).
- 233.Gwin R., Silver E.G., Ingle R.W., Weaver H., Nucl. Sci. Eng., 59, 79 (1976)
- 234.Kononov V.N., Poletaev E.D., Prokopetz Yu.S. etal., Atomnaya energiya, 38, 81 (1975)
- 235.Bolotskij V.P., Petrushin V.I., Soldatov A.N., Sukhoruchkin S.I., Second All-Union Conf. on Neutron Physics, , 28 May - 1 June, 1973vol. 4., p. 49, 1973
- 236.Lindner M., Nagle R.J., Landrum J.H. Nucl. Sci. Eng., 59, 381 (1976).
- 237.Stupegia D.C., Schmidt M., Keedy C.R., Nucl. Sci. Eng., 29, 218 (1967).
- 238. Trofimov Yu. N., Nemilov Ju.A. Proc. 6th All-Union Conf. on Neutron Physics, Kiev, 1983, v.2, 142 (1983).
- 239.Weston L.W., Todd J.H., Nucl. Sci. Eng., 79, 184 (1981).
- 240.Vanpraet G., Cornelis E., Raman S., Rohr G. Nuclear Data for Basic and Applied Science, Proc. Int. Conf., Santa Fe, 1985, vol. 1, 493.

- 241.Gayther D.B. and Thomas B.W. Proc. 4th All-Union Conf. Neutron Physics, Kiev, Soviet Union, April 18-22, 1977, III, 3, Atomizdat (1977).
- 242. Wisshak K., Kappeler Nucl. Sci. Eng. 76, 148 (1980)
- 243. Wisshak K., Kappeler Nucl. Sci. Eng. 85, 251 (1983)
- 244.Weston L.W. and Todd J.H. Nucl. Sci. Eng., 91, 444 (1985)
- 245. Tewes H.A., Caretto A.A., Miller A.E. et. al., Report UCRL-6028-T, 1960.
- 246.Butler J.P., Santry D.C., Canadian Journal of Chemistry, v.39, p.89, 1961.
- 247.Cochran D.R.F., Henkel R.L., Preprint WASH-1013, p.34, 1958.
- 248.Raics P., Daroczy S., Csikai J. et. al., Phys. Rev/C, v.32, no.1, p.87, 1985; Report INDC(HUN)-029/L, IAEA, 1990.
- 249.Prestwood R.J., Bayhurst B.P., Phys. Rev., v.121, p.1438, 1961
- 250.Karius H., Ackermann A., Scobel W., Journ. of Physics part G (Nuclear Physics), v.5, no.5, p.715, 1979.
- 251.Perkin J.L., Coleman R.F., Journal of Nuclear Energy, v.14, p.69, 1961.
- 252.Phillips J.A., Report of AERE-NP/R-2033, 1956.
- 253. Chatani H., Kimura I., Annals of Nuclear Energy, v.19, no.8, p.477, 1992.
- 254.Zysin Yu.A., Kovrizhnykh A.A., Lbov A.A. et. al., Journal of Atomic Energy, v.8, p.360, 1960.
- 255.Batchelor R., Gilboy W.B., Towle J.H., Nuclear Physics, v.65, p.236, 1965.
- 256.Karamanis D., Andriamonje S., Assimakopoulos P.A. et al. Neutron cross-section measurements in the Th-U cycle by the activation method. Nucl. Instr. and Meth. A505 (2003) 381.
- 257.Knight J.D., Smith R.K., Warren B. Phys. Rev., 112, 259(1958).
- 258.Nagy S., Flynn K.F. et al., Phys. Rev., C17, 163 (1978).
- 259.Kornilov N.V., Sal'nikov O.A. et al. Voprosi Atomnoi Nauki I Tehniki (VANT), ser. Yadernie konstanti, 1(45), 33 (1982)
- 260.Chou You-Pu, internal report HSJ-77091,7810, in chinese,EXFOR 30537
- 261.Ackerman A., Anders B., Borman H. Proc. Conf. Nuclear Cross Sections and Technology, Washington D.C., March 3-7, 1975, CONF-750303, Vol. 2, p.425, US National Bureau of Standards (1975).
- 262.Veeser L.R., Arthur E.D., Proc. Intern. Conf. on Neutron Physics and Nuclear Data, OECD, Harwell 1054 (1978).
- 263.Frehaut J., Bertin A., Bois R., Nucl. Sci. Eng. 74, 29 (1980).
- 264.D.C. Mather et al., AWRE 072/72, 1972.
- 265.D.A. Brown et al., LLNL Report, 2004 (in press)
- 266.R.W. Lougheed et al., Radiochimica Acta, 833 (2002) 833.
- 267.L.A. Bernstein et al., Phys. Rev. C65 (2002) 021601.
- 268.V.M. Maslov "Prompt fission neutron spectra of U and Pu above emissive fission threshold", Nuclear Spectroscopy, 56th Intern. Conf., Sarov, Russia, 2006 (in Russian); Maslov V.M. Pairing Effects in ²³⁹Pu(n,2n) Reaction Cross Section, Zeit. Phys. A, Hadrons & Nuclei, 347 (1994) 211.
- 269.Gromova E.A., Kovalenko S.S., Nemilov Yu.A. et al. "Measurement of ²³⁷Np(n,2n) reaction cross section at 14.8 MeV neutron incident energy" Atomnaya Energiya, 54, 198 (1983).
- 270.Nishi T., Fujiwara I., Imanishi N. "(n,2n) cross sections for the ²³⁷Np". NEANDC(J -42L, 20, 1975.
- 271.Paulson C.K., Hennelly E.J. "cross sections measurement of ²³⁶Pu formation in ²³⁸Pu by ²³⁷Np(n,2n) reaction". Nucl. Sci. Eng. 5, 24 (1974).
- 272.Daroczy S., Raics P., Csikai J., Kornilov N.V. et al. "Measurement of ²³⁷Np(n,2n)²³⁶Np(22.5hrs) cross section for neutron energy between 7 and 10 MeV". Atomnaya Energiya, 58, 117 (1985).
- 273.Lindeke K., Specht S., Born H.J. "Determination of the ²³⁷Np(n,2n)²³⁶Np cross section at 15 MeV neutron energy" Phys. Rev. C 12, 1507 (1975).
- 274.Perkin J.L., Coleman R.F. "Cross sections for the (n,2n) reaction of ²³²Th, ²³⁸U and ²³⁷Np with 14 MeV neutrons" Ann. Nucl. Energy, 14, 69 (1961).
- 275.Filatenkov A.A, Chuvaev S.V., Smith D.L., Ikeda Y., et al. In: Proc. Int. Conf. Nuclear Data for Science and Technology, Trieste, Italy, May 19-24, 1997, p. 1313.
- 276.Perdikakis et al. (Phys. Rev. C 73, 067601 (2006))
- 277.Lougheed (2001).
- 278.Gancarz (1983).
- 279.Myers W.A., Lindner M., Newburry R.S. "The isomer ratio of ^{236Np(1)}Np/^{236(s)}Np in the reaction ²³⁷Np(n,2n)²³⁶Np) from neutrons, produced in thermonuclear devices". Journ. Inorg. Chem. 37, 637 (1975).
- 280.Howerton, R.J. Doya, Nucl. Sci. Eng., 46 (1971) 414.
- 281.Glendenin L.E., Gindler J.E., Ahmad I., Henderson D.J., Meadows J.W. Phys. Rev. C, 22, 52 (1980).
- 282.Howe R.E. Nucl. Sci Eng., 86, 157 (1984).
- 283.Conde H., Holmberg M. Journ. AF, 29, 33 (1965).
- 284.Batchelor R., Gilboy W.B., Towle J.H. Nucl. Phys., 65, 236 (1965).
- 285.Mather D.S., Fieldhouse P., Moat A. Nucl. Phys., 66, 149 (1965).
- 286.Frehaut J., Bois R., Bertin A. Report of CEA-N-2196, 1981.
- 287.Caruana J., Boldeman J.W., Walsh R.L. Nucl. Phys. A, 285,217 (1977).
- 288. Prokhorova L.I., Smirenkin G.N. Sov. Nucl. Phys, 7, 579 (1968).
- 289.Malinovskyj V.V., Vorobjova V.G., Kuzminov B.D., Piksajkin V.M., Semjonova N.N., Valjavkin V.S., Solovjov S.M. Atomnaja Energija, 54,209 (1983).
- 290.Kuzminov B.D. Sov. Nucl. Phys, 4, 241 (1961).
- 291.Smith A.B., Nobles R.G., Cox S.A. Phys. Rev., 115, 1242(1959).
- 292.Bondarenko I.I., Kuzminov B.D., Kutsayeva L.S., Prokhorova L.I., Smirenkin G.N. Second UN Conf. on the Peaceful Uses of Atomic Energy, Geneva, 15, 353, 1958, Report 2187.
- 293.Leroy J. Journ. de Physique (J. Phys. Radium), 21, 617 (1960.).
- 294.Feu C. Journ. de Physique, 38, 273 (1977).
- 295. Johnstone I. Report of AERE-NP/R-1912, 1956.
- 296.Frehaut J., NEANDC(E) 238/L (1986).
- 297.Nurpeisov B., Volodin K.E., Nesterov V.G., et. al., Atomnaya Energiya, 39, 199 (1975)
- 298.Malinovskij V.V., Kuz'minov B.D., Vorob'jova V.G., Yadernye Konstanty, 1/50, 4, (1983)
- 299.Vorob'jova V.G., D'jachenko N.P., Kuz'minov B.D., Sergachjov A.I., Yadernye Konstanty 15, 3, (1974).
- 300.Savin M.U., Khokhlov Yu., Paramonova I.N., Chirkin V.A., Atomnaya Energiya, 32, 408, (1972)
- 301.Zongyu Bao, J. CST, 9, (4), 362, (1975)
- 302.Conde H., Holmberg M."Prompt nu-bar in spontaneous and neutron-induced fission of 236U and the half-life for spontaneous fission". Ann. Nucl. Energy, 25, 331 (1971).
- 303. Vorob'jova V.G., Kuz'minov B.D., Malinovskij V.V. et al. "Measurement of the average number of prompt fission neutrons for neutron-induced fission of ²³⁶U" 5th All-Union Conf. Neutron Physics, Kiev, Soviet Union, September 15-19, 1980, vol. 3, 95 Atomizdat (1980)..
- 304.Khokhlov Yu. A., Ivanin I.A., In'kov V.I., et al. "Measurements results of average neutron multiplicity from neutron induced fission of actinides in 0.5-10 MeV energy range". Proc. Int. Conf.

Nuclear Data for Science and Technology, Gatlinburg, USA, May 9-13, 1994, p. 272, J.K. Dickens (Ed.), ANS, 1994.

305.D.C. Madland and J.R. Nix, Nucl. Sci. Eng., 81 (1982) 213.

- 306.J.Frehaut, R. Bois, A. Bertin, Proc. Int. Conf. Nuclear Data for Science and Technology, Antwerpen, Belgium, September 6-10, 1982, p. 78, Reidel Publ. Co., Holland, 1983.
- 307.J. Frehaut, M. Soleilhac, G. Mosinski, Second All-Union Conf. on Neutron Physics, Kiev, 28 May 1 June, 1973, vol. 3, p. 153.
- 308.Frehaut J., private communication to EXFOR (1980).
- 309.R. Gwin, R.R. Spencer, R.E. Ingle et al., ORNL-TM-7148, 1980
- 310.Boldeman J.W, Walsh R.L. J. Nucl. Energ., 25, (8), 321 (1971).
- 311.Flerov N.N., Talyzin V.M. J. Nucl. Energ., 17, 423 (1963).
- 312.Hopkins J.C., Diven, B.C. Nucl. Phys., 48, 433 (1963).
- 313.Gwin R., Spencer R.R., Ingle R. Nucl. Sci. Eng., 94, 365(1986).
- 314.Johnstone I. AERE -NP/R-1912 (1956).
- 315.Kolosov N.P., Kuzminov B.D., Sergachev A.I, Surin V.M. Atomnaya Energiya, 32, (1), 83 (1972).
- 316.Mather D.S., Fieldhouse P., Moat A. et al. J. Nucl. Phys., 66,149 (1965).
- 317.Protopopov A.N., Blinov M.V. J. Nucl. Energ. 10, 65 (1959).
- 318.Sergachev A.I., et al. Yadernaya Fizika, 16, (3), 475 (1972).
- 319.Smirenkin G.N., Bondarenko I.I., Kutsaeva L.S. et al. J.Nucl. Energ. 9,155 (1959).
- 320.Colvin D.W. and Sowerby M.G. Harwell report, 1964, data scanned from curve in BNL-325, suppl.2, 1965.
- 321.Kroshkin N.I. and Zamyatnin Yu.S., Atomnaya Energiya, 29, 95 (1970).
- 322.Jaffey A.H., Lerner J.L., Nucl. Phys. A, 145, 1 (1970).
- 323.Howe R.E., White R.M., Browne J.C., Landrum J.H., Dougan R.J., Lougheed R.W., Dupzyk R.J., Nucl. Phys., A407, 193 (1983).
- 324.Lebedev V.I., Kalashnikova V.I., Atomnaya Energiya 5, 176 (1958)
- 325.Veeser W., Phys. Rev. C 17, 385 (1978).
- 326.Frehaut J., Bois R., Bertin A. Report of CEA-N-2396, 1984, p. 69.
- 327. Howe R.E., Browne J.C., Dougan R.J., Dupzyk R.J., Landrum J.H. Nucl. Sci. Eng. 77,454 (1981).
- 328.Fultz S.C., Caldwell J.T., Berman B.L., et al. Phys. Rev., 152, 1046 (1966).
- 329. Salvatores M. Nuclear data needs for advance reactor systems. A NEA Nuclear Science Committee initiative, in: Abstracts of Interna-tional Conference on Nuclear Data for Science and Technology, April 22-27, Nice, France, p.28.

Apendix A

In the following, numerical tables for the relative cross section uncertainties (relative standard deviations) and correlations (normalized to 1000), borrowed from [1, 2] are given in a 15-group representation

Tables of cross section and certainties and covariances, borrowed from [1, 2]

Definition	of the 15-	-energy gro	oups	
Group no.	Energy N	Max (eV)	Energy Min	(eV)
1	19.6	E+07	6.07 E+06	
2	6.07	E+06	2.23 E+06	
3	2.23	E+06	1.35 E+06	
4	1.35	E+06	4.98 E+05	
5	4.98	E+05	1.83 E+05	
6	1.83	E+05	6.74 E+04	
7	6.74	E+04	2.48 E+04	
8	2.48	E+04	9.12 E+03	
9	9.12	E+03	2.04 E+03	
10	2.04	E+03	4.54 E+02	
11	4.54	E+02	2.26 E+01	
12	2.26	E+01	4.00 E+00	
13	4.00	E+00	5.40 E-01	
14	5.40	E-01	1.00 E-01	
15	1.00	E-01	1.00 E-05	

232Th(n,el)

group	rel.s.d.															
1	1.3888E-02	1000	189	74	74	102	101	0	0	0	0	0	0	0	0	0
2	1.2163E-02	189	1000	124	100	132	133	0	0	0	0	0	0	0	0	0
3	2.0000E-02	74	124	1000	290	217	164	0	0	0	0	0	0	0	0	0
4	1.7999E-02	74	100	290	1000	262	171	0	0	0	0	0	0	0	0	0
5	1.6491E-02	102	132	217	262	1000	212	0	0	0	0	0	0	0	0	0
6	1.1832E-02	101	133	164	171	212	1000	170	168	54	0	0	0	0	0	0
7	2.0000E-02	0	0	0	0	0	170	1000	991	322	0	0	0	0	0	0
8	2.0000E-02	0	0	0	0	0	168	991	1000	335	0	0	0	0	0	0
9	2.0000E-02	0	0	0	0	0	54	322	335	1000	-25	-4	-56	-105	-110	-112
10	1.5258E-02	0	0	0	0	0	0	0	0	-25	1000	5	-64	-118	-124	-126
11	3.8154E-02	0	0	0	0	0	0	0	0	-4	5	1000	-275	-450	-464	-468
12	1.5349E-02	0	0	0	0	0	0	0	0	-56	-64	-275	1000	505	496	492
13	8.6288E-03	0	0	0	0	0	0	0	0	-105	-118	-450	505	1000	990	983
14	8.0601E-03	0	0	0	0	0	0	0	0	-110	-124	-464	496	990	1000	999
15	7.9245E-03	0	0	0	0	0	0	0	0	-112	-126	-468	492	983	999	1000

232Th(n,n')

group	rel.s.d.						
1	4.8492E-02	1000	549	192	51	28	13
2	1.0000E-01	549	1000	267	54	-41	-43
3	1.0000E-00	192	267	1000	163	-83	-102
4	7.0000E-02	51	54	163	1000	149	15
5	2.0000E-01	28	-41	-83	149	1000	206
6	2.3602E-01	13	-43	-102	15	206	1000

232Th(n,2n)

group rel.s.d. ----1 1.0000E-01 1000

232Th(n,f)

group	rel.s.d.						
1	3.0000E-02	1000	983	980	960	16	8
2	3.0000E-02	983	1000	991	970	16	9
3	3.0000E-02	980	991	1000	974	16	9
4	3.0000E-02	960	970	974	1000	17	10
5	9.5167E-01	16	16	16	17	1000	217
6	4.6917E-01	8	9	9	10	217	1000

232Th(n,gamma)

group	rel.s.d.															
1	1.7397E-01	1000	36	5	11	9	5	0	0	0	0	0	0	0	0	0
2	1.0000E-01	36	1000	36	43	43	26	0	0	0	0	0	0	0	0	0
3	7.0000E-02	5	36	1000	306	218	125	0	0	0	0	0	0	0	0	0
4	7.0000E-02	11	43	306	1000	402	229	0	0	0	0	0	0	0	0	0
5	1.2432E-02	9	43	218	402	1000	342	0	0	0	0	0	0	0	0	0
6	1.1407E-02	5	26	125	229	342	1000	515	309	109	0	0	0	0	0	0
7	5.0000E-02	0	0	0	0	0	515	1000	939	310	0	0	0	0	0	0
8	1.4553E-02	0	0	0	0	0	309	939	1000	336	0	0	0	0	0	0
9	2.7999E-02	0	0	0	0	0	109	310	336	1000	0	0	0	2	1	1
10	3.3534E-02	0	0	0	0	0	0	0	0	0	1000	0	0	3	3	2

