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ABSTRACT 
Gears are important element in a variety of industrial applications such as machine tool and gearboxes. An unexpected 

failure of the gear may cause significant economic losses. For that reason, fault diagnosis in gears has been the subject of 

intensive research. Vibration signal analysis has been widely used in the fault detection of rotation machinery. The vibration 

signal of a gearbox carries the signature of the fault in the gears, and early fault detection of the gearbox is possible by 

analyzing the vibration signal using different signal processing techniques. In this paper, a review is made of some current 

vibration analysis techniques used for condition monitoring in gear fault.  
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1. INTRODUCTION 

All machines with moving parts give rise to sound 

and vibration. Each machine has a specific vibration 

signature related to the construction and the state of 

the machine. If the state of the machine changes the 

vibration signature will also change. A change in the 

vibration signature can be used to detect incipient 

defects before they become critical. This is the basics 

of many condition monitoring methods. Condition 

monitoring can save money through increased 

maintenance efficiency and by reducing the risk of 

serious accidents by preventing breakdowns. The use 

of vibration analysis as one of the fundamental tools 

for condition monitoring has been developed 

extensively over a period of approximately 35 years. 

With the parallel developments in electronic 

equipment, transducers, computers and software 

nowadays machine supervision is almost completely 

automated. In the present work the authors present a 
review of a variety of diagnosis techniques for 

gearbox fault identification with particular regard to 

vibration analysis. The vibration techniques were 

developed with two main purposes. The first purpose 

is to separate the gearbox related signal from other 

components and to minimize the noise that may mask 

the gearbox signal, especially in the early stages of 

the fault. The second purpose is to identify the status 

of the gearbox, to distinguish the good and the faulty 

gear and to indicate the defective components. 

Examples of widely used techniques for gearbox are 

such as Waveform analysis, Time-Frequency 

analysis, Faster Fourier Transform (FFT), Spectral 

analysis, Order analysis, Time Synchronous Average, 

and probability density moments. These vibration 

based diagnosis techniques has been the most popular 

monitoring technique because of ease of 

measurement. Vibration analysis was used former 

mainly to determine faults and critical operation 

conditions. Nowadays the demands for condition 

monitoring and vibration analysis are no more limited 

trying to minimize the consequences of machine 

failures, but to utilize existing resources more 

effectively.  

2. FAULT DETECTION AND DIAGNOSIS 

FROM VIBRATION ANALYSIS 

Diagnostics is understood as identification of a 

machine's condition/faults on the basis of symptoms. 