11	2.2069E-02	0	0	0	0	0	0	0	0	0	C	1000	1	130	110	102
12	3.2750E-02	0	0	0	0	0	0	0	0	0	C) 1	1000	7	5	5
13	1.8986E-02	0	0	0	0	0	0	0	0	2	3	130	7	1000	902	838
14	1.3095E-02	0	0	0	0	0	0	0	0	1	3	110	5	902	1000	991
15	1.2506E-02	0	0	0	0	0	0	0	0	1	2	102	5	838	991	1000

233U(n,el)

group	rel.s.d.															
1	2.0000E-02	1000	979	391	15	193	-16	-131	-137	0	0	0	0	0	0	0
2	2.0000E-02	979	1000	543	-16	205	119	44	37	0	0	0	0	0	0	0
3	3.0000E-02	391	543	1000	-20	144	666	809	807	0	0	0	0	0	0	0
4	1.0000E-01	15	-16	-20	1000	102	-116	-159	-159	0	0	0	0	0	0	0
5	1.0000E-01	193	205	144	102	1000	148	88	85	0	0	0	0	0	0	0
6	1.0000E-01	-16	119	666	-116	148	1000	785	784	0	0	0	0	0	0	0
7	1.0000E-01	-131	44	809	-159	88	785	1000	1000	0	0	0	0	0	0	0
8	1.0000E-01	-137	37	807	-159	85	784	1000	1000	0	0	0	0	0	0	0
9	1.0000E-01	0	0	0	0	0	0	0	0	1000	317	332	340	356	276	66
10	1.2000E-01	0	0	0	0	0	0	0	0	317	1000	997	996	961	658	155
11	6.0022E-02	0	0	0	0	0	0	0	0	332	997	1000	998	964	665	157
12	5.6089E-02	0	0	0	0	0	0	0	0	340	996	998	1000	972	680	166
13	4.1560E-02	0	0	0	0	0	0	0	0	356	961	964	972	1000	758	276
14	2.1388E-02	0	0	0	0	0	0	0	0	276	658	665	680	758	1000	251
15	5.3372E-02	0	0	0	0	0	0	0	0	66	155	157	166	276	251	1000

233U(n,n')

group	rel.s.d.					
1	1.0788E-01	1000	-741	-35	64	0
2	1.5000E-01	-741	1000	43	-95	0
3	1.5000E-01	-35	43	1000	980	0
4	4.0461E-01	64	-95	980	1000	139
5	1.0000E-00	0	0	0	139	1000

233U(n,2n)

group rel.s.d. ----1 1.8435E-01 1000

233U(n,f)

group	rel.s.d.															
1	5.0000E-02	1000	795	291	291	291	291	291	291	291	3	0	0	0	0	0
2	6.4367E-02	795	1000	718	718	718	718	718	718	718	8	0	0	0	0	0
3	7.2612E-02	291	718	1000	1000	1000	1000	1000	1000	1000	11	0	0	0	0	0
4	7.2612E-02	291	718	1000	1000	1000	1000	1000	1000	1000	11	0	0	0	0	0
5	7.2612E-02	291	718	1000	1000	1000	1000	1000	1000	1000	11	0	0	0	0	0
6	7.2612E-02	291	718	1000	1000	1000	1000	1000	1000	1000	11	0	0	0	0	0
7	7.2612E-02	291	718	1000	1000	1000	1000	1000	1000	1000	11	0	0	0	0	0
8	7.2612E-02	291	718	1000	1000	1000	1000	1000	1000	1000	11	0	0	0	0	0
9	7.2612E-02	291	718	1000	1000	1000	1000	1000	1000	1000	11	0	0	0	0	0
10	1.0351E-01	3	8	11	11	11	11	11	11	11	1000	17	- 3	1	1	1
11	4.4903E-02	0	0	0	0	0	0	0	0	0	17	1000	21	1	4	2
12	2.2291E-02	0	0	0	0	0	0	0	0	0	-3	21	1000	30	55	51
13	5.0252E-02	0	0	0	0	0	0	0	0	0	1	1	30	1000	148	146
14	1.4606E-02	0	0	0	0	0	0	0	0	0	1	4	55	148	1000	948
15	1.0329E-02	0	0	0	0	0	0	0	0	0	1	2	51	146	948	1000

233U(n,gamma)

rel.s.d.															
6.0000E-01	1000	409	458	498	498	-104	-297	-303	-317	-16	0	0	0	0	0
6.5000E-01	409	1000	988	953	767	-451	-726	-732	-750	-37	0	0	0	0	0
5.0000E-01	458	988	1000	988	839	-405	-712	-719	-740	-36	0	0	0	0	0
3.0000E-01	498	953	988	1000	872	-391	-714	-723	-745	-37	0	0	0	0	0
2.0000E-01	498	767	839	872	1000	104	-289	-301	-332	-18	0	0	0	0	0
2.0000E-01	-104	-451	-405	-391	104	1000	922	917	903	42	0	0	0	0	0
2.0000E-01	-297	-726	-712	-714	-289	922	1000	1000	999	47	0	0	0	0	0
2.0000E-01	-303	-732	-719	-723	-301	917	1000	1000	999	47	0	0	0	0	0
3.0000E-01	-317	-750	-740	-745	-332	903	999	999	1000	48	0	0	0	0	0
3.0000E-01	-16	-37	-36	-37	-18	42	47	47	48	1000	21	1	0	0	0
4.2773E-02	0	0	0	0	0	0	0	0	0	21	1000	5	0	0	0
3.0200E-02	0	0	0	0	0	0	0	0	0	1	5	1000	40	14	0
9.0560E-02	0	0	0	0	0	0	0	0	0	0	0	40	1000	114	-57
2.5871E-02	0	0	0	0	0	0	0	0	0	0	0	14	114	1000	-706
4.2279E-02	0	0	0	0	0	0	0	0	0	0	0	0	-57	-706	1000
	rel.s.d. 6.0000E-01 5.0000E-01 3.0000E-01 2.0000E-01 2.0000E-01 2.0000E-01 3.0000E-01 3.0000E-01 3.0000E-01 4.2773E-02 3.0200E-02 9.0560E-02 2.5871E-02 4.2279E-02	rel.s.d 6.0000E-01 1000 6.5000E-01 409 5.0000E-01 458 3.0000E-01 498 2.0000E-01 -104 2.0000E-01 -297 2.0000E-01 -303 3.0000E-01 -317 3.0000E-01 -16 4.2773E-02 0 3.0200E-02 0 9.0560E-02 0 4.2279E-02 0	rel.s.d												

234U(n,el)

group	rel.s.d.															
1	4.0000E-02	1000	-244	181	-20	-188	-75	0	0	0	0	0	0	0	0	0
2	4.0000E-02	-244	1000	255	-6	-51	-16	0	0	0	0	0	0	0	0	0
3	4.0000E-02	181	255	1000	25	-708	-289	0	0	0	0	0	0	0	0	0

4.0000E-02	-20	-6	25	1000	125	33	0	0	0	0	0	0	0	0	0
4.0000E-02	-188	-51	-708	125	1000	309	0	0	0	0	0	0	0	0	0
4.0000E-02	-75	-16	-289	33	309	1000	929	925	898	0	0	0	0	0	0
4.0000E-02	0	0	0	0	0	929	1000	996	967	0	0	0	0	0	0
4.0000E-02	0	0	0	0	0	925	996	1000	972	0	0	0	0	0	0
4.0000E-02	0	0	0	0	0	898	967	972	1000	3	2	1	30	30	30
6.9420E-02	0	0	0	0	0	0	0	0	3	1000	5	2	54	55	54
2.3161E-01	0	0	0	0	0	0	0	0	2	5	1000	-5	-25	-13	-11
1.7123E-01	0	0	0	0	0	0	0	0	1	2	- 5	1000	44	43	43
2.3248E-02	0	0	0	0	0	0	0	0	30	54	-25	44	1000	983	969
2.0174E-02	0	0	0	0	0	0	0	0	30	55	-13	43	983	1000	998
1.9753E-02	0	0	0	0	0	0	0	0	30	54	-11	43	969	998	1000
	4.0000E-02 4.0000E-02 4.0000E-02 4.0000E-02 4.0000E-02 4.0000E-02 6.9420E-02 2.3161E-01 1.7123E-01 2.3248E-02 2.0174E-02 1.9753E-02	4.0000E-02-204.0000E-02-1884.0000E-02-754.0000E-0204.0000E-0204.0000E-0206.9420E-0202.3161E-0101.7123E-0102.3248E-0202.0174E-0201.9753E-020	$\begin{array}{ccccc} 4.0000E-02 & -20 & -6 \\ 4.0000E-02 & -188 & -51 \\ 4.0000E-02 & -75 & -16 \\ 4.0000E-02 & 0 & 0 \\ 2.3161E-01 & 0 & 0 \\ 1.7123E-01 & 0 & 0 \\ 2.3248E-02 & 0 & 0 \\ 2.0174E-02 & 0 & 0 \\ 1.9753E-02 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											

234U(n,n')

group	rel.s.d.						
1	1.0000E-01	1000	-953	-971	-169	-164	-163
2	1.5000E-01	-953	1000	995	-82	-84	-84
3	2.5000E-01	-971	995	1000	9	1	-1
4	2.5000E-01	-169	-82	9	1000	995	992
5	5.0000E-02	-164	-84	1	995	1000	1000
6	5.0000E-02	-163	-84	-1	992	1000	1000

234U(n,2n)

group rel.s.d. ----1 3.4847E-01 1000

234U(n,f)

group	rel.s.d.															
1	1.5000E-01	1000	314	243	7	7	7	0	0	0	0	0	0	0	0	0
2	1.0000E-01	314	1000	978	944	944	937	0	0	0	0	0	0	0	0	0
3	1.3834E-01	243	978	1000	921	921	915	0	0	0	0	0	0	0	0	0
4	3.7974E-01	7	944	921	1000	1000	993	0	0	0	0	0	0	0	0	0
5	3.7974E-01	7	944	921	1000	1000	993	0	0	0	0	0	0	0	0	0
6	3.1605E-01	7	937	915	993	993	1000	122	122	119	2	0	0	0	0	0
7	2.2840E-01	0	0	0	0	0	122	1000	999	976	18	0	0	0	0	0
8	1.9411E-01	0	0	0	0	0	122	999	1000	981	18	0	0	0	0	0
9	1.3692E-01	0	0	0	0	0	119	976	981	1000	17	0	0	0	0	0
10	1.4972E-01	0	0	0	0	0	2	18	18	17	1000	15	0	2	1	1
11	5.1074E-02	0	0	0	0	0	0	0	0	0	15	1000	0	1	1	1

12	1.7489E-01	0	0	0	0	0	0	0	0	0	0	0	1000	51	18	17
13	2.1849E-01	0	0	0	0	0	0	0	0	0	2	1	51	1000	998	998
14	2.4671E-01	0	0	0	0	0	0	0	0	0	1	1	18	998	1000	1000
15	2.4806E-01	0	0	0	0	0	0	0	0	0	1	1	17	998	1000	1000

234U(n,gamma)

group	rel.s.d.															
1	5.6740E-01	1000	710	404	149	4	20	0	0	0	0	0	0	0	0	0
2	5.0000E-01	710	1000	784	304	-42	29	0	0	0	0	0	0	0	0	0
3	4.0000E-01	404	784	1000	584	76	223	0	0	0	0	0	0	0	0	0
4	1.1992E-01	149	304	584	1000	837	768	0	0	0	0	0	0	0	0	0
5	1.3981E-01	4	-42	76	837	1000	764	0	0	0	0	0	0	0	0	0
6	1.2921E-01	20	29	223	768	764	1000	559	559	558	385	0	0	0	0	0
7	3.0000E-01	0	0	0	0	0	559	1000	1000	998	688	0	0	0	0	0
8	1.9156E-01	0	0	0	0	0	559	1000	1000	999	689	0	0	0	0	0
9	2.0000E-01	0	0	0	0	0	558	998	999	1000	696	0	0	0	0	0
10	1.8562E-02	0	0	0	0	0	385	688	689	696	1000	7	0	0	0	0
11	2.4153E-02	0	0	0	0	0	0	0	0	0	7	1000	2	6	14	12
12	1.3763E-02	0	0	0	0	0	0	0	0	0	0	2	1000	949	679	538
13	9.3406E-02	0	0	0	0	0	0	0	0	0	0	6	949	1000	768	631
14	3.0754E-02	0	0	0	0	0	0	0	0	0	0	14	679	768	1000	981
15	2.9278E-02	0	0	0	0	0	0	0	0	0	0	12	538	631	981	1000

235U(n,el), non-diagonal terms are those of 233U

group	rel.s.d.															
1	1.0000E-01	1000	979	391	15	193	-16	-131	-137	0	0	0	0	0	0	0
2	3.0000E-02	979	1000	543	-16	205	119	44	37	0	0	0	0	0	0	0
3	2.0000E-02	391	543	1000	-20	144	666	809	807	0	0	0	0	0	0	0
4	2.0000E-02	15	-16	-20	1000	102	-116	-159	-159	0	0	0	0	0	0	0
5	2.0000E-02	193	205	144	102	1000	148	88	85	0	0	0	0	0	0	0
6	2.0000E-02	-16	119	666	-116	148	1000	785	784	0	0	0	0	0	0	0
7	2.0000E-02	-131	44	809	-159	88	785	1000	1000	0	0	0	0	0	0	0
8	2.0000E-02	-137	37	807	-159	85	784	1000	1000	0	0	0	0	0	0	0
9	2.0000E-02	0	0	0	0	0	0	0	0	1000	317	332	340	356	276	66
10	3.2229E-03	0	0	0	0	0	0	0	0	317	1000	997	996	961	658	155
11	9.4190E-03	0	0	0	0	0	0	0	0	332	997	1000	998	964	665	157
12	1.8648E-02	0	0	0	0	0	0	0	0	340	996	998	1000	972	680	166
13	3.1444E-02	0	0	0	0	0	0	0	0	356	961	964	972	1000	758	276
14	3.4417E-02	0	0	0	0	0	0	0	0	276	658	665	680	758	1000	251
15	6.6491E-02	0	0	0	0	0	0	0	0	66	155	157	166	276	251	1000

235U(n,n')

group	rel.s.d.					
1	1.5000E-01	1000	-741	-35	64	0
2	1.5000E-01	-741	1000	43	-95	0
3	1.0000E-01	-35	43	1000	980	0
4	3.0000E-01	64	-95	980	1000	139
5	3.0000E-00	0	0	0	139	1000
6	5.0000E-00					
7	5.0000E-00					
8	5.0000E-00					

235U(n,2n)

group rel.s.d. ----1 1.0000E-01 1000

235U(n,f)

235U(n,gamma)

group	rel.s.d.															
1	5.0000E-01	1000	409	458	498	498	-104	-297	-303	-317	-16	0	0	0	0	0
2	2.0000E-01	409	1000	988	953	767	-451	-726	-732	-750	-37	0	0	0	0	0
3	5.0000E-01	458	988	1000	988	839	-405	-712	-719	-740	-36	0	0	0	0	0
4	5.0000E-01	498	953	988	1000	872	-391	-714	-723	-745	-37	0	0	0	0	0
5	2.0000E-01	498	767	839	872	1000	104	-289	-301	-332	-18	0	0	0	0	0
6	2.0000E-01	-104	-451	-405	-391	104	1000	922	917	903	42	0	0	0	0	0
7	2.0000E-01	-297	-726	-712	-714	-289	922	1000	1000	999	47	0	0	0	0	0
8	2.0000E-01	-303	-732	-719	-723	-301	917	1000	1000	999	47	0	0	0	0	0
9	2.0000E-01	-317	-750	-740	-745	-332	903	999	999	1000	48	0	0	0	0	0
10	2.0000E-01	-16	-37	-36	-37	-18	42	47	47	48	1000	21	1	0	0	0
11	0.8767E-02	0	0	0	0	0	0	0	0	0	21	1000	5	0	0	0
12	2.1341E-02	0	0	0	0	0	0	0	0	0	1	5	1000	40	14	0
13	1.7530E-01	0	0	0	0	0	0	0	0	0	0	0	40	1000	114	-57
14	2.8745E-02	0	0	0	0	0	0	0	0	0	0	0	14	114	1000	-706
15	2.1209E-02	0	0	0	0	0	0	0	0	0	0	0	0	-57	-706	1000

236U(n,el)

group rel.s.d. -----

1	3.0000E-02	1000	998	1000	-994	-1000	-985	0	0	0	0	0	0	0	0	0
2	3.0000E-02	998	1000	998	-999	-999	-985	0	0	0	0	0	0	0	0	0
3	3.0000E-02	1000	998	1000	-994	-1000	-985	0	0	0	0	0	0	0	0	0
4	3.0000E-02	-994	-999	-994	1000	996	982	0	0	0	0	0	0	0	0	0
5	3.0000E-02	-1000	-999-	-1000	996	1000	986	0	0	0	0	0	0	0	0	0
6	3.0000E-02	-985	-985	-985	982	986	1000	168	168	75	0	0	0	0	0	0
7	3.0000E-02	0	0	0	0	0	168	1000	1000	449	0	0	0	0	0	0
8	3.0000E-02	0	0	0	0	0	168	1000	1000	449	0	0	0	0	0	0
9	3.0000E-02	0	0	0	0	0	75	449	449	1000	274	160	146	128	120	118
10	2.2647E-02	0	0	0	0	0	0	0	0	274	1000	170	163	149	140	139
11	5.9574E-02	0	0	0	0	0	0	0	0	160	170	1000	173	191	188	187
12	2.3485E-02	0	0	0	0	0	0	0	0	146	163	173	1000	840	833	833
13	4.7682E-02	0	0	0	0	0	0	0	0	128	149	191	840	1000	1000	999
14	4.9096E-02	0	0	0	0	0	0	0	0	120	140	188	833	1000	1000	1000
15	4.8916E-02	0	0	0	0	0	0	0	0	118	139	187	833	999	1000	1000

236U(n,n')

group	rel.s.d.						
1	1.0000E-01	1000	216	-330	-379	-396	-399
2	1.5000E-01	216	1000	136	-136	-315	-496
3	2.5000E-01	-330	136	1000	963	897	793
4	2.5000E-01	-379	-136	963	1000	983	928
5	2.5000E-01	-396	-315	897	983	1000	980
6	1.0000E-01	-399	-496	793	928	980	1000

236U(n,2n)

group rel.s.d. ----1 1.8490E-01 1000

236U(n,f)

group	rel.s.d.															
1	1.5000E-01	1000	-189	-217	-216	-216	-211	0	0	0	0	0	0	0	0	0
2	1.0000E-01	-189	1000	995	990	990	969	0	0	0	0	0	0	0	0	0
3	2.8876E-01	-217	995	1000	999	999	978	0	0	0	0	0	0	0	0	0
4	3.1965E-01	-216	990	999	1000	1000	979	0	0	0	0	0	0	0	0	0
5	3.1965E-01	-216	990	999	1000	1000	979	0	0	0	0	0	0	0	0	0
6	1.6471E-01	-211	969	978	979	979	1000	206	206	66	0	0	0	0	0	0
7	7.6244E-02	0	0	0	0	0	206	1000	1000	319	0	0	0	0	0	0
8	6.6765E-02	0	0	0	0	0	206	1000	1000	320	0	0	0	0	0	0

9	3.5008E-02	0	0	0	0	0	66	319	320	1000	11	243	130	0	0	0
10	3.2973E-02	0	0	0	0	0	0	0	0	11	1000	899	767	0	0	0
11	1.3702E-02	0	0	0	0	0	0	0	0	243	899	1000	1	9	9	9
12	2.5696E-02	0	0	0	0	0	0	0	0	130	767	1	1000	132	107	106
13	1.5788E-01	0	0	0	0	0	0	0	0	0	0	9	132	1000	999	999
14	1.9584E-01	0	0	0	0	0	0	0	0	0	0	9	107	999	1000	1000
15	1.9863E-01	0	0	0	0	0	0	0	0	0	0	9	106	999	1000	1000

236U(n,gamma)

group	rel.s.d.															
1	3.2677E-01	1000	998	999	523	337	-217	0	0	0	0	0	0	0	0	0
2	3.5693E-01	998	1000	996	479	289	-264	0	0	0	0	0	0	0	0	0
3	1.9559E-01	999	996	1000	560	378	-175	0	0	0	0	0	0	0	0	0
4	7.0000E-02	523	479	560	1000	979	686	0	0	0	0	0	0	0	0	0
5	7.0000E-02	337	289	378	979	1000	810	0	0	0	0	0	0	0	0	0
6	3.9424E-02	-217	-264	-175	686	810	1000	271	271	269	0	0	0	0	0	0
7	3.4607E-02	0	0	0	0	0	271	1000	1000	994	0	0	0	0	0	0
8	5.2580E-02	0	0	0	0	0	271	1000	1000	994	0	0	0	0	0	0
9	2.9760E-03	0	0	0	0	0	269	994	994	1000	4	0	0	0	0	0
10	6.3700E-03	0	0	0	0	0	0	0	0	4	1000	20	0	1	2	2
11	8.2960E-03	0	0	0	0	0	0	0	0	0	20	1000	1	18	42	42
12	4.0519E-02	0	0	0	0	0	0	0	0	0	0	1	1000	327	271	254
13	2.7286E-02	0	0	0	0	0	0	0	0	0	1	18	327	1000	759	722
14	1.9606E-02	0	0	0	0	0	0	0	0	0	2	42	271	759	1000	998
15	1.8877E-02	0	0	0	0	0	0	0	0	0	2	42	254	722	998	1000

238U(n,el)

group	rel.s.d.															
1	2.0000E-02	1000	468	80	116	51	- 9	-2	0	0	0	0	0	0	0	0
2	2.0000E-02	468	1000	686	6	37	7	3	0	0	0	0	0	0	0	0
3	2.0000E-02	80	686	1000	156	44	3	1	0	0	0	0	0	0	0	0
4	2.0000E-02	116	6	156	1000	420	38	9	0	0	0	0	0	0	0	0
5	2.0000E-02	51	37	44	420	1000	170	12	0	0	0	0	0	0	0	0
6	2.0000E-02	- 9	7	3	38	170	1000	762	585	0	0	0	0	0	0	0
7	2.0000E-02	-2	3	1	9	12	762	1000	953	0	0	0	0	0	0	0
8	2.0000E-02	0	0	0	0	0	585	953	1000	0	0	0	0	0	0	0
9	2.0000E-02	0	0	0	0	0	0	0	0	1000	0	0	0	0	0	0
10	2.0000E-02	0	0	0	0	0	0	0	0	0	1000	10	-2	-3	-4	-4
11	1.5274E-02	0	0	0	0	0	0	0	0	0	10	1000	-633	444	423	420
12	3.0734E-01	0	0	0	0	0	0	0	0	0	-2	-633	1000	-963	-962	-961
13	8.5536E-03	0	0	0	0	0	0	0	0	0	-3	444	-963	1000	999	999
14	7.2937E-03	0	0	0	0	0	0	0	0	0	-4	423	-962	999	1000	1000
15	7.1430E-03	0	0	0	0	0	0	0	0	0	-4	420	-961	999	1000	1000

238U(n,n')

rel.s.d.							
1.0006E-01	1000	525	70	40	-90	-149	-11
1.4271E-01	525	1000	691	-21	18	23	18
5.7474E-02	70	691	1000	123	-43	-40	5
1.2202E-02	40	-21	123	1000	47	-106	73
1.9820E-02	-90	18	-43	47	1000	908	108
2.9219E-02	-149	23	-40	-106	908	1000	247
6.8172E-01	-11	18	5	73	108	247	1000
	rel.s.d. 1.0006E-01 1.4271E-01 5.7474E-02 1.2202E-02 1.9820E-02 2.9219E-02 6.8172E-01	rel.s.d 1.0006E-01 1000 1.4271E-01 525 5.7474E-02 70 1.2202E-02 40 1.9820E-02 -90 2.9219E-02 -149 6.8172E-01 -11	rel.s.d 1.0006E-01 1000 525 1.4271E-01 525 1000 5.7474E-02 70 691 1.2202E-02 40 -21 1.9820E-02 -90 18 2.9219E-02 -149 23 6.8172E-01 -11 18	rel.s.d. 1.0006E-01 1000 525 70 1.4271E-01 525 1000 691 5.7474E-02 70 691 1000 1.2202E-02 40 -21 123 1.9820E-02 -90 18 -43 2.9219E-02 -149 23 -40 6.8172E-01 -11 18 5	rel.s.d. 1.0006E-01 1000 525 70 40 1.4271E-01 525 1000 691 -21 5.7474E-02 70 691 1000 123 1.2202E-02 40 -21 123 1000 1.9820E-02 -90 18 -43 47 2.9219E-02 -149 23 -40 -106 6.8172E-01 -11 18 5 73	rel.s.d. 1.0006E-01 1000 525 70 40 -90 1.4271E-01 525 1000 691 -21 18 5.7474E-02 70 691 1000 123 -43 1.2202E-02 40 -21 123 1000 47 1.9820E-02 -90 18 -43 47 1000 2.9219E-02 -149 23 -40 -106 908 6.8172E-01 -11 18 5 73 108	rel.s.d. 1.0006E-01 1000 525 70 40 -90 -149 1.4271E-01 525 1000 691 -21 18 23 5.7474E-02 70 691 1000 123 -43 -40 1.2202E-02 40 -21 123 1000 47 -106 1.9820E-02 -90 18 -43 47 1000 908 2.9219E-02 -149 23 -40 -106 908 1000 6.8172E-01 -11 18 5 73 108 247

238U(n,2n)

group rel.s.d. ----1 3.0000E-01 1000

238U(n,f)

group	rel.s.d.															
1	1.0000E-02	1000	516	365	271	80	9	0	0	0	0	0	0	0	0	0
2	1.0000E-02	516	1000	555	416	123	14	0	0	0	0	0	0	0	0	0
3	1.0000E-02	365	555	1000	456	139	16	0	0	0	0	0	0	0	0	0
4	1.0000E-02	271	416	456	1000	229	23	0	0	0	0	0	0	0	0	0
5	3.1619E-02	80	123	139	229	1000	-55	0	0	0	0	0	0	0	0	0
6	1.0366E-01	9	14	16	23	-55	1000	0	0	0	0	0	0	0	0	0
7	1.0000E-01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	1.7604E-05	0	0	0	0	0	0	0	1000	0	0	0	0	0	0	0
9	1.8774E-02	0	0	0	0	0	0	0	0	1000	0	0	0	0	0	0
10	3.8972E-04	0	0	0	0	0	0	0	0	0	1000	-3	-3	82	107	110
11	6.6799E-03	0	0	0	0	0	0	0	0	0	-3	1000	-400	-270	-210	-194
12	2.2304E-01	0	0	0	0	0	0	0	0	0	-3	-400	1000	794	634	588
13	1.1961E-02	0	0	0	0	0	0	0	0	0	82	-270	794	1000	963	945
14	9.2888E-03	0	0	0	0	0	0	0	0	0	107	-210	634	963	1000	998
15	8.9256E-03	0	0	0	0	0	0	0	0	0	110	-194	588	945	998	1000

group	rel.s.d.															
1	3.2677E-01	1000	28	0	0	0	0	0	0	0	0	0	0	0	0	0
2	3.5693E-01	28	1000	394	0	0	0	0	0	0	0	0	0	0	0	0
3	1.9559E-01	0	394	1000	4	0	0	0	0	0	0	0	0	0	0	0
4	7.0000E-02	0	0	4	1000	15	1	0	0	0	0	0	0	0	0	0
5	7.0000E-02	0	0	0	15	1000	21	0	0	0	0	0	0	0	0	0
6	3.9424E-02	0	0	0	1	21	1000	568	-75	0	0	0	0	0	0	0
7	3.4607E-02	0	0	0	0	0	568	1000	513	0	0	0	0	0	0	0
8	5.2580E-02	0	0	0	0	0	-75	513	1000	0	0	0	0	0	0	0
9	2.9764E-03	0	0	0	0	0	0	0	0	1000	0	0	0	0	0	0
10	6.3700E-03	0	0	0	0	0	0	0	0	0	1000	-1	1	-1	-1	-1
11	8.2962E-03	0	0	0	0	0	0	0	0	0	-1	1000	31	121	35	25
12	4.0519E-02	0	0	0	0	0	0	0	0	0	1	31	1000	356	312	305
13	2.7286E-02	0	0	0	0	0	0	0	0	0	-1	121	356	1000	990	988
14	1.9606E-02	0	0	0	0	0	0	0	0	0	-1	35	312	990	1000	1000
15	1.8877E-02	0	0	0	0	0	0	0	0	0	-1	25	305	988	1000	1000

237Np(n,el)

group	rel.s.d.															
1	3.0000E-02	1000	970	197	173	702	329	182	93	237	0	0	0	0	0	0
2	3.0000E-02	970	1000	270	128	671	355	217	130	255	0	0	0	0	0	0
3	3.0000E-02	197	270	1000	-150	435	815	794	774	302	0	0	0	0	0	0
4	3.0000E-02	173	128	-150	1000	394	-212	-290	-321	106	0	0	0	0	0	0
5	3.0000E-02	702	671	435	394	1000	694	563	487	526	0	0	0	0	0	0
6	3.0000E-02	329	355	815	-212	694	1000	978	952	630	0	0	0	0	0	0
7	1.0000E-01	182	217	794	-290	563	978	1000	995	693	0	0	0	0	0	0
8	1.0000E-01	93	130	774	-321	487	952	995	1000	701	0	0	0	0	0	0
9	1.0000E-01	237	255	302	106	526	630	693	701	1000	31	33	33	33	33	33
10	1.0000E-01	0	0	0	0	0	0	0	0	31	1000	926	926	923	917	912
11	2.4133E-02	0	0	0	0	0	0	0	0	33	926	1000	1000	996	990	984
12	2.3148E-02	0	0	0	0	0	0	0	0	33	926	1000	1000	996	991	985
13	2.2347E-02	0	0	0	0	0	0	0	0	33	923	996	996	1000	994	990
14	2.1817E-02	0	0	0	0	0	0	0	0	33	917	990	991	994	1000	998
15	2.0343E-02	0	0	0	0	0	0	0	0	33	912	984	985	990	998	1000

237Np(n,n')

group	rel.s.d.							
1	1.5000E-01	1000	-772	-398	-267	-124	-143	-359
2	3.0000E-01	-772	1000	547	313	44	8	138
3	1.5000E-01	-398	547	1000	950	809	744	576
4	3.0000E-01	-267	313	950	1000	947	907	737

5	3.0000E-01	-124	44	809	947	1000	990	832
6	5.0000E-01	-143	8	744	907	990	1000	895
7	5.0000E-01	-359	138	576	737	832	895	1000

237Np(n,2n)

group rel.s.d. ----1 2.0000E-01 1000

237Np(n,f)

group	rel.s.d.															
1	1.0000E-01	1000	212	-238	-326	-349	-349	-349	-349	-349	-307	0	0	0	0	0
2	1.0000E-01	212	1000	853	764	733	733	733	733	733	645	0	0	0	0	0
3	1.0000E-01	-238	853	1000	986	976	976	976	976	976	859	0	0	0	0	0
4	5.8154E-02	-326	764	986	1000	999	999	999	999	999	878	0	0	0	0	0
5	5.7859E-02	-349	733	976	999	1000	1000	1000	1000	1000	879	0	0	0	0	0
6	5.7859E-02	-349	733	976	999	1000	1000	1000	1000	1000	879	0	0	0	0	0
7	5.7859E-02	-349	733	976	999	1000	1000	1000	1000	1000	879	0	0	0	0	0
8	5.7859E-02	-349	733	976	999	1000	1000	1000	1000	1000	879	0	0	0	0	0
9	5.7859E-02	-349	733	976	999	1000	1000	1000	1000	1000	879	0	0	0	0	0
10	5.7735E-02	-307	645	859	878	879	879	879	879	879	1000	1	1	0	0	0
11	7.5377E-02	0	0	0	0	0	0	0	0	0	1	1000	110	5	5	34
12	4.6415E-02	0	0	0	0	0	0	0	0	0	1	110	1000	25	5	36
13	5.5804E-02	0	0	0	0	0	0	0	0	0	0	5	25	1000	52	65
14	1.4743E-01	0	0	0	0	0	0	0	0	0	0	5	5	52	1000	277
15	4.5504E-02	0	0	0	0	0	0	0	0	0	0	34	36	65	277	1000

237Np(n,gamma)

group		rel.s.d.															
1	4.	1465E-01	1000	444	425	368	331	-178	-267	-167	61	156	0	0	0	0	0
2	3.	6484E-01	444	1000	983	869	732	-421	-606	-444	2	211	0	0	0	0	0
3	3.	0000E-01	425	983	1000	946	840	-495	-719	-543	-33	211	0	0	0	0	0
4	3.	0000E-01	368	869	946	1000	962	-588	-859	-669	-81	207	0	0	0	0	0
5	5.	0000E-01	331	732	840	962	1000	-551	-874	-648	-13	283	0	0	0	0	0
6	5.	0000E-02	-178	-421	-495	-588	-551	1000	874	853	487	220	0	0	0	0	0
7	6.	6594E-02	-267	-606	-719	-859	-874	874	1000	899	367	49	0	0	0	0	0
8	5.	2450E-02	-167	-444	-543	-669	-648	853	899	1000	737	476	0	0	0	0	0
9	5.	2484E-02	61	2	-33	-81	-13	487	367	737	1000	935	0	0	0	0	0
10	5.	5373E-02	156	211	211	207	283	220	49	476	935	1000	1	0	0	0	0
11	1.	6955E-02	0	0	0	0	0	0	0	0	0	1	1000	47	3	3	26
12	5.	5020E-03	0	0	0	0	0	0	0	0	0	0	47	1000	-36	32	284

13	6.9900E-03	0	0	0	0	0	0	0	0	0	0	3	-36	1000	117	102
14	2.4108E-02	0	0	0	0	0	0	0	0	0	0	3	32	117	1000	279
15	1.5534E-02	0	0	0	0	0	0	0	0	0	0	26	284	102	279	1000

238Pu(n,el)

group	rel.s.d.															
1	4.0000E-02	1000	656	971	-266	-561	-240	0	0	0	0	0	0	0	0	0
2	3.0000E-02	656	1000	545	-600	-679	-290	0	0	0	0	0	0	0	0	0
3	2.0000E-02	971	545	1000	-189	-508	-217	0	0	0	0	0	0	0	0	0
4	2.0000E-02	-266	-600	-189	1000	940	402	0	0	0	0	0	0	0	0	0
5	2.0000E-02	-561	-679	-508	940	1000	427	0	0	0	0	0	0	0	0	0
6	2.0000E-02	-240	-290	-217	402	427	1000	897	881	867	760	0	0	0	0	0
7	2.0000E-01	0	0	0	0	0	897	1000	985	971	848	0	0	0	0	0
8	2.0000E-01	0	0	0	0	0	881	985	1000	998	848	0	0	0	0	0
9	2.0000E-01	0	0	0	0	0	867	971	998	1000	842	0	0	0	0	0
10	2.0000E-01	0	0	0	0	0	760	848	848	842	1000	112	9	19	19	19
11	2.0005E-01	0	0	0	0	0	0	0	0	0	112	1000	-3	2	3	2
12	1.0108E-01	0	0	0	0	0	0	0	0	0	9	-3	1000	472	474	472
13	5.7862E-02	0	0	0	0	0	0	0	0	0	19	2	472	1000	999	995
14	5.1029E-02	0	0	0	0	0	0	0	0	0	19	3	474	999	1000	999
15	4.6944E-02	0	0	0	0	0	0	0	0	0	19	2	472	995	999	1000