Diagnosis requires a skill in identifying machine's 

condition from symptoms. The term diagnosis is 

understood here similarly as in medicine. It is 

generally thought that vibration is a symptom of a 

gearbox condition. Vibration generated by gearboxes 

is complicated in its structure but gives a lot of 

information. We may say that vibration is a signal of 

a gearbox condition. To understand information 

carried by vibration one have to be conscious/ aware 

of a relation between factors having influence to 

vibration and a vibration signal. In order to detect 

(and diagnosis) an impending failure, a good 

understanding of the evidence relating to the failure 

mode and methods of collecting and quantifying the 

evidence is needed. Although many faults may be 

easily detectable by physical examination of a 

component, using techniques such as microscopy, X-

ray, dye penetrates, magnetic rubber, etc., these 

methods usually cannot be performed without 

removal of, and in some cases physical damage to, 

the component. Whilst physical examination 

techniques still play a critical role during 

manufacture, assembly and overhaul, they are 

impractical in an operational large transmission 

system and other (non-intrusive) fault detection 

methods need to be employed for routine monitoring 

purposes. Most modern techniques for gear 

diagnostics are based on the analysis of vibration 

signals picked up from the gearbox casing. The 

common target is to detect the presence and the type 

of fault at an early stage of development and to 

monitor its evolution, in order to estimate the 

machine’s residual life and choose an adequate plan 

of maintenance. It is well known that the most 

important components in gear vibration spectra are 

the gear meshing frequency (GMF) and its 

harmonics, together with sidebands due to 

modulation phenomena. The increment in the number 

and amplitude of such sidebands may indicate a fault 

condition. Moreover, the spacing of the sidebands is 

related to their source. source identification and fault 

detection from vibration signals associated with items 

which involve rotational motion such as gears, rotors 

and shafts, rolling element bearings, journal bearings, 

flexible couplings, and electrical machines depend 

upon several factors: (i) the rotational speed of the 

items, (ii) the background noise and/or vibration 

level, (iii) the location of the monitoring transducer, 

(iv) the load sharing characteristics of the item, and 
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(v) the dynamic interaction between the item and 

other items in contact with it. The main causes of 

mechanical vibration are unbalance, misalignment, 

looseness and distortion, defective bearings, gearing 

and coupling in accuracies, critical speeds, various 

form of resonance, bad drive belts, reciprocating 

forces, aerodynamic or hydrodynamic forces, oil 

whirl, friction whirl, rotor/stator misalignments, bent 

rotor shafts, defective rotor bars, and so on. Some of 

the most common faults that can be detected using 

vibration analysis are summarized in Table 1 

Table 1: Some typical faults and defects that can 

be detected with vibration analysis 

 
Ebersbach et al, (2005) [1], has investigated the 

effectiveness of combining both vibration analysis 

and wear debris analysis is an integrated machine 

condition monitoring maintenance program. Decker 

Harry. J (2002) [2], has proposed two new detection 

techniques. The time synchronous averaging concept 

was extended from revolution-based to tooth 

engagement based. The detection techniques are 

based on statistical comparisons among the averages 

for the individual teeth. These techniques were 

applied to a series of three seeded fault crack 

propagation tests. Polyshchuk V.V et al (2002) [3], 

has presents the development of a novel method in 

gear damage detection using a new gear fault 

detection parameter based on the energy change in 

the joint time-frequency analysis of the vibration 

analysis of the vibration signal. Choy F. K et al, 

(2003) [4], demonstrates the use of vibration 

signature analysis procedures for health monitoring 

and diagnostics of a gear transmission system. Lin J. 

and Zuo M. J (2003) [5], has introduced an adaptive 

wavelet filter based on Morlet Wavelet, the 

parameters in the Morlet wavelet function are 

optimized based on the kurtosis maximization 

principle. The wavelet used is adaptive because the 

parameters are not fixed. The adaptive wavelet filter 

is found to be very effective in detection of 

symptoms from vibration signals of a gearbox with 

early fatigue tooth crack. 

3. GEARBOX FAILURE AND ITS VIBRATION 

ANALYSIS TECHNIQUES 

The principle causes for gear failure are given here - 

a) An error of design, b) An application error, c) It is 

likely that there is a manufacturing error. Design 

errors may be due to causes like improper gear 

geometry, use of wrong materials, quality, lubrication 

and other specifications. Application errors can be 

due to problems like vibration, mounting and 

installation, cooling and maintenance while 

manufacturing errors can be in the form of mistakes 

in machining or problems in heat treating.  Summary 

of safety critical failure modes (Table 2), several 

researchers worked on the subject of gearbox defect 

detection and diagnosis through vibration analysis. 

Time domain, frequency domain, time frequency 

domain based on short time Fourier transform 

(STFT) and wavelet transform and advanced signal 

processing techniques have been implemented and 

tested. 

Table 2 Safety critical failure modes 

 
3.1 Time Domain Analysis: The time domain 

methods try to analyze the amplitude and phase 

information of the vibration time signal to detect the 

fault of gear-rotor-bearing system. The time domain 

is a perceptive that feels natural, and provides 

physical insight into the vibration [6]. It is 

particularly useful in analyzing impulsive signals 

from bearing and gear defects with non-steady and 

short transient impulses [7]. 