238Pu(n,n')

group	rel.s.d.						
1	1.0000E-00	1000	-636	-783	-839	-135	0
2	1.0000E-00	-636	1000	950	855	131	0
3	1.0000E-01	-783	950	1000	974	152	0
4	1.0000E-00	-839	855	974	1000	159	0
5	1.0000E-00	-135	131	152	159	1000	987
6	5.0000E-01	0	0	0	0	987	1000

238Pu(n,2n)

group rel.s.d. ----1 1.0000E-00 1000 238Pu(n,f)

group	rel.s.d.															
1	2.0000E-01	1000	123	-7	-11	-11	-5	0	0	0	0	0	0	0	0	0
2	2.0000E-01	123	1000	930	605	605	258	0	0	0	0	0	0	0	0	0
3	1.0000E-01	-7	930	1000	548	548	233	0	0	0	0	0	0	0	0	0
4	5.0000E-01	-11	605	548	1000	1000	426	0	0	0	0	0	0	0	0	0
5	5.0000E-01	-11	605	548	1000	1000	426	0	0	0	0	0	0	0	0	0
6	5.0000E-01	- 5	258	233	426	426	1000	895	894	876	777	0	0	0	0	0
7	5.0000E-01	0	0	0	0	0	895	1000	999	980	870	0	0	0	0	0
8	5.0000E-01	0	0	0	0	0	894	999	1000	986	889	0	0	0	0	0
9	5.0000E-01	0	0	0	0	0	876	980	986	1000	949	0	0	0	0	0
10	5.0000E-01	0	0	0	0	0	777	870	889	949	1000	10	0	0	0	0
11	8.0000E-01	0	0	0	0	0	0	0	0	0	10	1000	1	36	9	4
12	1.8975E-01	0	0	0	0	0	0	0	0	0	0	1	1000	27	6	3
13	4.5674E-02	0	0	0	0	0	0	0	0	0	0	36	27	1000	545	529
14	4.6265E-02	0	0	0	0	0	0	0	0	0	0	9	6	545	1000	998
15	4.8675E-02	0	0	0	0	0	0	0	0	0	0	4	3	529	998	1000

238Pu(n,gamma)

group	rel.s.d.															
1	1.0000E-00	1000	630	624	278	-161	-19	0	0	0	0	0	0	0	0	0
2	1.0000E-00	630	1000	996	409	-300	-35	0	0	0	0	0	0	0	0	0
3	1.0000E-00	624	996	1000	478	-228	-27	0	0	0	0	0	0	0	0	0
4	5.0000E-01	278	409	478	1000	738	87	0	0	0	0	0	0	0	0	0
5	4.0000E-01	-161	-300	-228	738	1000	118	0	0	0	0	0	0	0	0	0
6	5.0000E-02	-19	-35	-27	87	118	1000	988	987	982	866	0	0	0	0	0
7	5.0000E-02	0	0	0	0	0	988	1000	1000	994	877	0	0	0	0	0
8	5.0000E-01	0	0	0	0	0	987	1000	1000	996	882	0	0	0	0	0
9	1.8668E-01	0	0	0	0	0	982	994	996	1000	911	0	0	0	0	0
10	6.7513E-01	0	0	0	0	0	866	877	882	911	1000	76	0	0	0	0
11	4.5526E-02	0	0	0	0	0	0	0	0	0	76	1000	1	2	6	3
12	3.6984E-02	0	0	0	0	0	0	0	0	0	0	1	1000	5	15	6
13	3.2510E-01	0	0	0	0	0	0	0	0	0	0	2	5	1000	52	42
14	3.9233E-01	0	0	0	0	0	0	0	0	0	0	6	15	52	1000	999
15	4.0774E-01	0	0	0	0	0	0	0	0	0	0	3	6	42	999	1000

239Pu(n,el)

group	rel.s.d.															
1	1.0000E-01	1000	805	-338	-126	383	357	329	155	7	0	0	0	0	0	0
2	3.0000E-02	805	1000	-441	-116	244	251	259	134	6	0	0	0	0	0	0

3	2.0000E-02	-338	-441	1000	458	-262	-223	-177	-76	-3	0	0	0	0	0	0
4	2.0000E-02	-126	-116	458	1000	197	42	-56	-69	-3	0	0	0	0	0	0
5	2.0000E-02	383	244	-262	197	1000	879	676	251	10	0	0	0	0	0	0
6	2.0000E-02	357	251	-223	42	879	1000	905	385	16	0	0	0	0	0	0
7	2.0000E-02	329	259	-177	-56	676	905	1000	558	80	0	0	0	0	0	0
8	2.0000E-02	155	134	-76	-69	251	385	558	1000	837	0	0	0	0	0	0
9	2.0000E-02	7	6	-3	-3	10	16	80	837	1000	0	0	0	0	0	0
10	3.2285E-03	0	0	0	0	0	0	0	0	0	1000	11	10	20	21	21
11	9.4185E-03	0	0	0	0	0	0	0	0	0	11	1000	17	50	55	64
12	1.8648E-02	0	0	0	0	0	0	0	0	0	10	17	1000	554	567	535
13	3.1444E-02	0	0	0	0	0	0	0	0	0	20	50	554	1000	958	981
14	3.4417E-02	0	0	0	0	0	0	0	0	0	21	55	567	958	1000	936
15	6.6491E-02	0	0	0	0	0	0	0	0	0	21	64	535	981	936	1000

239Pu(n,n')

group	rel.s.d.									
1	1.5000E-01	1000	811	-343	-138	408	390	343	276	268
2	1.5000E-01	811	1000	-445	-125	256	271	269	238	234
3	1.0000E-01	-343	-445	1000	475	-284	-250	-189	-135	-129
4	3.0000E-01	-138	-125	475	1000	168	31	-66	-130	-139
5	3.0000E-01	408	256	-284	168	1000	904	703	471	440
6	5.0000E-01	390	271	-250	31	904	1000	923	737	709
7	5.0000E-01	343	269	-189	-66	703	923	1000	934	917
8	5.0000E-01	276	238	-135	-130	471	737	934	1000	999
9	5.0000E-01	268	234	-129	-139	440	709	917	999	1000

239Pu(n,2n)

group	rel.s.d.		
1	2.2319E-01	1000	299
2	7.2530E+00	299	1000

239Pu(n,f)

group	rel.s.d.															
1	5.5216E-03	1000	791	684	677	585	489	233	0	0	0	0	0	0	0	0
2	5.0775E-03	791	1000	807	800	695	580	276	0	0	0	0	0	0	0	0
3	5.6025E-03	684	807	1000	831	713	592	281	0	0	0	0	0	0	0	0
4	5.4610E-03	677	800	831	1000	801	664	317	0	0	0	0	0	0	0	0
5	6.1655E-03	585	695	713	801	1000	692	325	0	0	0	0	0	0	0	0
6	7.1258E-03	489	580	592	664	692	1000	331	0	0	0	0	0	0	0	0

7	1.2416E-02	233	276	281	317	325	331	1000	816	740	0	0	0	0	0	0
8	6.7595E-02	0	0	0	0	0	0	816	1000	949	0	0	0	0	0	0
9	5.2934E-02	0	0	0	0	0	0	740	949	1000	0	0	0	0	0	0
10	3.9323E-03	0	0	0	0	0	0	0	0	0	1000	-11	2	-15	16	11
11	9.9794E-03	0	0	0	0	0	0	0	0	0	-11	1000	2	2	0	1
12	2.6346E-02	0	0	0	0	0	0	0	0	0	2	2	1000	193	-202	-44
13	2.0256E-01	0	0	0	0	0	0	0	0	0	-15	2	193	1000	-942	-35
14	4.7989E-02	0	0	0	0	0	0	0	0	0	16	0	-202	-942	1000	167
15	1.4841E-02	0	0	0	0	0	0	0	0	0	11	1	-44	-35	167	1000

239Pu(n,gamma)

group	rel.s.d.															
1	6.0000E-01	1000	408	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.0000E-01	408	1000	820	659	162	35	23	0	0	0	0	0	0	0	0
3	5.0000E-01	0	820	1000	804	197	43	28	0	0	0	0	0	0	0	0
4	2.0000E-01	0	659	804	1000	354	77	50	0	0	0	0	0	0	0	0
5	1.5000E-01	0	162	197	354	1000	221	91	0	0	0	0	0	0	0	0
6	2.0000E-01	0	35	43	77	221	1000	820	0	0	0	0	0	0	0	0
7	2.0000E-01	0	23	28	50	91	820	1000	121	116	0	0	0	0	0	0
8	2.0000E-01	0	0	0	0	0	0	121	1000	986	0	0	0	0	0	0
9	5.5706E-02	0	0	0	0	0	0	116	986	1000	0	0	0	0	0	0
10	4.4079E-03	0	0	0	0	0	0	0	0	0	1000	0	1	1	-1	1
11	8.7665E-03	0	0	0	0	0	0	0	0	0	0	1000	-4	13	- 8	5
12	2.1341E-02	0	0	0	0	0	0	0	0	0	1	-4	1000	65	-87	-13
13	1.7530E-01	0	0	0	0	0	0	0	0	0	1	13	65	1000	-965	-315
14	2.8745E-02	0	0	0	0	0	0	0	0	0	-1	- 8	-87	-965	1000	525
15	2.1209E-02	0	0	0	0	0	0	0	0	0	1	5	-13	-315	525	1000

240Pu(n,el)

group	rel.s.d.															
1	4.0000E-02	1000	917	442	427	816	638	243	-23	-86	0	0	0	0	0	0
2	4.0000E-02	917	1000	709	634	941	850	524	276	138	0	0	0	0	0	0
3	4.0000E-02	442	709	1000	856	798	950	949	861	610	0	0	0	0	0	0
4	4.0000E-02	427	634	856	1000	844	906	901	787	548	0	0	0	0	0	0
5	4.0000E-02	816	941	798	844	1000	942	706	478	292	0	0	0	0	0	0
6	4.0000E-02	638	850	950	906	942	1000	892	732	496	0	0	0	0	0	0
7	4.0000E-02	243	524	949	901	706	892	1000	959	693	0	0	0	0	0	0
8	4.0000E-02	-23	276	861	787	478	732	959	1000	744	0	0	0	0	0	0
9	4.0000E-02	-86	138	610	548	292	496	693	744	1000	-13	0	7	-2	11	15
10	1.2591E-02	0	0	0	0	0	0	0	0	-13	1000	38	25	14	8	7
11	1.6361E-02	0	0	0	0	0	0	0	0	0	38	1000	49	16	24	26
12	3.2532E-02	0	0	0	0	0	0	0	0	7	25	49	1000	164	168	169
13	4.8438E-03	0	0	0	0	0	0	0	0	-2	14	16	164	1000	988	986
14	4.5762E-02	0	0	0	0	0	0	0	0	11	8	24	168	988	1000	1000

15	5.6449E-02	0	0	0	0	0	0	0	0	15	7	26	169	986	1000	1000
----	------------	---	---	---	---	---	---	---	---	----	---	----	-----	-----	------	------

240Pu(n,n')

group	rel.s.d.							
1	1.0000E-01	1000	608	559	-740	-539	-661	-597
2	1.4270E-01	608	1000	978	-846	-870	-972	-858
3	5.7500E-02	559	978	1000	-757	-795	-927	-825
4	3.0000E-01	-740	-846	-757	1000	908	930	809
5	3.0000E-01	-539	-870	-795	908	1000	949	807
6	4.0000E-01	-661	-972	-927	930	949	1000	873
7	6.8170E-01	-597	-858	-825	809	807	873	1000

240Pu(n,2n)

group rel.s.d. ----1 1.0000E-01 1000

240Pu(n,f)

group	rel.s.d.															
1	9.5597E-02	1000	741	-204	-344	-337	-577	-594	-594	-205	0	0	0	0	0	0
2	4.8001E-02	741	1000	-374	-594	-582	-941	-962	-962	-331	0	0	0	0	0	0
3	5.6532E-02	-204	-374	1000	965	969	581	454	454	156	0	0	0	0	0	0
4	5.8233E-02	-344	-594	965	1000	1000	774	672	672	231	0	0	0	0	0	0
5	3.9098E-02	-337	-582	969	1000	1000	764	661	661	227	0	0	0	0	0	0
6	5.7007E-02	-577	-941	581	774	764	1000	989	989	341	0	0	0	0	0	0
7	7.4510E-02	-594	-962	454	672	661	989	1000	1000	344	0	0	0	0	0	0
8	7.4510E-02	-594	-962	454	672	661	989	1000	1000	344	0	0	0	0	0	0
9	8.0144E-02	-205	-331	156	231	227	341	344	344	1000	20	45	4	1	-1	-1
10	2.1617E-01	0	0	0	0	0	0	0	0	20	1000	357	24	6	16	18
11	4.7157E-02	0	0	0	0	0	0	0	0	45	357	1000	40	13	-31	-30
12	8.9123E-02	0	0	0	0	0	0	0	0	4	24	40	1000	8	-21	-21
13	1.2186E-02	0	0	0	0	0	0	0	0	1	6	13	8	1000	559	478
14	2.9756E-01	0	0	0	0	0	0	0	0	-1	16	-31	-21	559	1000	995
15	4.8464E-01	0	0	0	0	0	0	0	0	-1	18	-30	-21	478	995	1000

group	rel.s.d.															
1	5.5000E-01	1000	655	464	413	411	411	393	393	380	0	0	0	0	0	0
2	3.5000E-01	655	1000	848	734	661	641	581	584	571	0	0	0	0	0	0
3	2.5000E-01	464	848	1000	971	917	904	836	838	814	0	0	0	0	0	0
4	1.0000E-00	413	734	971	1000	983	975	934	935	900	0	0	0	0	0	0
5	3.0000E-01	411	661	917	983	1000	997	977	977	935	0	0	0	0	0	0
6	1.0000E-01	411	641	904	975	997	1000	972	970	930	0	0	0	0	0	0
7	1.0000E-01	393	581	836	934	977	972	1000	1000	948	0	0	0	0	0	0
8	1.0211E-01	393	584	838	935	977	970	1000	1000	948	0	0	0	0	0	0
9	5.0000E-02	380	571	814	900	935	930	948	948	1000	1	0	0	0	0	0
10	5.0000E-02	0	0	0	0	0	0	0	0	1	1000	1	0	0	0	0
11	5.0000E-02	0	0	0	0	0	0	0	0	0	1	1000	5	1	5	5
12	5.4970E-02	0	0	0	0	0	0	0	0	0	0	5	1000	2	23	25
13	4.3621E-03	0	0	0	0	0	0	0	0	0	0	1	2	1000	7	58
14	3.2338E-02	0	0	0	0	0	0	0	0	0	0	5	23	7	1000	962
15	4.7875E-02	0	0	0	0	0	0	0	0	0	0	5	25	58	962	1000

241Pu(n,el)

rel.s.d.															
3.0000E-02	1000	768	-24	45	9	-14	- 9	0	0	0	0	0	0	0	0
2.0000E-02	768	1000	240	-562	-86	174	111	0	0	0	0	0	0	0	0
3.0000E-02	-24	240	1000	-411	-253	88	86	0	0	0	0	0	0	0	0
1.0000E-01	45	-562	-411	1000	423	-34	-68	0	0	0	0	0	0	0	0
1.0000E-01	9	-86	-253	423	1000	872	397	0	0	0	0	0	0	0	0
1.0000E-01	-14	174	88	-34	872	1000	488	0	0	0	0	0	0	0	0
1.0000E-01	- 9	111	86	-68	397	488	1000	870	857	0	0	0	0	0	0
1.0000E-01	0	0	0	0	0	0	870	1000	992	0	0	0	0	0	0
1.0000E-01	0	0	0	0	0	0	857	992	1000	12	12	12	12	12	11
1.1000E-01	0	0	0	0	0	0	0	0	12	1000	1000	994	976	925	885
1.0873E-01	0	0	0	0	0	0	0	0	12	1000	1000	994	976	925	885
1.0658E-01	0	0	0	0	0	0	0	0	12	994	994	1000	948	905	868
1.1489E-01	0	0	0	0	0	0	0	0	12	976	976	948	1000	957	912
9.9124E-02	0	0	0	0	0	0	0	0	12	925	925	905	957	1000	939
1.1318E-01	0	0	0	0	0	0	0	0	11	885	885	868	912	939	1000
	rel.s.d. 3.0000E-02 2.0000E-02 3.0000E-02 1.0000E-01 1.0000E-01 1.0000E-01 1.0000E-01 1.0000E-01 1.000E-01 1.0658E-01 1.1489E-01 9.9124E-02 1.1318E-01	rel.s.d 3.0000E-02 1000 2.0000E-02 768 3.0000E-02 -24 1.0000E-01 45 1.0000E-01 9 1.0000E-01 -14 1.0000E-01 0 1.0000E-01 0 1.0000E-01 0 1.0658E-01 0 1.1489E-01 0 9.9124E-02 0 1.1318E-01 0	rel.s.d	rel.s.d	rel.s.d. 3.0000E-02 1000 768 -24 45 2.0000E-02 768 1000 240 -562 3.0000E-02 -24 240 1000 -411 1.0000E-01 45 -562 -411 1000 1.0000E-01 9 -86 -253 423 1.0000E-01 -14 174 88 -34 1.0000E-01 -9 111 86 -68 1.0000E-01 0 0 0 1.0000E-01 0 0 0 1.0000E-01 0 0 0 1.0058E-01 0 0 0 1.1489E-01 0 0 1.1318E-01 0 0 0 0 0 0 1.1318E-01 0 0 0 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 1.1318E-01 0 1.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rel.s.d	rel.s.d.	rel.s.d	rel.s.d						