3.1.1 Time Waveform Analysis: Prior to the 

commercial availability of spectral analyzers, almost 

all vibration analysis was performed in the time 

domain.  By studying the time domain waveform 

using equipment such as oscilloscopes, oscillographs, 

or ‘vibrographs’, it was often possible to detect 

changes in the vibration signature caused by faults.  

However, diagnosis of faults was a difficult task; 

relating a change to a particular component required 

the manual calculation of the repetition frequency 

based on the time difference observed between 

feature points. Waveform analysis can also be useful 

in identify vibrations that are non synchronous with 

shaft speed. In machine cost down analysis waveform 

can indicate the occurrence of resonance. A typical 

vibration waveform is shown in figure-3.1 for a 

gearbox. This waveform shows the anomalous 

behavior of the gear after certain intervals with large 

magnitude. The peak level, RMS, level, and the crest 

factor are often used to quantify the time signal. 
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Figure 3.1: A typical waveform of defected gear 

vibration signal. 

3.1.2 Indices: Indices have also been used in 

vibration analysis [8, 6]. The peak value, RMS level 

and their ratio crest factor are often used to quantify 

the time signal. The peak level is not a statistical 

quantity and hence may not be reliable in detecting 

damage continuously operating systems. The RMS 

value, however, is more-satisfactory for steady-state 

applications. The crest factor, defined as the ratio of 

the peak value to RMS level, has been proposed as a 

trending parameter as it includes both parameters. 

Crest factors are reliable only in the presence of 

significant impulsiveness.  

Peak: The peak level of the signal is defined simply 

as half the difference between the maximum and 

minimum vibration levels: 

)(AMaxpeak = …………… (3.1) 

RMS: The RMS (Root Mean Square) value of the 

signal is the normalized second statistical moment of 

the signal (standard deviation): 
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Where, A(n) is the amplitude of the nth digitized 

point in the time domain, and N is the number of 

point in time domain. 

The RMS of the signal is commonly used to describe 

the ‘steady-state’ or ‘continuous’ amplitude of a time 

varying signal. 

Crest Factor: The crest factor is defined as the ratio 

of the peak value to the RMS of the signal: 

LevelRMS

LevelPeak
FactorCrest = ………. (3.3) 

3.1.3 Statistical Methods: Statistical analysis can 

also be carried out on time domain data. 

Kurtosis: Kurtosis is the normalized fourth statistical 

moment of the signal [8]. For continuous time signals 

this is defined as: 
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Where y(n) is the data; n = 1, 2, 3,…..N; N is the total 

number of data samples, µ is the mean; and σ is the 

standard deviation. 

The kurtosis level of a signal is used in a similar 

fashion to the crest factor that is to provide a measure 

of the impulsive nature of the signal. Raising the 

signal to the fourth power effectively amplifies 

isolated peaks in the signal. 

Skewness: Skewness is a measure of symmetry, or 

more precisely, the lack of symmetry. A distribution 

of data set is symmetric if it looks the same to the left 

and right of the centre point. Equation (3.5) is used to 

calculate the values of skewness. 
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3.2 Frequency Domain Analysis: The frequency 

domain methods include Fast Fourier Transform 

(FFT), Hilbert Transform Method and Power 

Cepstrum Analysis, etc. They are using the difference 

of power spectral density of the signal due to the fault 

of gear and/or bearing to identify the damage of 

elements [8]. Any real world signal can be broken 

down into a combination of unique sine waves. Every 

sine wave separated from the signal appears as a 

vertical line in the frequency domain. Its height 

represents its amplitude and its position represents 

the frequency. The frequency domain representation 

of the signal is called the signal. The frequency 

domain completely defines the vibration. Frequency 

domain analysis not only detects the faults in rotating 

machinery but also indicates the cause of the defect 

[6]. 

Theoretically, time domain can be converted into 

frequency domain using the Fourier Transforms and 

vice versa. The Fourier transform is a generalization 

of the complex Fourier series in the limit as L→∞. 