241Pu(n,n')

group	rel.s.d.							
1	1.0000E-01	1000	555	474	-704	-482	-619	-417
2	1.9469E-01	555	1000	965	-859	-852	-969	-638
3	3.0000E-01	474	965	1000	-742	-748	-907	-603
4	3.0000E-01	-704	-859	-742	1000	907	942	611
5	1.0000E-01	-482	-852	-748	907	1000	935	591

6	5.0000E-01	-619	-969	-907	942	935	1000	651
7	5.0000E-01	-417	-638	-603	611	591	651	1000

241Pu(n,2n)

group	rel.s.d.		
1	3.9684E-01	1000	827
2	3.3427E-01	827	1000

241Pu(n,f)

group	rel.s.d.															
1	1.0000E-01	1000	-75	-98	-82	-71	-78	-71	0	0	0	0	0	0	0	0
2	5.0000E-02	-75	1000	444	170	152	227	214	0	0	0	0	0	0	0	0
3	5.0000E-02	-98	444	1000	956	928	858	670	0	0	0	0	0	0	0	0
4	1.6621E-01	-82	170	956	1000	979	878	675	0	0	0	0	0	0	0	0
5	1.3538E-01	-71	152	928	979	1000	951	756	0	0	0	0	0	0	0	0
6	1.9872E-01	-78	227	858	878	951	1000	839	0	0	0	0	0	0	0	0
7	8.7402E-02	-71	214	670	675	756	839	1000	526	525	0	0	0	0	0	0
8	1.1285E-01	0	0	0	0	0	0	526	1000	1000	0	0	0	0	0	0
9	1.0435E-01	0	0	0	0	0	0	525	1000	1000	0	0	0	0	0	0
10	1.2679E-01	0	0	0	0	0	0	0	0	0	1000	7	137	-233	158	424
11	1.9379E-01	0	0	0	0	0	0	0	0	0	7	1000	233	-80	49	176
12	4.2051E-02	0	0	0	0	0	0	0	0	0	137	233	1000	339	134	26
13	2.6831E-01	0	0	0	0	0	0	0	0	0	-233	-80	339	1000	165	-771
14	2.9394E-02	0	0	0	0	0	0	0	0	0	158	49	134	165	1000	63
15	3.2656E-02	0	0	0	0	0	0	0	0	0	424	176	26	-771	63	1000

241Pu(n,gamma)

group	rel.s.d.															
1	5.5385E-01	1000	585	561	536	583	588	390	0	0	0	0	0	0	0	0
2	5.4101E-01	585	1000	931	814	744	691	445	0	0	0	0	0	0	0	0
3	1.0000E-00	561	931	1000	969	928	882	573	0	0	0	0	0	0	0	0
4	8.0000E-01	536	814	969	1000	986	953	624	0	0	0	0	0	0	0	0
5	3.0000E-01	583	744	928	986	1000	986	654	0	0	0	0	0	0	0	0
6	3.0000E-01	588	691	882	953	986	1000	676	0	0	0	0	0	0	0	0
7	4.4279E-02	390	445	573	624	654	676	1000	733	730	730	608	0	0	0	0
8	3.0000E-02	0	0	0	0	0	0	733	1000	999	998	831	0	0	0	0
9	3.0000E-02	0	0	0	0	0	0	730	999	1000	1000	833	0	0	0	0
10	3.0000E-02	0	0	0	0	0	0	730	998	1000	1000	833	0	0	0	0

11	7.4258E-02	0	0	0	0	0	0	608	831	833	833	1000	225	67	148	-235
12	8.3828E-02	0	0	0	0	0	0	0	0	0	0	225	1000	264	398	-407
13	6.3663E-02	0	0	0	0	0	0	0	0	0	0	67	264	1000	636	319
14	6.8424E-02	0	0	0	0	0	0	0	0	0	0	148	398	636	1000	-6
15	3.5907E-02	0	0	0	0	0	0	0	0	0	0	-235	-407	319	-6	1000

242Pu(n,el)

group	rel.s.d.						·		·							
1	3.0000E-02	1000	160	967	196	-363	0	0	0	0	0	0	0	0	0	0
2	3.0000E-02	160	1000	-2	-351	-141	0	0	0	0	0	0	0	0	0	0
3	3.0000E-02	967	-2	1000	293	-328	0	0	0	0	0	0	0	0	0	0
4	3.0000E-02	196	-351	293	1000	432	0	0	0	0	0	0	0	0	0	0
5	3.0000E-02	-363	-141	-328	432	1000	762	92	0	0	0	0	0	0	0	0
6	3.0000E-02	0	0	0	0	762	1000	121	0	0	0	0	0	0	0	0
7	3.0000E-02	0	0	0	0	92	121	1000	993	708	0	0	0	0	0	0
8	3.0000E-02	0	0	0	0	0	0	993	1000	711	0	0	0	0	0	0
9	3.0000E-02	0	0	0	0	0	0	708	711	1000	591	558	627	96	627	627
10	3.7640E-02	0	0	0	0	0	0	0	0	591	1000	827	936	143	936	936
11	2.2909E-02	0	0	0	0	0	0	0	0	558	827	1000	884	136	884	884
12	5.9371E-02	0	0	0	0	0	0	0	0	627	936	884	1000	169	998	998
13	4.6823E-02	0	0	0	0	0	0	0	0	96	143	136	169	1000	118	120
14	7.1901E-02	0	0	0	0	0	0	0	0	627	936	884	998	118	1000	1000
15	6.9903E-02	0	0	0	0	0	0	0	0	627	936	884	998	120	1000	1000

242Pu(n,n')

group	rel.s.d.						
1	1.0000E-01	1000	-519	-804	-838	-363	0
2	1.4270E-01	-519	1000	865	785	315	0
3	3.0000E-01	-804	865	1000	989	418	0
4	3.0000E-01	-838	785	989	1000	428	0
5	3.0000E-01	-363	315	418	428	1000	903
6	6.8170E-01	0	0	0	0	903	1000

242Pu(n,2n)

group rel.s.d. ----1 5.1701E-01 1000 242Pu(n,f)

group	rel.s.d.															
1	3.7238E-01	1000	-366	-37	-32	-16	0	0	0	0	0	0	0	0	0	0
2	1.5095E-01	-366	1000	592	497	253	0	0	0	0	0	0	0	0	0	0
3	2.1418E-01	-37	592	1000	981	500	0	0	0	0	0	0	0	0	0	0
4	1.8982E-01	-32	497	981	1000	510	0	0	0	0	0	0	0	0	0	0
5	1.8630E-01	-16	253	500	510	1000	860	103	0	0	0	0	0	0	0	0
6	3.2071E-01	0	0	0	0	860	1000	120	0	0	0	0	0	0	0	0
7	3.3058E-01	0	0	0	0	103	120	1000	992	680	0	0	0	0	0	0
8	3.3187E-01	0	0	0	0	0	0	992	1000	682	0	0	0	0	0	0
9	1.3227E-01	0	0	0	0	0	0	680	682	1000	0	0	0	0	0	0
10	5.8878E-02	0	0	0	0	0	0	0	0	0	1000	2	7	0	5	5
11	1.9567E-02	0	0	0	0	0	0	0	0	0	2	1000	32	0	13	15
12	6.4611E-02	0	0	0	0	0	0	0	0	0	7	32	1000	337	477	477
13	7.6041E-02	0	0	0	0	0	0	0	0	0	0	0	337	1000	708	706
14	5.2357E-02	0	0	0	0	0	0	0	0	0	5	13	477	708	1000	1000
15	5.0918E-02	0	0	0	0	0	0	0	0	0	5	15	477	706	1000	1000

242Pu(n,gamma)

group	rel.s.d.															
1	7.8469E-01	1000	369	230	42	0	0	0	0	0	0	0	0	0	0	0
2	2.00000-00	369	1000	936	188	-12	0	0	0	0	0	0	0	0	0	0
3	1.5000E-00	230	936	1000	345	9	0	0	0	0	0	0	0	0	0	0
4	8.0000E-01	42	188	345	1000	159	0	0	0	0	0	0	0	0	0	0
5	3.0000E-01	0	-12	9	159	1000	986	66	0	0	0	0	0	0	0	0
6	3.2281E-01	0	0	0	0	986	1000	67	0	0	0	0	0	0	0	0
7	3.7256E-01	0	0	0	0	66	67	1000	998	997	0	0	0	0	0	0
8	3.8632E-01	0	0	0	0	0	0	998	1000	999	0	0	0	0	0	0
9	3.8452E-01	0	0	0	0	0	0	997	999	1000	0	0	0	0	0	0
10	1.7004E-02	0	0	0	0	0	0	0	0	0	1000	4	0	0	0	0
11	2.2263E-02	0	0	0	0	0	0	0	0	0	4	1000	12	0	10	11
12	7.4046E-02	0	0	0	0	0	0	0	0	0	0	12	1000	66	97	98
13	3.7810E-02	0	0	0	0	0	0	0	0	0	0	0	66	1000	688	705
14	7.0974E-02	0	0	0	0	0	0	0	0	0	0	10	97	688	1000	1000
15	6.8893E-02	0	0	0	0	0	0	0	0	0	0	11	98	705	1000	1000

241Am(n,el)

group	rel.s.d.															
1	3.0000E-02	1000	-57	-244	-61	-6	-7	- 9	0	0	0	0	0	0	0	0
2	2.0000E-02	-57	1000	465	53	-317	-342	-329	0	0	0	0	0	0	0	0
3	2.0000E-02	-244	465	1000	562	-155	-191	-182	0	0	0	0	0	0	0	0

4	2.0000E-02	-61	53	562	1000	700	670	639	0	0	0	0	0	0	0	0
5	1.0000E-01	-6	-317	-155	700	1000	999	952	0	0	0	0	0	0	0	0
6	1.0000E-01	-7	-342	-191	670	999	1000	953	0	0	0	0	0	0	0	0
7	1.0000E-01	- 9	-329	-182	639	952	953	1000	302	299	127	0	0	0	0	0
8	1.0000E-01	0	0	0	0	0	0	302	1000	991	421	0	0	0	0	0
9	1.0000E-01	0	0	0	0	0	0	299	991	1000	434	0	0	0	0	0
10	1.0000E-01	0	0	0	0	0	0	127	421	434	1000	886	886	885	885	885
11	1.4527E-01	0	0	0	0	0	0	0	0	0	886	1000	1000	998	998	998
12	1.4030E-01	0	0	0	0	0	0	0	0	0	886	1000	1000	998	998	998
13	1.4204E-01	0	0	0	0	0	0	0	0	0	885	998	998	1000	996	996
14	1.3810E-01	0	0	0	0	0	0	0	0	0	885	998	998	996	1000	1000
15	1.3033E-01	0	0	0	0	0	0	0	0	0	885	998	998	996	1000	1000

241Am(n,n')

group	rel.s.d.							
1	1.5000E-01	1000	-20	-67	-275	-375	-151	-103
2	2.0000E-01	-20	1000	953	889	-305	-798	-718
3	2.0000E-01	-67	953	1000	884	-409	-884	-788
4	2.0000E-01	-275	889	884	1000	61	-564	-538
5	3.0000E-01	-375	-305	-409	61	1000	787	629
6	3.0000E-01	-151	-798	-884	-564	787	1000	855
7	3.0000E-01	-103	-718	-788	-538	629	855	1000

241Am(n,2n)

group rel.s.d. ----1 1.0034E-01 1000

241Am(n,f)

group	rel.s.d.															
1	2.0000E-01	1000	293	-126	-71	-75	-75	-72	0	0	0	0	0	0	0	0
2	1.1665E-01	293	1000	632	409	331	331	320	0	0	0	0	0	0	0	0
3	9.8086E-02	-126	632	1000	921	882	882	852	0	0	0	0	0	0	0	0
4	8.2530E-02	-71	409	921	1000	996	996	962	0	0	0	0	0	0	0	0
5	8.2853E-02	-75	331	882	996	1000	1000	966	0	0	0	0	0	0	0	0
6	8.2853E-02	-75	331	882	996	1000	1000	966	0	0	0	0	0	0	0	0
7	7.3868E-02	-72	320	852	962	966	966	1000	258	258	258	225	0	0	0	0
8	1.3709E-01	0	0	0	0	0	0	258	1000	1000	1000	874	0	0	0	0
9	1.3507E-01	0	0	0	0	0	0	258	1000	1000	1000	874	0	0	0	0
10	1.3410E-01	0	0	0	0	0	0	258	1000	1000	1000	874	0	0	0	0
11	8.0804E-02	0	0	0	0	0	0	225	874	874	874	1000	0	0	0	0
12	5.1451E-02	0	0	0	0	0	0	0	0	0	0	0	1000	-4	1	12

13	6.7239E-02	0	0	0	0	0	0	0	0	0	0	0	-4	1000	57	131
14	8.9340E-02	0	0	0	0	0	0	0	0	0	0	0	1	57	1000	884
15	3.0203E-02	0	0	0	0	0	0	0	0	0	0	0	12	131	884	1000

241Am(n,gamma)

group	rel.s.d.															
1	2.8826E-01	1000	391	321	246	253	156	105	0	0	0	0	0	0	0	0
2	1.5384E-01	391	1000	935	753	240	-204	-370	0	0	0	0	0	0	0	0
3	3.0000E-01	321	935	1000	932	416	-104	-329	0	0	0	0	0	0	0	0
4	3.0000E-01	246	753	932	1000	618	100	-148	0	0	0	0	0	0	0	0
5	2.0000E-01	253	240	416	618	1000	843	677	0	0	0	0	0	0	0	0
6	6.7913E-02	156	-204	-104	100	843	1000	957	0	0	0	0	0	0	0	0
7	7.9615E-02	105	-370	-329	-148	677	957	1000	122	122	122	121	0	0	0	0
8	6.8538E-02	0	0	0	0	0	0	122	1000	1000	1000	996	0	0	0	0
9	6.6629E-02	0	0	0	0	0	0	122	1000	1000	1000	997	0	0	0	0
10	6.5925E-02	0	0	0	0	0	0	122	1000	1000	1000	997	0	0	0	0
11	3.6682E-02	0	0	0	0	0	0	121	996	997	997	1000	0	0	0	0
12	1.8169E-02	0	0	0	0	0	0	0	0	0	0	0	1000	-157	0	-1
13	5.5364E-02	0	0	0	0	0	0	0	0	0	0	0	-157	1000	32	80
14	1.2581E-02	0	0	0	0	0	0	0	0	0	0	0	0	32	1000	320
15	1.8013E-02	0	0	0	0	0	0	0	0	0	0	0	-1	80	320	1000

242mAm(n,el)

group	rel.s.d.															
1	1.0000E-01	1000	972	100	959	908	654	306	0	0	0	0	0	0	0	0
2	1.0000E-01	972	1000	322	998	977	804	507	0	0	0	0	0	0	0	0
3	1.0000E-01	100	322	1000	367	490	797	952	0	0	0	0	0	0	0	0
4	5.0000E-02	959	998	367	1000	987	835	551	0	0	0	0	0	0	0	0
5	1.0000E-02	908	977	490	987	1000	909	666	0	0	0	0	0	0	0	0
6	1.3909E-01	654	804	797	835	909	1000	909	0	0	0	0	0	0	0	0
7	1.2761E-01	306	507	952	551	666	909	1000	153	138	136	20	0	0	0	0
8	1.8887E-01	0	0	0	0	0	0	153	1000	930	922	136	0	0	0	0
9	1.9364E-01	0	0	0	0	0	0	138	930	1000	997	147	0	0	0	0
10	1.9423E-01	0	0	0	0	0	0	136	922	997	1000	151	4	4	4	4
11	1.6677E-01	0	0	0	0	0	0	20	136	147	151	1000	989	987	921	984
12	1.9950E-01	0	0	0	0	0	0	0	0	0	4	989	1000	998	932	994
13	2.0611E-01	0	0	0	0	0	0	0	0	0	4	987	998	1000	944	994
14	1.7644E-01	0	0	0	0	0	0	0	0	0	4	921	932	944	1000	943
15	2.1783E-01	0	0	0	0	0	0	0	0	0	4	984	994	994	943	1000

242mAm(n,n')

group	rel.s.d.								
1	1.5000E-01	1000	-300	-403	-468	-444	-387	-328	0
2	3.0000E-01	-300	1000	960	874	691	399	207	0
3	3.0000E-01	-403	960	1000	926	756	460	254	0
4	3.0000E-01	-468	874	926	1000	938	754	576	0
5	3.0000E-01	-444	691	756	938	1000	927	768	0
6	3.0000E-01	-387	399	460	754	927	1000	913	0
7	3.0000E-01	-328	207	254	576	768	913	1000	332
8	3.0000E-01	0	0	0	0	0	0	332	1000

242mAm(n, 2n)

group	rel.s.d.		
1	3.1766E-01	1000 186	
2	3.7230E-01	186 1000	

242mAm(n,f)

group	rel.s.d.			·						·	·					
1	4.0000E-01	1000	358	-148	-82	-85	-85	-84	0	0	0	0	0	0	0	0
2	2.3363E-01	358	1000	645	390	343	343	341	0	0	0	0	0	0	0	0
3	1.9701E-01	-148	645	1000	904	880	880	876	0	0	0	0	0	0	0	0
4	1.6514E-01	-82	390	904	1000	998	998	995	0	0	0	0	0	0	0	0
5	1.6571E-01	-85	343	880	998	1000	1000	996	0	0	0	0	0	0	0	0
6	1.6571E-01	-85	343	880	998	1000	1000	996	0	0	0	0	0	0	0	0
7	1.4431E-01	-84	341	876	995	996	996	1000	87	87	87	8	0	0	0	0
8	1.1797E-01	0	0	0	0	0	0	87	1000	1000	1000	91	0	0	0	0
9	1.2360E-01	0	0	0	0	0	0	87	1000	1000	1000	91	0	0	0	0
10	1.2197E-01	0	0	0	0	0	0	87	1000	1000	1000	92	0	0	0	0
11	1.0393E-01	0	0	0	0	0	0	8	91	91	92	1000	23	0	0	0
12	1.0377E-01	0	0	0	0	0	0	0	0	0	0	23	1000	5	2	2
13	6.9997E-02	0	0	0	0	0	0	0	0	0	0	0	5	1000	159	149
14	8.8316E-02	0	0	0	0	0	0	0	0	0	0	0	2	159	1000	979
15	8.0613E-02	0	0	0	0	0	0	0	0	0	0	0	2	149	979	1000

242mAm(n,gamma)

group	rel.s.d.															
1	1.00000-00	1000	426	431	370	349	378	320	0	0	0	0	0	0	0	0
2	1.0000E-00	426	1000	960	822	757	661	376	0	0	0	0	0	0	0	0
3	5.0000E-01	431	960	1000	939	897	830	551	0	0	0	0	0	0	0	C
4	5.0000E-01	370	822	939	1000	994	928	655	0	0	0	0	0	0	0	0
5	5.0000E-01	349	757	897	994	1000	949	701	0	0	0	0	0	0	0	0
6	5.0000E-01	378	661	830	928	949	1000	881	0	0	0	0	0	0	0	C

7	5.0000E-01	320	376	551	655	701	881	1000	118	118	118	22	0	0	0	0
8	5.0000E-01	0	0	0	0	0	0	118	1000	1000	999	187	0	0	0	0
9	5.0000E-01	0	0	0	0	0	0	118	1000	1000	1000	188	0	0	0	0
10	5.0000E-01	0	0	0	0	0	0	118	999	1000	1000	190	0	0	0	0
11	5.0000E-01	0	0	0	0	0	0	22	187	188	190	1000	25	2	1	1
12	1.3246E-01	0	0	0	0	0	0	0	0	0	0	25	1000	47	5	5
13	1.3573E-01	0	0	0	0	0	0	0	0	0	0	2	47	1000	326	268
14	1.9867E-01	0	0	0	0	0	0	0	0	0	0	1	5	326	1000	988
15	1.9597E-01	0	0	0	0	0	0	0	0	0	0	1	5	268	988	1000

243Am(n,el)

group	rel.s.d.															
1	3.0000E-02	1000	160	-142	-61	-73	-138	-72	0	0	0	0	0	0	0	0
2	3.0000E-02	160	1000	222	538	510	232	82	0	0	0	0	0	0	0	0
3	3.0000E-02	-142	222	1000	914	938	989	472	0	0	0	0	0	0	0	0
4	3.0000E-02	-61	538	914	1000	982	923	429	0	0	0	0	0	0	0	0
5	3.0000E-02	-73	510	938	982	1000	954	445	0	0	0	0	0	0	0	0
6	1.0000E-01	-138	232	989	923	954	1000	476	0	0	0	0	0	0	0	0
7	2.0000E-01	-72	82	472	429	445	476	1000	879	866	0	0	0	0	0	0
8	2.0000E-01	0	0	0	0	0	0	879	1000	989	0	0	0	0	0	0
9	2.0000E-01	0	0	0	0	0	0	866	989	1000	5	5	5	3	5	5
10	2.0000E-01	0	0	0	0	0	0	0	0	5	1000	949	929	648	952	954
11	8.9578E-02	0	0	0	0	0	0	0	0	5	949	1000	963	672	986	987
12	8.2168E-02	0	0	0	0	0	0	0	0	5	929	963	1000	663	963	965
13	7.0028E-02	0	0	0	0	0	0	0	0	3	648	672	663	1000	609	623
14	1.2409E-01	0	0	0	0	0	0	0	0	5	952	986	963	609	1000	1000
15	1.1444E-01	0	0	0	0	0	0	0	0	5	954	987	965	623	1000	1000

243Am(n,n')

group	rel.s.d.							
1	1.5000E-01	1000	208	- 8	-15	-16	-20	-24
2	2.0000E-01	208	1000	533	609	647	666	657
3	2.0000E-01	- 8	533	1000	978	911	784	667
4	2.0000E-01	-15	609	978	1000	977	895	805
5	3.0000E-01	-16	647	911	977	1000	970	911
6	3.0000E-01	-20	666	784	895	970	1000	981
7	3.0000E-01	-24	657	667	805	911	981	1000

243Am(n,2n)

group rel.s.d. ----1 5.0000E-01 1000 243Am(n,f)

group	rel.s.d.															
1	2.0000E-01	1000	129	70	-13	-19	-19	-10	0	0	0	0	0	0	0	0
2	1.1028E-01	129	1000	682	-170	-223	-223	-117	0	0	0	0	0	0	0	0
3	5.9739E-02	70	682	1000	550	486	486	255	0	0	0	0	0	0	0	0
4	9.1842E-02	-13	-170	550	1000	995	995	522	0	0	0	0	0	0	0	0
5	9.6178E-02	-19	-223	486	995	1000	1000	525	0	0	0	0	0	0	0	0
6	9.6178E-02	-19	-223	486	995	1000	1000	525	0	0	0	0	0	0	0	0
7	7.1171E-02	-10	-117	255	522	525	525	1000	851	851	851	844	0	0	0	0
8	1.3789E-01	0	0	0	0	0	0	851	1000	1000	1000	992	0	0	0	0
9	1.3540E-01	0	0	0	0	0	0	851	1000	1000	1000	992	0	0	0	0
10	1.3408E-01	0	0	0	0	0	0	851	1000	1000	1000	992	0	0	0	0
11	9.6353E-02	0	0	0	0	0	0	844	992	992	992	1000	1	0	0	0
12	5.9527E-02	0	0	0	0	0	0	0	0	0	0	1	1000	1	13	12
13	4.8053E-02	0	0	0	0	0	0	0	0	0	0	0	1	1000	381	240
14	2.2488E-02	0	0	0	0	0	0	0	0	0	0	0	13	381	1000	905
15	2.1229E-02	0	0	0	0	0	0	0	0	0	0	0	12	240	905	1000

243Am(n,gamma)

group	rel.s.d.															
1	6.0422E-01	1000	353	246	128	145	147	72	0	0	0	0	0	0	0	0
2	4.1502E-01	353	1000	948	725	529	-31	-171	0	0	0	0	0	0	0	0
3	2.1658E-01	246	948	1000	899	728	-40	-243	0	0	0	0	0	0	0	0
4	1.4183E-01	128	725	899	1000	930	26	-256	0	0	0	0	0	0	0	0
5	1.0000E-01	145	529	728	930	1000	299	-67	0	0	0	0	0	0	0	0
6	1.0000E-01	147	-31	-40	26	299	1000	698	0	0	0	0	0	0	0	0
7	1.0000E-01	72	-171	-243	-256	-67	698	1000	652	652	652	613	0	0	0	0
8	6.7704E-02	0	0	0	0	0	0	652	1000	1000	1000	939	0	0	0	0
9	6.6441E-02	0	0	0	0	0	0	652	1000	1000	1000	939	0	0	0	0
10	6.5778E-02	0	0	0	0	0	0	652	1000	1000	1000	940	0	0	0	0
11	2.3065E-02	0	0	0	0	0	0	613	939	939	940	1000	5	0	1	1
12	1.7412E-02	0	0	0	0	0	0	0	0	0	0	5	1000	3	14	20
13	3.4319E-02	0	0	0	0	0	0	0	0	0	0	0	3	1000	707	754
14	3.7452E-02	0	0	0	0	0	0	0	0	0	0	1	14	707	1000	942
15	3.5761E-02	0	0	0	0	0	0	0	0	0	0	1	20	754	942	1000

242Cm(n,el)

group	rel.s.d.															
1	1.0000E-01	1000	995	996	-26	-430	-627	-880	-917	0	0	0	0	0	0	0
2	5.0000E-02	995	1000	985	-123	-516	-701	-923	-920	0	0	0	0	0	0	0
3	3.0000E-02	996	985	1000	51	-362	-569	-842	-906	0	0	0	0	0	0	0
4	3.0000E-02	-26	-123	51	1000	906	787	496	109	0	0	0	0	0	0	0
5	2.0000E-02	-430	-516	-362	906	1000	973	805	463	0	0	0	0	0	0	0
6	4.0000E-02	-627	-701	-569	787	973	1000	920	634	0	0	0	0	0	0	0
7	4.0000E-02	-880	-923	-842	496	805	920	1000	846	0	0	0	0	0	0	0
8	2.1149E-02	-917	-920	-906	109	463	634	846	1000	359	358	225	0	0	0	0
9	5.0000E-02	0	0	0	0	0	0	0	359	1000	999	627	0	0	0	0
10	5.0000E-02	0	0	0	0	0	0	0	358	999	1000	629	0	0	0	0
11	5.0000E-02	0	0	0	0	0	0	0	225	627	629	1000	412	412	403	401
12	1.8182E-01	0	0	0	0	0	0	0	0	0	0	412	1000	986	968	963
13	1.9871E-01	0	0	0	0	0	0	0	0	0	0	412	986	1000	995	992
14	1.9673E-01	0	0	0	0	0	0	0	0	0	0	403	968	995	1000	1000
15	1.9679E-01	0	0	0	0	0	0	0	0	0	0	401	963	992	1000	1000

242Cm(n,n')

group	rel.s.d.							
1	1.0000E-00	1000	-780	-464	-221	-193	-83	-103
2	1.0000E-00	-780	1000	129	-230	-446	-550	-533
3	1.0000E-00	-464	129	1000	930	607	504	518
4	1.0000E-00	-221	-230	930	1000	809	747	755
5	1.0000E-01	-193	-446	607	809	1000	991	993
6	5.3151E-01	-83	-550	504	747	991	1000	1000
7	3.1726E-01	-103	-533	518	755	993	1000	1000

242Cm(n,2n)

group rel.s.d. ----1 5.0000E-01 1000

242Cm(n,f)

group	rel.s.d.															
1	5.0000E-01	1000	991	870	356	138	-42	788	778	0	0	0	0	0	0	0
2	1.0000E-00	991	1000	917	467	259	78	845	819	0	0	0	0	0	0	0
3	1.0000E-00	870	917	1000	743	551	318	837	807	0	0	0	0	0	0	0
4	1.0000E-00	356	467	743	1000	965	834	715	609	0	0	0	0	0	0	0
5	1.0000E-00	138	259	551	965	1000	944	621	487	0	0	0	0	0	0	0
6	1.0000E-00	-42	78	318	834	944	1000	553	381	0	0	0	0	0	0	0
7	1.0000E-00	788	845	837	715	621	553	1000	871	0	0	0	0	0	0	0
8	1.0000E-00	778	819	807	609	487	381	871	1000	460	368	82	0	0	0	0

9	1 0000E-00	0	0	0	0	0	0	0	460	1000	870	202	0	0	0	0
2	T:0000H 00	0	0	0	0	0	0	0	100	T000	070	202	0	0	0	0
10	1.0000E-00	0	0	0	0	0	0	0	368	870	1000	264	0	0	0	0
11	1.0000E-00	0	0	0	0	0	0	0	82	202	264	1000	1	8	4	3
12	1.0000E-00	0	0	0	0	0	0	0	0	0	0	1	1000	11	7	7
13	1.0000E-00	0	0	0	0	0	0	0	0	0	0	8	11	1000	996	995
14	1.0000E-00	0	0	0	0	0	0	0	0	0	0	4	7	996	1000	1000
15	5.0000E-01	0	0	0	0	0	0	0	0	0	0	3	7	995	1000	1000

242Cm(n,gamma)

group	rel.s.d.															
1	5.2782E-01	1000	898	696	187	93	-43	-218	-342	0	0	0	0	0	0	0
2	2.0000E-00	898	1000	891	398	300	148	-59	-212	0	0	0	0	0	0	0
3	2.0000E-00	696	891	1000	767	696	574	392	243	0	0	0	0	0	0	0
4	2.0000E-00	187	398	767	1000	994	965	890	807	0	0	0	0	0	0	0
5	2.0000E-00	93	300	696	994	1000	988	933	864	0	0	0	0	0	0	0
6	2.0000E-00	-43	148	574	965	988	1000	978	932	0	0	0	0	0	0	0
7	2.0000E-00	-218	-59	392	890	933	978	1000	986	0	0	0	0	0	0	0
8	2.0000E-00	-342	-212	243	807	864	932	986	1000	59	56	12	0	0	0	0
9	2.0000E-00	0	0	0	0	0	0	0	59	1000	960	206	0	0	0	0
10	2.0000E-00	0	0	0	0	0	0	0	56	960	1000	230	0	0	0	0
11	2.0000E-00	0	0	0	0	0	0	0	12	206	230	1000	3	11	5	5
12	2.0000E-00	0	0	0	0	0	0	0	0	0	0	3	1000	29	21	20
13	2.0000E-00	0	0	0	0	0	0	0	0	0	0	11	29	1000	996	995
14	2.0000E-00	0	0	0	0	0	0	0	0	0	0	5	21	996	1000	1000
15	2.0000E-00	0	0	0	0	0	0	0	0	0	0	5	20	995	1000	1000

243Cm(n,el)

group		rel.s.d.															
1	3	.0000E-02	1000	976	19	536	589	281	47	0	0	0	0	0	0	0	0
2	3	.0000E-02	976	1000	135	636	686	391	139	0	0	0	0	0	0	0	0
3	3	.0000E-02	19	135	1000	846	808	941	806	0	0	0	0	0	0	0	0
4	3	.0000E-02	536	636	846	1000	998	953	714	0	0	0	0	0	0	0	0
5	3	.0000E-02	589	686	808	998	1000	934	686	0	0	0	0	0	0	0	0
6	3	.0000E-02	281	391	941	953	934	1000	807	0	0	0	0	0	0	0	0
7	3	.0000E-02	47	139	806	714	686	807	1000	558	558	557	545	0	0	0	0
8	3	.0000E-02	0	0	0	0	0	0	558	1000	1000	999	976	0	0	0	0
9	3	.0000E-02	0	0	0	0	0	0	558	1000	1000	1000	976	0	0	0	0
10	3	.0000E-02	0	0	0	0	0	0	557	999	1000	1000	976	0	0	0	0
11	1	.5540E-01	0	0	0	0	0	0	545	976	976	976	1000	216	214	215	214
12	1	.8809E-01	0	0	0	0	0	0	0	0	0	0	216	1000	988	989	984
13	1	.9530E-01	0	0	0	0	0	0	0	0	0	0	214	988	1000	973	970
14	2	.4913E-01	0	0	0	0	0	0	0	0	0	0	215	989	973	1000	998
15	2	.3411E-01	0	0	0	0	0	0	0	0	0	0	214	984	970	998	1000

243Cm(n,n')

group	rel.s.d.							
1	1.5000E-01	1000	478	-488	-672	-695	-589	-510
2	2.0000E-01	478	1000	208	143	107	87	50
3	1.5000E-01	-488	208	1000	896	711	454	249
4	3.0000E-01	-672	143	896	1000	938	742	578
5	3.0000E-01	-695	107	711	938	1000	922	821
6	5.0000E-01	-589	87	454	742	922	1000	975
7	5.0000E-01	-510	50	249	578	821	975	1000

243Cm(n,2n)

group	rel.s.d.		
1	5.2753E-01	1000 948	
2	3.6532E-01	948 1000	

243Cm(n,f)

group	rel.s.d.															
1	1.0000E-01	1000	756	633	64	64	64	62	0	0	0	0	0	0	0	0
2	1.0000E-01	756	1000	967	663	663	663	652	0	0	0	0	0	0	0	0
3	1.0000E-01	633	967	1000	723	723	723	711	0	0	0	0	0	0	0	0
4	1.0000E-01	64	663	723	1000	1000	1000	983	0	0	0	0	0	0	0	0
5	2.0000E-01	64	663	723	1000	1000	1000	983	0	0	0	0	0	0	0	0
6	1.0000E-01	64	663	723	1000	1000	1000	983	0	0	0	0	0	0	0	0
7	1.0000E-01	62	652	711	983	983	983	1000	184	184	184	181	0	0	0	0
8	1.2387E-01	0	0	0	0	0	0	184	1000	1000	1000	988	0	0	0	0
9	1.2206E-01	0	0	0	0	0	0	184	1000	1000	1000	988	0	0	0	0
10	1.2188E-01	0	0	0	0	0	0	184	1000	1000	1000	988	0	0	0	0
11	8.0417E-02	0	0	0	0	0	0	181	988	988	988	1000	2	0	0	1
12	3.3438E-02	0	0	0	0	0	0	0	0	0	0	2	1000	59	33	72
13	6.4408E-02	0	0	0	0	0	0	0	0	0	0	0	59	1000	168	349
14	1.9522E-01	0	0	0	0	0	0	0	0	0	0	0	33	168	1000	855
15	1.0526E-01	0	0	0	0	0	0	0	0	0	0	1	72	349	855	1000

243Cm(n,gamma)

group	rel.s.d.															
1	7.7568E-01	1000	979	-37	-158	507	5	-330	0	0	0	0	0	0	0	0
2	4.4117E-01	979	1000	-87	-204	509	-30	-381	0	0	0	0	0	0	0	0
3	1.7742E-01	-37	-87	1000	986	763	987	862	0	0	0	0	0	0	0	0
4	3.1194E-01	-158	-204	986	1000	714	983	889	0	0	0	0	0	0	0	0