Replace the discrete An with the continuous F(k)dk 

while letting n/L→k. Then change the sum to an 

integral, and the equations become 

( ) dkekFxf ikx∫
∞

∞−

= π2)( ………... (3.6) 

( ) dxexfkF ikx∫
∞

∞−

−= π2)( ………. (3.7) 

Here, equation (3.7) is called forward (-i) Fourier 

Transform and the (3.6) is called the inverse Fourier 

Transform. 

3.2.1 Fast Fourier Transformation: The Fast 

Fourier Transform (FFT) is simply a class of special 

algorithms which implement the discrete Fourier 

transform with considerable savings in computational 

time. It must be pointed out that the FFT is not a 

different transform from the DFT, but rather just a 

means of computing the DFT with a considerable 

reduction in the number of calculations required. The 

Fast Fourier transform (FFT) is a discrete Fourier 

transform algorithm which reduces the number of 

computations needed for N points from 2N
2
 to 2Nlg 

N, where log is the base-2 logarithm. 

 
Figure 3.2: A typical FFT Spectrum of defected 

gear vibration signal. 
The vibration characteristics of any rotating machine 

are to some extent unique, due to the various transfer 
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characteristics of the machine. In the FFT plot 

various peaks with large and small are presented 

corresponding to characteristic frequencies shows the 

origin of defects. Or we can say FFT shows the 

frequencies in terms of shaft harmonics. For gear 

problems, special attention must be given to gear’s 

FFT spectrum’s bearing defect frequencies. The 

spectra of FFT may produce peaks at identified fault 

frequencies. These peaks may or may not represent 

the indicated fault. One must look for harmonics to 

determine if the identified frequencies were 

generated from the indicated fault. 

� If peaks appear at the fundamental fault frequency 

and also at frequency two times of fundamental 

frequency, it shows strong indication of reality of 

fault. 

� If no peak appears at the fundamental fault 

frequency but peaks are present at two, three, and 

maybe four times of fundamental fault frequency, 

then this also represents a strong indication that 

the indicated fault is valid. 

FFT for determination of the severity of the fault: 

� One way to determine the fault’s severity is to 

compare its amplitude with the past readings 

taken under consistent conditions. 

� Another way is to compare the amplitude to the 

other readings obtained by similar machines 

running under same conditions. A higher than 

normal reading indicates a problem.  

3.2.2 Frequency band analysis 

Often, the fault detection capability using overall 

vibration level and/or wave shape metrics can be 

significantly improve by dividing the vibration signal 

into a number of frequency bands prior to  analysis. 

This can be done with a simple analogue band-pass 

filter between the vibration sensor and the 

measurement device.  The rationale behind the use of 

band-pass filtering is that, even though a fault may 

not cause a significant change in overall vibration 

signal (due to masking by higher energy, non-fault 

related vibrations), it may produce a significant 

change in a band of frequencies in which the non-

fault related vibrations are sufficiently small.  For a 

simple gearbox, with judicious selection of frequency 

bands, one frequency band may be dominated by 

shaft vibrations, another by gear tooth-meshing 

vibrations, and another by excited structural 

resonances; providing relatively good coverage of all 

gearbox components.  

3.2.3 Spectral Analysis 

Spectral (or frequency) analysis is a term used to 

describe the analysis of the frequency domain 

representation of a signal.  Spectral analysis is the 

most commonly used vibration analysis technique for 

condition monitoring in geared transmission systems 

and has proved a valuable tool for detection and basic 

diagnosis of faults in simple rotating machinery [26]. 

Whereas the overall vibration level is a measure of 

the vibration produced over a broad band of 

frequencies, the spectrum is a measure of the 

vibrations over a large number of discrete contiguous 

narrow frequency bands. The fundamental process 

common to all spectral analysis techniques is the 

conversion of a time domain representation of the 

vibration signal into a frequency domain 

representation. This can be achieved by the use of 

narrow band filters or, more commonly in recent 

times, using the discrete Fourier Transform (DFT) of 

digitized data. The vibration level at each ‘frequency’ 

represents the vibration over a narrow frequency 

band centered at the designated ‘frequency’, with a 

bandwidth determined by the conversion process 

employed. For machines operating at a known 

constant speed, the frequencies of the vibrations 

produced by the various machine components can be 

estimated therefore, a change in vibration level 

within a particular frequency band can usually be 

associated with a particular machine component.  