5	2.9719E-01	507	509	763	714	1000	828	483	0	0	0	0	0	0	0	0
6	2.3358E-01	5	-30	987	983	828	1000	836	0	0	0	0	0	0	0	0
7	1.8181E-01	-330	-381	862	889	483	836	1000	402	402	401	399	0	0	0	0
8	1.7967E-01	0	0	0	0	0	0	402	1000	999	997	992	0	0	0	0
9	1.8375E-01	0	0	0	0	0	0	402	999	1000	999	996	0	0	0	0
10	1.8701E-01	0	0	0	0	0	0	401	997	999	1000	998	0	0	0	0
11	1.4520E-01	0	0	0	0	0	0	399	992	996	998	1000	1	0	0	0
12	5.1162E-02	0	0	0	0	0	0	0	0	0	0	1	1000	51	18	15
13	7.9878E-02	0	0	0	0	0	0	0	0	0	0	0	51	1000	136	101
14	1.5497E-01	0	0	0	0	0	0	0	0	0	0	0	18	136	1000	708
15	1.6379E-01	0	0	0	0	0	0	0	0	0	0	0	15	101	708	1000

244Cm(n,el)

group	rel.s.d.															
1	3.0000E-02	1000	488	569	274	322	234	65	0	0	0	0	0	0	0	0
2	3.00000-02	488	1000	852	87	198	44	-224	0	0	0	0	0	0	0	0
3	5.0000E-02	569	852	1000	594	680	551	213	0	0	0	0	0	0	0	0
4	1.0000E-01	274	87	594	1000	993	988	750	0	0	0	0	0	0	0	0
5	1.0000E-01	322	198	680	993	1000	971	716	0	0	0	0	0	0	0	0
6	1.0000E-01	234	44	551	988	971	1000	739	0	0	0	0	0	0	0	0
7	9.2095E-02	65	-224	213	750	716	739	1000	586	586	572	0	0	0	0	0
8	1.4933E-01	0	0	0	0	0	0	586	1000	999	976	0	0	0	0	0
9	1.4039E-01	0	0	0	0	0	0	586	999	1000	975	0	0	0	0	0
10	7.7188E-02	0	0	0	0	0	0	572	976	975	1000	136	17	160	160	160
11	3.6106E-02	0	0	0	0	0	0	0	0	0	136	1000	77	706	706	706
12	7.7538E-02	0	0	0	0	0	0	0	0	0	17	77	1000	5	26	28
13	6.6248E-02	0	0	0	0	0	0	0	0	0	160	706	5	1000	999	999
14	6.1634E-02	0	0	0	0	0	0	0	0	0	160	706	26	999	1000	1000
15	6.1192E-02	0	0	0	0	0	0	0	0	0	160	706	28	999	1000	1000

244Cm(n,n')

group	rel.s.d.							
1	5.0000E-01	1000	-562	-570	-282	-50	37	-66
2	3.0000E-01	-562	1000	859	412	43	-138	42
3	2.0000E-01	-570	859	1000	737	241	29	132
4	3.0000E-01	-282	412	737	1000	788	642	656
5	2.9094E-01	-50	43	241	788	1000	976	973
6	6.3307E-01	37	-138	29	642	976	1000	978
7	5.9718E-01	-66	42	132	656	973	978	1000

244Cm(n,2n)

group rel.s.d. ----

244Cm(n,f)

group	rel.s.d.															
1	2.0000E-01	1000	752	628	58	58	58	55	0	0	0	0	0	0	0	0
2	2.0000E-01	752	1000	967	663	663	663	633	0	0	0	0	0	0	0	0
3	2.0000E-01	628	967	1000	725	725	725	693	0	0	0	0	0	0	0	0
4	1.0000E-01	58	663	725	1000	1000	1000	955	0	0	0	0	0	0	0	0
5	1.0000E-01	58	663	725	1000	1000	1000	955	0	0	0	0	0	0	0	0
6	1.0000E-01	58	663	725	1000	1000	1000	955	0	0	0	0	0	0	0	0
7	1.0000E-01	55	633	693	955	955	955	1000	298	297	222	0	0	0	0	0
8	1.0000E-01	0	0	0	0	0	0	298	1000	997	745	0	0	0	0	0
9	1.00000-01	0	0	0	0	0	0	297	997	1000	767	0	0	0	0	0
10	1.0000E-01	0	0	0	0	0	0	222	745	767	1000	-162	0	0	0	0
11	5.7020E-02	0	0	0	0	0	0	0	0	0	-162	1000	13	9	5	5
12	1.7085E-01	0	0	0	0	0	0	0	0	0	0	13	1000	42	20	18
13	2.1993E-01	0	0	0	0	0	0	0	0	0	0	9	42	1000	997	996
14	2.6401E-01	0	0	0	0	0	0	0	0	0	0	5	20	997	1000	1000
15	2.7178E-01	0	0	0	0	0	0	0	0	0	0	5	18	996	1000	1000

244Cm(n,gamma)

group	rel.s.d.															
1	8.9189E-01	1000	928	832	247	112	-142	-169	0	0	0	0	0	0	0	0
2	1.5000E-00	928	1000	967	470	331	57	-22	0	0	0	0	0	0	0	0
3	3.0000E-00	832	967	1000	647	483	229	130	0	0	0	0	0	0	0	0
4	2.0000E-00	247	470	647	1000	946	870	732	0	0	0	0	0	0	0	0
5	2.5000E-01	112	331	483	946	1000	959	804	0	0	0	0	0	0	0	0
6	2.5000E-01	-142	57	229	870	959	1000	864	0	0	0	0	0	0	0	0
7	2.5000E-01	-169	-22	130	732	804	864	1000	482	481	340	0	0	0	0	0
8	1.0000E-00	0	0	0	0	0	0	482	1000	999	705	0	0	0	0	0
9	1.0000E-00	0	0	0	0	0	0	481	999	1000	711	0	0	0	0	0
10	1.0000E-00	0	0	0	0	0	0	340	705	711	1000	-366	0	0	0	0
11	4.6026E-02	0	0	0	0	0	0	0	0	0	-366	1000	1	4	5	5
12	6.6427E-02	0	0	0	0	0	0	0	0	0	0	1	1000	821	639	590
13	1.1793E-01	0	0	0	0	0	0	0	0	0	0	4	821	1000	903	862
14	1.2159E-01	0	0	0	0	0	0	0	0	0	0	5	639	903	1000	996
15	1.2506E-01	0	0	0	0	0	0	0	0	0	0	5	590	862	996	1000

245Cm(n,el)

group	rel.s.d.															
1	3.0000E-02	1000	898	246	715	457	214	33	0	0	0	0	0	0	0	0
2	3.0000E-02	898	1000	541	903	690	479	128	0	0	0	0	0	0	0	0

3	3.0000E-02	246	541	1000	790	864	902	312	0	0	0	0	0	0	0	0
4	3.0000E-02	715	903	790	1000	933	808	258	0	0	0	0	0	0	0	0
5	3.0000E-02	457	690	864	933	1000	961	327	0	0	0	0	0	0	0	0
6	3.0000E-02	214	479	902	808	961	1000	353	0	0	0	0	0	0	0	0
7	3.0000E-02	33	128	312	258	327	353	1000	934	934	933	911	0	0	0	0
8	3.0000E-02	0	0	0	0	0	0	934	1000	1000	999	975	0	0	0	0
9	3.0000E-02	0	0	0	0	0	0	934	1000	1000	1000	976	0	0	0	0
10	3.0000E-02	0	0	0	0	0	0	933	999	1000	1000	977	0	0	0	0
11	5.0000E-02	0	0	0	0	0	0	911	975	976	977	1000	213	213	213	213
12	2.0251E-01	0	0	0	0	0	0	0	0	0	0	213	1000	999	999	999
13	2.1778E-01	0	0	0	0	0	0	0	0	0	0	213	999	1000	999	999
14	2.0779E-01	0	0	0	0	0	0	0	0	0	0	213	999	999	1000	1000
15	1.9438E-01	0	0	0	0	0	0	0	0	0	0	213	999	999	1000	1000

245Cm(n,n')

group	rel.s.d.							
1	1.5000E-01	1000	-853	-603	-711	-402	-304	-271
2	2.0000E-01	-853	1000	509	721	528	464	449
3	1.5000E-01	-603	509	1000	861	362	121	-44
4	3.0000E-01	-711	721	861	1000	762	590	460
5	3.0000E-01	-402	528	362	762	1000	968	905
6	5.0000E-01	-304	464	121	590	968	1000	982
7	5.0000E-01	-271	449	-44	460	905	982	1000

245Cm(n,2n)

group	rel.s.d.		
1	2.2433E-01	1000	165
2	9.3532E-01	165	1000

245Cm(n,f)

group	rel.s.d.															
1	1.8111E-01	1000	748	634	58	58	58	57	0	0	0	0	0	0	0	0
2	3.0961E-01	748	1000	971	666	666	666	652	0	0	0	0	0	0	0	0
3	4.4171E-01	634	971	1000	720	720	720	706	0	0	0	0	0	0	0	0
4	4.9428E-01	58	666	720	1000	1000	1000	980	0	0	0	0	0	0	0	0
5	3.7220E-01	58	666	720	1000	1000	1000	980	0	0	0	0	0	0	0	0
6	4.7447E-01	58	666	720	1000	1000	1000	980	0	0	0	0	0	0	0	0
7	2.6531E-01	57	652	706	980	980	980	1000	198	198	198	191	0	0	0	0
8	1.3474E-01	0	0	0	0	0	0	198	1000	1000	1000	965	0	0	0	0

9	1.3177E-01	0	0	0	0	0	0	198	1000	1000	1000	965	0	0	0	0
10	1.3026E-01	0	0	0	0	0	0	198	1000	1000	1000	965	0	0	0	0
11	8.6603E-02	0	0	0	0	0	0	191	965	965	965	1000	5	1	1	1
12	3.8941E-02	0	0	0	0	0	0	0	0	0	0	5	1000	29	17	12
13	6.2109E-02	0	0	0	0	0	0	0	0	0	0	1	29	1000	321	164
14	5.1220E-02	0	0	0	0	0	0	0	0	0	0	1	17	321	1000	773
15	3.8175E-02	0	0	0	0	0	0	0	0	0	0	1	12	164	773	1000

245Cm(n,gamma)

group	rel.s.d.															
1	7.1207E-01	1000	622	485	371	361	359	128	0	0	0	0	0	0	0	0
2	3.6169E-01	622	1000	955	877	863	858	308	0	0	0	0	0	0	0	0
3	2.9122E-01	485	955	1000	980	965	960	345	0	0	0	0	0	0	0	0
4	2.4824E-01	371	877	980	1000	988	983	354	0	0	0	0	0	0	0	0
5	1.9317E-01	361	863	965	988	1000	999	366	0	0	0	0	0	0	0	0
6	1.7559E-01	359	858	960	983	999	1000	367	0	0	0	0	0	0	0	0
7	1.0498E-01	128	308	345	354	366	367	1000	929	929	928	922	0	0	0	0
8	1.2886E-01	0	0	0	0	0	0	929	1000	1000	999	993	0	0	0	0
9	1.2486E-01	0	0	0	0	0	0	929	1000	1000	1000	994	0	0	0	0
10	1.2317E-01	0	0	0	0	0	0	928	999	1000	1000	994	0	0	0	0
11	9.6045E-02	0	0	0	0	0	0	922	993	994	994	1000	1	0	0	0
12	7.8749E-02	0	0	0	0	0	0	0	0	0	0	1	1000	57	24	10
13	1.1787E-01	0	0	0	0	0	0	0	0	0	0	0	57	1000	136	72
14	7.4618E-02	0	0	0	0	0	0	0	0	0	0	0	24	136	1000	966
15	8.3869E-02	0	0	0	0	0	0	0	0	0	0	0	10	72	966	1000

Apendix B

In the following, numerical tables for the relative uncertainty (relative standard deviation) and correlation (normalized to 1000) for nu-bar borrowed from [1, 2] are given in a 15-group representation

1	19	0.6 E+0	06 6	.07 E	+06											
2	6.	07 E+0	06 2	.23 E	+06											
3	2.	23 E+0	06 1	.35 E·	+06											
4	1.	35 E+(06 4	.98 E	+05											
5	4.	98 E+(05 1	.83 E·	+05											
6	1.	83 E+(05 6	.74 E	+04											
7	6.	74 E+(04 2	.48 E·	+04											
8	2.	48 E+(04 9	.12 E.	+03											
9	9.	9.12 $E+03$ 2.04 $E+03$ 2.04 $E+03$ 4.54 $E+02$														
10	$2.04 \pm +03 + 4.54 \pm +02$ $4.54 \pm +02 + 2.26 \pm +01$															
11	4.54 E+02 2.26 E+01															
12	2.26 E+01 4.00 E+00															
13	4.00 E+00 5.40 E-01															
14	4 5.40 E-01 1.00 E-01															
15	1.	00 E-0	01 1	.00 E	-05											
Deleti		-	-1-+			-		-)				(3 +	1000)	f
har for	ve uncertain r poorh	icy (ie	eracry	ve sta	anuaro	i dev.	Lation	1) al	la col	LIELA	_1011	(11011116	arrzeo	1 10 .	1000)	LOT IIU-
par IUI	ropal torma	are th		5 F 22	отт											
aroun	rol e d															
group 1	3 0000E-02	1000	411	349	308	308	308	308	308	308	308	308	308	308	308	308
2	5.0000E-02	111	1000	923	278	278	278	278	278	278	278	278	278	278	278	278
2	0 6402E-02	310	1000	1000	550	550	550	550	550	550	550	550	550	550	550	550
7	1.7627E - 02	308	223	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
т 5	1.7627E = 02 1.7627E = 02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
5	1.7627E = 02 1.7627E = 02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
7	1.7627E - 02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
, 8	$1.7627E_{02}$	308	270	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	1.7627E = 02 1.7627E = 02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	1.7627E - 02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	1.7627E = 02 1.7627E = 02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	1 7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	1.7627E - 02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	1 7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	1./02/11 02	500	270	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	TOOO
Relativ	ve uncertair	itv (re	alativ	ve sta	andaro	dev	iatio	n) ai	nd cor	rrelat	ion	(norm;	alized	to f	1000)	for nu-
bar for	r 23311		STACT		AIIGGE	a acr.	Tactor	,	.iu 00.	LICIA	21011	(1101.114	******		1000)	101 114
aroup	rel.s.d.															
910ap 1	8 4211E-03	1000	37	38	55	62	61	68	62	68	43	28	32	35	35	33
2	2.5122E-03	37	1000	385	268	232	213	229	206	225	139	122	187	2.04	2.04	193
3	2 2163E-03	38	385	1000	347	309	267	278	246	270	166	160	261	284	284	269
4	1 7977E-03	55	268	347	1000	445	390	415	369	404	254	210	299	324	324	307
5	1 8181E-03	62	232	309	445	1000	465	457	412	451	282	212	280	305	305	289
6	1 9268E-03	61	213	267	390	465	1000	615	417	457	280	192	247	268	268	254
7	1 8345E-03	68	229	278	415	457	615	1000	956	722	200	206	252	200	200	259
, 8	2 0560E-03	62	206	246	369	412	417	956	1000	715	2.87	185	221	240	240	227
9	1.8495E-03	68	225	270	404	451	457	722	715	1000	580	202	243	2.64	2.64	250
10	3.0187E-03	4 R	139	166	254	282	280	, <u>2</u> 2 3 1 3	287	580	1000	820	145	158	158	149
11	2.4814E-03		122	160	210	212	192	206	185	202	820	1000	443	415	415	401
	2.10110-03	20	ㅗㅗㅗ스	T 0 0	<u> </u>	스ㅗ스	エノム	200	T O J	202		T000				TOT
12	1.3557E-03	32	187	261	299	280	247	252	221	243	145	443	1000	919	919	891
------------------	---------------------------	---------	--------	------------	--------	--------	--------	-------	--------	--------	---	--------	--------	--------	-------	---------
13	1.2690E-03	35	204	284	324	305	268	274	240	264	158	415	919	1000	1000	946
14	1.2690E-03	35	204	284	324	305	268	274	240	264	158	415	919	1000	1000	946
15	1.3294E-03	33	193	269	307	289	254	259	227	250	149	401	891	946	946	1000
Relati bar fo	ve uncertain r 23511	ity (re	elativ	ve sta	andard	l devi	iatior	ı) ar	nd con	rrelat	tion	(norma	alized	l to 1	1000)	for nu-
aroun	rel e d															
group 1	C $O > E \in T$ $O > C$	1000	122	00		67	E 0	11	 כב	 БЛ	с – – – – – – – – – – – – – – – – – – –	 າວ				 0
2 1	0.0355E-03	120	1000	400	260	207	20	220	105	24	201	121	0	0	0	0
2	2.0161E-03	132	1000	429	360	300	279	230	195	298	284	117	0	0	0	0
3	2.53/1E-03	80	429	1000	419	353	250	204		268	254		0	0	0	0
4	2.0122E-03	74	360	419	T000	550	347	287	246	369	359	175	0	0	0	0
5	1.7967E-03	67	368	353	550	1000	492	358	304	465	445	208	0	0	0	0
6	2.3035E-03	50	279	250	347	492	1000	319	268	385	370	164	0	0	0	0
7	2.7486E-03	41	230	204	287	358	319	1000	235	325	319	152	0	0	0	0
8	3.2002E-03	35	195	171	246	304	268	235	1000	293	275	121	0	0	0	0
9	2.1589E-03	54	298	268	369	465	385	325	293	1000	435	186	0	0	0	0
10	2.2034E-03	51	284	254	359	445	370	319	275	435	1000	359	0	0	0	0
11	4.1079E-03	23	131	117	175	208	164	152	121	186	359	1000	58	53	53	53
12	3.1620E-03	0	0	0	0	0	0	0	0	0	0	58	1000	916	916	916
13	3.1200E-03	0	0	0	0	0	0	0	0	0	0	53	916	1000	1000	1000
14	3.1200E-03	0	0	0	0	0	0	0	0	0	0	53	916	1000	1000	1000
15	3.1200E-03	0	0	0	0	0	0	0	0	0	0	53	916	1000	1000	1000
Relati	ve uncertain	ıty (re	elativ	ve sta	andard	l devi	Latior	ı) ar	nd con	rrelat	cion	(norma	alized	l to 1	1000)	for nu-
bar fo:	r 234U	1														
no-dia	gonal terms	are th	lose c	of 238	BU											
aroun	rel.s.d.															
<u>j</u> = 0 a.p	3 0000E-02	1000	411	349	308	308	308	308	308	308	308	308	308	308	308	308
2	3 0000E-02	411	1000	923	278	278	278	278	278	278	278	278	278	278	278	278
2	3 0000E 02	310	423	1000	550	550	550	550	550	550	550	550	550	550	550	550
1	$1.7627E_{-02}$	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
т Б	1.7627E-02	200	270	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
с С	1.7027E-02	200	270	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
0	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
/	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
8	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Relativ	ve uncertain	ty (re	elativ	ve sta	andard	l devi	latior	ı) ar	nd con	rrelat	cion	(norma	alized	l to 1	1000)	for nu-
Dar IO.	L 2360	ana th		. -												
no-diag	gonal terms	are tr	lose c	DI 238	30											
group	rel.s.d.															
1	3.0000E-02	1000	411	349	308	308	308	308	308	308	308	308	308	308	308	308
2	3.0000E-02	411	1000	923	278	278	278	278	278	278	278	278	278	278	278	278
3	3.0000E-02	349	923	1000	550	550	550	550	550	550	550	550	550	550	550	550
4	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
5	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
6	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
7	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
8	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000