Analysis of the relative vibration levels at different 

frequency bands can often give an indication of the 

nature of a fault, providing some diagnostic 

capabilities. The frequency domain spectrum of the 

vibration signal reveals frequency characteristics of 

vibrations if the frequencies of the impulse 

occurrence are close to one of the gear characteristic 

frequencies, such as gear frequency, pinion 

frequency, gear mesh frequency, as shown in 

equations (3.7 to 3.9). Then it may indicate a defect 

related fault in the gearbox.  
The Gear frequency (Frg) is given by  

Frg = Rg / 60 (Hz) ------------------------------- (3.7) 
The Pinion frequency (Frp) is given by  

Frp = Rp / 60 (Hz) ------------------------------- (3.8) 

The Tooth Mesh Frequency (Frm) is given by  
Frm = Frp x Np (Hz) or Frg x Ng (Hz) --------- (3.9) 

Where:  Rg is the speed of gear in rpm, Rp is the speed 

of pinion in rpm, Np is the number of teeth on the 

pinion and Ng is the number of teeth on gear 

3.2.4 Conversion to the frequency domain 

The frequency domain representation of a signal can 

be described by the Fourier Transform [9] of its time 

domain representation 

( ) ( )∫
∞

∞−

−= .2 dtftjetxfX π ------------- (3.10) 

Where x(t) is the original function in time domain, 

X(f) is the Fourier transform of the function x(t).  

The inverse process (Inverse Fourier Transform [9]) 

can be used to convert from a frequency domain 

representation to the time domain 

( ) ( )∫
∞

∞−

−= .2 dfftjefXtx π ----------------- (3.11) 

Where j is the square root of -1 and e denotes the 

natural exponent. In the above equation, t stands for 

time, f stands for frequency, and x denotes the signal 

in frequency domain. 

There are a number of limitations inherent in the 

process of converting vibration data from the time 

domain to the frequency domain. 

3.2.5 FFT Analyzers 

Most modern spectrum analyzers use the Fast Fourier 

Transform (FFT) [10], which is an efficient algorithm 

for performing a Discrete Fourier Transform (DFT) 

of discrete sampled data. 

The Discrete Fourier Transform is defined as [27] 
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and the Inverse Discrete Fourier Transform [36] is 
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The sampling process used to convert the continuous 

time signal into a discrete signal can cause some 

undesirable effects. 

3.3 Order Analysis 

Order analysis is a technique for analyzing noise and 

vibration signals in rotating or reciprocating 

machinery. Some examples of rotating or 

reciprocating machinery include aircraft and 

automotive engines, compressors, turbines, and 

pumps. Such machinery typically has a variety of 

mechanical parts such as a shaft, bearing, gearbox, 

blade, coupling, and belt. Each mechanical part 

generates unique noise and vibration patterns as the 

machine operates. Each mechanical part contributes a 

unique component to the overall machine noise and 

vibration. When performing vibration analysis many 

sound and vibration signal features are directly 

related to the running speed of a motor or machine 

such as imbalance, misalignment, gear mesh, and 

bearing defects.  Order analysis is a type of analysis 

geared specifically towards the analysis of rotating 

machinery and how frequencies change as the 

rotational speed of the machine changes.  It 

resamples raw signals from the time domain into the 

angular domain, aligning the signal with the angular 

position of the machine. This negates the effect of 

changing frequencies on the FFT algorithm, which 

normally cannot handle such phenomena. 

Table 3: Noise or Vibration Characteristics of 

mechanical faults 

 
Note: 1x means 1st order component and nx means nth order 

component. 

A common order analysis application is usually 

comprised of 5 steps: 

� Acquire noise or vibration signals and 

tachometer signal. 

� Preprocess the noise or vibration signals. 

� Process the tachometer signal to get the 

rotational speed profile. 

� Perform order analysis with the noise or 

vibration signals and speed profile. 

� Display the analysis results in different 

formats. 

 
Figure 4.1 Common Order Analysis Application 

Process 

3.4 Time synchronous Averaging 

Stewart [11] showed that with ‘time synchronous 

averaging’ the complex time-domain vibration signal 

from a transmission could be reduced to estimates of 

the vibration for individual shafts and their associated 

gears. The synchronous average for a shaft is then 

treated as if it were a time domain vibration signal for 

one revolution of an individual, isolated shaft with 

attached gears. Time Synchronous Averaging (TSA) 

is a fundamentally different process than the usual 

spectrum averaging that is generally used in FFT 

analysis. While the concept is similar, TSA results in 

a time domain signal with lower noise than would 

result with a single sample. An FFT can then be 

computed from the averaged time signal. The signal 

is sampled using a trigger that is synchronized with 

the signal. The averaging process gradually 

eliminates random noise because the random noise is 

not coherent with the trigger. Only the signal that is 

synchronous and coherent with the trigger will persist 

in the averaged calculation, as shown below. 

Traditional spectrum based averaging records a frame 

of data in the time domain, computes the FFT and 

then adds the FFT spectrum to the averaged 

spectrum. The time signal is discarded and then the 

process is repeated until the averaging number is 

complete. The result is a spectrum with very low 

noise, but if you examine each time record that is 

used to compute the FFT spectra, each time record 

will include the signal of interest plus random noise 

because the averaging is performed in the frequency 

domain, not the time domain. Another important 

application of time synchronous averaging is in the 

waveform analysis of machine vibration, especially 

in the case of gear drives. In this case, the trigger is 

derived from a tachometer that provides one pulse 

per revolution of a gear in the machine. This way, the 

time samples are synchronized in that they all begin 

at the same exact point related to the angular position 

of the gear. After performing a sufficient number of 

averages, spectrum peaks that are harmonics of the 

gear rotating speed will remain while non-

synchronous peaks will be averaged out from the 

spectrum. Two kinds of time synchronous average: 

time synchronous linear average and time 

synchronous exponential average. 

 
Figure 4.2 Synchronous signal averaging 

For time synchronous linear average the spectrum 

will stop updating when the average number is 

reached.  

Tn = nth frame of the time block signal  

An = nth average of the time block signal  

N = average number given  

For  n = 1~N, A1 = T1.  

An = (An-1 *(n-1) + Tn )/n  
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nth frame of the spectrum is calculated from An.  

When the average number N is reached, the averaged 

time block signal is  

AN = (AN-1 *(N-1) + TN )/N = (A1 + A2 + A3 + … 

AN-1 + AN )/N  
The averaged spectrum is calculated from AN.  

For time synchronous exponential average: spectrum 

keeps updating and never stops.  

α = 1/N = inverse of the average number N  

Tcur = current frame of the time block signal  

Acur = current average of the time block signal  

Apre = previous average of the time block signal  

The averaged time block signal is 

 Acur = (1- α)*Apre + α * Tcur  
The averaged spectrum is calculated from Acur.  

Stewart developed a number of non-dimensional 

parameters based on the synchronous signal average, 

which he termed ‘Figures of Merit’ [38]. These were 

originally defined as a hierarchical group, with which 

Stewart described a procedure for the detection and 

partial diagnosis of faults. 

3.4.1 FM0 

The parameter FM0 was developed by Stewart in 

1977 as a robust indicator of major faults in a gear 

mesh [11]. Major changes in the meshing pattern are 

detected by comparing the maximum peak-to-peak 

amplitude of the signal to the sum of the amplitudes 

of the mesh frequencies and their harmonics. FM0 is 

given as 

∑ =

=
H
n nP

xPP
FM

0

0 ----------------------- (3.14) 

where PPx is the maximum peak-to-peak amplitude 

of the signal x; Pn is the amplitude of the nth 

harmonic, and H is the total number of harmonics in 

the frequency range. Notice that in cases where PPx 

increases while Pn remains relatively constant, FM0 

increases. Also, if Pn decreases while PPx remains 

constant, FM0 also increases. 