10	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Relati	ve uncertain	tv (re	alatix	<i>re</i> sta	andaro	dev:	iation	ı) ar	nd con	rrelat	ion	(norma	alized	1 to -		for nu-
bar fo	r 238U	.cy (10	Juci		andard	i ucv.	lacioi	i) ai	.10 001	LICIA	1011	(1101 1110			2000,	LOL IIU
group	rel.s.d.															
1	9.1066E-03	1000	411	349	308	308	308	308	308	308	308	308	308	308	308	308
2	6.1098E-03	411	1000	923	278	278	278	278	278	278	278	278	278	278	278	278
3	6.4020E-03	349	923	1000	550	550	550	550	550	550	550	550	550	550	550	550
4	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
5	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
6	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
7	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
8	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10 11	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	1.7627E-02 1.7627E-02	308	270	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	1.7627E-02 1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	1.7627E-02	308	278	550	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Relati	ve uncertain	ty (re	elativ	ve sta	andaro	dev:	iatior	ı) ar	nd coi	rrelat	cion	(norma	alized	l to 1	L000)	for nu-
bar fo	r 237Np															
group	rel.s.d.															
1	3.0000E-02	1000	132	27	0	0	0	0	0	0	0	0	0	0	0	0
2	3.0000E-02	132	1000	511	197	71	71	71	71	71	71	71	71	71	71	71
3	1.4704E-02	27	511	1000	605	76	76	76	76	76	76	76	76	76	76	76
4	6.6175E-03	0	197	605	1000	1000	818	818	1000	1000	818	1000	1000	1000	818	818
5	6.0000E-03	0	/ L 7 1	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
0 7	6.0000E-03	0	71 71	76	010 818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
, 8	6 0000E-03	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	6.0000E-03	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	6.0000E-03	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	6.0000E-03	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	6.0000E-03	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	6.0000E-03	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	6.0000E-03	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	6.0000E-03	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
					_				_	_				_		_
Relati	ve uncertain	ty (re	elativ	ve sta	andaro	d dev:	iatior	ı) ar	nd coi	rrelat	tion	(norma	alized	l to 1	L000)	for nu-
bar to	r 238Pu															
group	rel.s.d.															
1	5.0000E-02	1000	672	138 COL	0	202	0	202	202	202	0	202	202	202	0	0
∠ 2	3.0000E-02	6/2 130	T000	025 1000	390 500	303	303	303	303	303	303	303	303	303	303	300
د ۸	3.0000E-02 3.0000F-02	D C D	020 300	1000 500	1000	309 975	975									
ч 5	3.0000E-02	0	202	300	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
5	2.00000 02	0	505	505	275	1000	1000	1000		1000	1000	1000	1000	1000		1000
0	3.0000E-02	()	303	309	975	T000	T(0)(0)	T()()()	1000	1000	T()()()	± 000	T000	T()()()	1000	T000
7	3.0000E-02 3.0000E-02	0	303 303	309 309	975 975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
7 8	3.0000E-02 3.0000E-02 3.0000E-02	0 0 0	303 303 303	309 309 309	975 975 975	1000 1000 1000										

10	3.0000E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	3.0000E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	3.0000E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	3.0000E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	3 0000E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	3.0000E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Polati	vo ungortair	tu (r		to at	andar	a dour	istio		nd an	crolat	tion	(norm:		1 + 0 -	1000)	for nu
bar fo	r 239Pii	ICY (16	elativ	ve sta	anuaro	i dev.	Latio	1) al	.ia coi	LIELA		(11011116	arrzeo	1 10 .	1000)	LOL IIU-
aroun	rel a d															
910up 1	2 1524E = 03	1000	740	513	334	217	217	79	26	26	26	21	25	21	35	35
2	2.1324E-03 1 7031E-03	740	1000	917	588	383	383	13/	20 //1	20 //1	20 //1	31	12	35	59	59
2	1.70316-03 1.7340E-03	740 512	1000 Q11	1000	640	115	115	1/2	41	41	42	24	42	22	50 61	53
1	1.7940E-03	221	500	£40	1000			105	- 1 2	51	= <u>-</u> 5 2	20	36	20	10	19
	1.7900E-03	217	200	040 41E	T000	1000	1000	202	Е0 ЭТ	E 0		10	20	10	40 21	49 01
5	2.2400E-03	217	202	415	550	1000	1000	202	20	20	20	10	22	10	31 21	3⊥ 21
0	2.2400E-03	217	124	415	105	1000	202	1000	000	000	50	10	22	10	11	3 L 1 1
/	3.0540E-03	19	134	143	185	303	303	1000	969	969	969	6	8	6	11	11
8	4.3980E-03	26	41	42	51	58	58	969	1000	1000	1000	2	2	2	3	3
9	4.3980E-03	26	41	42	51	58	58	969	1000	1000	1000	2	2	2	3	3
10	4.3509E-03	26	41	42	52	58	58	969	1000	1000	1000	6	5	4	5	5
11	1.5633E-03	21	34	36	29	18	18	6	2	2	6	1000	730	447	521	485
12	1.3122E-03	25	42	45	36	22	22	8	2	2	5	730	1000	585	640	595
13	1.2082E-03	21	35	37	29	18	18	6	2	2	4	447	585	1000	531	492
14	9.1368E-04	35	58	61	48	31	31	11	3	3	5	521	640	531	1000	819
15	8.5168E-04	35	59	63	49	31	31	11	3	3	5	485	595	492	819	1000
Relati	ve uncertair	ntv (re	∍lativ	ve sta	andaro	dev	iation	ı) ar	nd cor	rrelat	tion	(norma	alizeo	to '	1000)	for nu-
bar fo	r 240Pu		01001					-, 011				(11011)			,	202 110
aroun	rel g d															
910ap 1	1 0857E - 02	1000	672	138	0	0	0	0	0	0	0	0	0	0	0	0
2	2.6479E-02	672	1000	625	390	303	303	303	303	303	303	303	303	303	303	303
2	2 6926E-02	138	625	1000	508	309	309	309	309	309	309	309	309	309	309	309
4	3 7373E-02	100	390	508	1000	975	975	975	975	975	975	975	975	975	975	975
т 5	4 8100F-02	0	303	300	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
5	4.0100E-02	0	202	200	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
0	4.8100E-02	0	202	209	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
,	4.0100E-02	0	202	209	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
0	4.8100E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	4.8100E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	4.8100E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
	4.8100E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	4.8100E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	4.8100E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	4.8100E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	4.8100E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Relati	ve uncertair	nty (re	elativ	ve sta	andaro	dev:	iatio	ı) aı	nd cor	rrelat	tion	(norma	alized	l to 1	1000)	for nu-
bar fo	r 241Pu	-														
qroup	rel.s.d.															
1	4.4976E-03	1000	581	531	358	288	288	288	288	288	288	288	288	288	288	288
2	2.7245E-03	581	1000	998	968	946	946	946	946	946	946	946	946	946	946	946
2	2.7345E-03	531	998	1000	981	964	964	964	964	964	964	964	964	964	964	964
4	2 8414E-03	251 252	968	9,9,1	1000	997	997	997	997	997	997	997	997	997	996	996
т 5	2.04140 = 03 2.0414 = 03	220	916	961	1000 907	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
ر م	2.71546-03	200	040	0.64	760	1000	1000	1000	1000	1000	1000	1000	1000	1000	2000	000
ю г	∠.9104E-U3	∠88 200	946	904 064	771	1000	1000	1000	1000	1000	1000	1000	1000	1000	222	222
/	∠.9154E-U3	∠88 2000	946	964 064	770	1000	1000	1000	1000	1000	1000	1000	1000	1000	222	222
8	∠.9154E-U3	∠88 200	946	964	99/	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
9	∠.9⊥54比-03	288	946	964	997	TUUU	T000	TUUU	TUUU	TUUU	T000	TUUU	TUUU	TUUU	999	999

10	2.9154E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
11	2.9154E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
12	2.9154E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
13	2.9146E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	2 9154E-03	288	946	964	996	999	999	999	999	999	999	999	999	1000	1000	1000
15	2 9154E-03	288	946	964	996	999	999	999	999	999	999	999	999	1000	1000	1000
10	2.91946-05	200	740	204	550									1000	1000	TOOO
Relati	ve uncertair	nty (re	elativ	<i>r</i> e sta	andaro	d dev	iation	n) ai	nd coi	rrelat	tion	(norma	alized	d to :	1000)	for nu-
bar fo	r 242Pu	1														
aroup	rel.s.d.															
1	1.0000E-01	1000	672	138	0	0	0	0	0	0	0	0	0	0	0	0
2	3.0000E-02	672	1000	625	390	303	303	303	303	303	303	303	303	303	303	303
3	2 2439E-02	138	625	1000	508	309	309	309	309	309	309	309	309	309	309	309
4	3 1144E-02	0	390	508	1000	975	975	975	975	975	975	975	975	975	975	975
5	4 0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
5	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
7	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
γ Ω	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	4.0003E-02	0	202	202	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	4.00036-02	0	202	209	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	4.0083E-02	0	303	309	975	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Polati	vo uncortair	tu (ra	alatin	to at i	andard	a dow	iation	-)		rrolat	tion	(norm)	alizor	3 to -	1000)	for nu-
har fo	$r 2/1 \lambda m$	ICY (10	ELALIN		anuaro	i uev	Iacioi	.1) ai	.iu coi	LICIA		(1101111	allaed	1 10 .	1000)	IOI IIu-
aroun	rol a d															
group 1	2 0000E_02	1000	120	 27		0										0
1 2	3.0000E-02	122	1000	ر کے 11	107	71	71	71							71	71
2	3.0000E-02	27	E11	1000		71	71	71	71	71	71	71	71	71	71	71
2	3.0000E-02	27	107	1000	1000	010	010	010	010	010	010	010	010	010	010	70
4 E	3.0000E-03	0	197 71	005	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
5	3.0000E-02	0	71	76	010	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
6	3.0000E-02	0	/1	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
/	3.0000E-02	0	/1	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
8	3.0000E-02	0	/1	/6	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	3.0000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	3.0000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	3.0000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	3.0000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	3.0000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	3.0000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	3.0000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Deleti			-1-+			-		-)				(-14	3 +	1000)	f
Reidli	ve uncertain	ICY (IG	STALIN	/e sta	anuaro	i dev.	Iacio	.1) al	.ia coi	LIELA		(11011116	alized	1 10 .	1000)	LOL IIU-
Dar IO																
group	rel.s.a.															
1	1.0428E-01	1000	581	531	358	288	288	288	288	288	288	288	288	288	288	288
2	9.1295E-03	581	1000	998	968	946	946	946	946	946	946	946	946	946	946	946
3	6.6162E-03	531	998	1000	981	964	964	964	964	964	964	964	964	964	964	964
4	6.8430E-03	358	968	981	1000	997	997	997	997	997	997	997	997	997	996	996
5	6.9995E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
6	6.9995E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
7	6.9995E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
8	6.9995E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999

10	6.9995E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
11	6.9995E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
12	6.9995E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
13	6 9965E-03	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	6 9995E-03	288	946	964	996	999	999	999	999	999	999	999	999	1000	1000	1000
15	6 9995E-03	200	916	964	996	999	ورر	999	ورر	ورر	ورر	999	ورر	1000	1000	1000
10	0.99938-03	200	940	904	990	פפפ	222	222	222	222	ووو	ووو	222	1000	1000	1000
Relativ	ve uncertain	nty (re	elativ	ve sta	andaro	d dev	iation	1) ai	nd coi	rrelat	tion	(norma	alized	l to :	1000)	for nu-
bar for	r 243Am	-														
qroup	rel.s.d.															
1	1.8823E-02	1000	132	27	0	0	0	0	0	0	0	0	0	0	0	0
2	1.9772E-02	132	1000	511	197	71	71	71	71	71	71	71	71	71	71	71
3	1 9067E - 02	27	511	1000	605	76	76	76	76	76	76	76	76	76	76	76
4	1 0880E-02		197	605	1000	818	818	818	818	818	818	818	818	818	818	818
5	1 2000F-02	0	1 T	76	£000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
5	1.2000E-02	0	71	70	010	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
0	1 2000E-02	0	7 L 7 1	70	010	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
/	1.2000E-02	0	/ L 7 1	70	010	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
0	1.2000E-02	0	71	76	010	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	1.2000E-02	0	/1	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	1.2000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	1.2000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	1.2000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	1.2000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	1.2000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	1.2000E-02	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
		. ,							-			,	- ·	.		c
Relativ	ve uncertain	ity (re	elativ	ve sta	andaro	d dev	lation	1) ai	nd coi	rrelat	tion	(norma	alizeo	to.	1000)	for nu-
par IO	r 242Cm															
group	rel.s.d.															
Ţ	1.1000E-01	1000	132	27	0	0	0	0	0	0	0	0	0	0	0	0
2	1.1500E-01	132	1000	511	197	71	71	71	71	71	71	71	71	71	71	71
3	1.1000E-01	27	511	1000	605	76	76	.76	76	.76	.76	.76	76	.76	.76	76
4	1.0000E-01	0	197	605	1000	818	818	818	818	818	818	818	818	818	818	818
5	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
6	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
7	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
8	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
9	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
10	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
11	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
12	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
13	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
14	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
15	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Relativ	ve uncertain	nty (re	elativ	ve sta	andaro	d dev	iatior	ı) aı	nd coi	rrelat	cion	(norma	alized	l to :	1000)	for nu-
bar for	r 243Cm															
group	rel.s.d.															
1	9.6361E-02	1000	581	531	358	288	288	288	288	288	288	288	288	288	288	288
2	1.4075E-02	581	1000	998	968	946	946	946	946	946	946	946	946	946	946	946
- 7	1.2378E-02	531	998	1000	981	964	964	964	964	964	964	964	964	964	964	964
4	1 2802E-02	221 258	968	981	1000	997	997	997	997	997	997	997	997	997	996	996
т 5	1 30958-02	220	946	961	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999
S C		200	01C	064	ונכ	1000	1000	1000	1000	1000	1000	1000	1000	1000	ور ر	موم
0	1 2005E-UZ	200	940 040	204 0/4	7 2 2 1	1000	1000	1000	1000	1000	1000	1000	1000	1000	222	222
/	1 20050 02	200	946	964	99/ 007	1000	1000	1000	1000	1000	1000	1000	1000	1000	333	222
8	1.30958-02	288	946	964	997	1000	T000	1000	T000	T000	T000	T000	T000	1000	999	999
9	1.3095E-02	288	946	964	997	T000	T000	T000	T000	T000	T000	T000	T000	T000	999	999

10	1.3095E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
11	1.3095E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
12	1.3095E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
13	1.3089E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
14	1.3095E-02	288	946	964	996	999	999	999	999	999	999	999	999	1000	1000	1000	
15	1.3095E-02	288	946	964	996	999	999	999	999	999	999	999	999	1000	1000	1000	
Relati	ve uncertain	ty (re	elativ	ve sta	andard	d dev:	iation	ı) aı	nd coi	rrelat	tion	(norma	alized	l to 1	1000)	for nu	ι-
bar fo	r 244Cm																
group	rel.s.d.																
1	1.1000E-01	1000	132	27	0	0	0	0	0	0	0	0	0	0	0	0	
2	1.2000E-01	132	1000	511	197	71	71	71	71	71	71	71	71	71	71	71	
3	1.0000E-01	27	511	1000	605	76	76	76	76	76	76	76	76	76	76	76	
4	1.0000E-01	0	197	605	1000	818	818	818	818	818	818	818	818	818	818	818	
5	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
6	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
7	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
8	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
9	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
10	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
11	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
12	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
13	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
14	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
15	1.0000E-01	0	71	76	818	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
Relati	ve uncertain	ity (re	elativ	ve sta	andard	d dev:	iatior	ı) aı	nd coi	rrelat	tion	(norma	alized	l to :	1000)	for nu	ι-
bar fo	r 245Cm																
group	rel.s.d.																
1	9.6361E-02	1000	581	531	358	288	288	288	288	288	288	288	288	288	288	288	
2	2.9088E-02	581	1000	998	968	946	946	946	946	946	946	946	946	946	946	946	
3	2.8496E-02	531	998	1000	981	964	964	964	964	964	964	964	964	964	964	964	
4	2.9473E-02	358	968	981	1000	997	997	997	997	997	997	997	997	997	996	996	
5	3.0147E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
6	3.0147E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
7	3.0147E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
8	3.0147E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
9	3.0147E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
10	3.0147E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
11	3.0147E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
12	3.0147E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	999	999	
13	3.0134E-02	288	946	964	997	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
14	3.0147E-02	288	946	964	996	999	999	999	999	999	999	999	999	1000	1000	1000	
15	3.0147E - 02	288	946	964	996	999	999	999	999	999	999	999	999	1000	1000	1000	