3.4.2 FM4 

Developed by Stewart in 1977, the parameter FM4 

was designed to complement FM0 by detecting faults 

isolated to only a limited number of teeth [11]. This 

is accomplished by first constructing the difference 

signal, d; given in Eq. (5). The normalized kurtosis of 

d is then computed. FM4 is given as 
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Where d  is the mean of the difference signal, and N 

is the total number of data points in the time signal. 

FM4 is nondimensional and designed to have a 

nominal value of 3 if d is purely Gaussian. When 

higher-order sidebands appear in the vibration signal, 

FM4 will deviate from this value. 

3.4.3 NA4 

The parameter NA4 was developed in 1993 by 

Zakrajsek, Townsend, and Decker at the NASA 

Lewis Research Center as a general fault indicator 

which reacts not only to the onset of damage as FM4 

does, but also to the continuing growth of the fault 

[12]. The residual signal r; given in Eq. (6), is first 

constructed. The quasi-normalized kurtosis of the 

residual signal is then computed by dividing the 

fourth moment of the residual signal by the square of 

its run time averaged variance. The run time averaged 

variance is the average of the residual signal over 

each time signal in the run ensemble up to the point 

at which NA4 is currently being calculated. NA4 is 

given as 
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Where r is the mean of the residual signal, N is the 

total number of data points in the time signal, M is 

the number of the current time signal, and j is the 

index of the time signal in the run ensemble. Like 

FM4, NA4 is nondimensional and designed to have a 

nominal value of 3 if r is purely Gaussian. 

3.4.4 M6A 

The parameter M6A was proposed by Martin in 1989 

as an indicator of surface damage on machinery 

components [13]. The underlying theory is the same 

as that of FM4. However, it is expected that M6A 

will be more sensitive to peaks in the difference 

signal due to the use of the sixth moment. M6A is 

given as 
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Note that in this case, the moment is normalized by 

the cube of the variance. 

3.4.5 M8A 

The parameter M8A, also proposed by Martin in 

1989, is designed to be yet more sensitive than M6A 

to peaks in the difference signal [13]. M8A uses the 

eighth moment normalized by the variance to the 

fourth power and is given as 
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3.4.6 NB4 

The parameter NB4 was developed by Zakrajsek, 

Handschuh and Decker in 1994 as an indicator of 

localized gear tooth damage [14]. The theory behind 

NB4 is that damage on just a few teeth will cause 

transient load fluctuations different from those load 

fluctuations caused by healthy teeth, and that this can 

be seen in the envelope of the signal. As with NA4, 

NB4 uses the quasi-normalized kurtosis. However, 

instead of the difference signal, NB4 uses the 

envelope of the signal band-pass filtered about the 

mesh frequency. The envelope, s is computed using 

the Hilbert transform and is given by 

[ ][ ]))(()()( tbHitbts += --------------------- (3.19) 

Where b(t) is the signal band-pass filtered about the 

mesh frequency, H(b(t)) is the Hilbert transform of 

b(t); and i is the sample index. 

3.4.7 NA4* 

The parameter NA4* was developed in 1994 by 

Decker, Handschuh and Zakrajsek as an enhancement 

to NA4 [15]. In this case, the denominator of NA4 is 

statistically modified, i.e. when the variance of the 

residual signal exceeds a certain statistically 



                                           International Journal of Advanced Engineering Technology           E-ISSN 0976-3945 

IJAET/Vol.III/ Issue II/April-June, 2012/04-12 

 

determined value, the averaging stops and the 

denominator is locked. This modification was made 

based on the observation that as damage progresses 

from localized to distributed, the variance of the 

signal increases significantly, causing the kurtosis to 

settle back to nominal values after the initial 

indication of the onset of damage. By normalizing the 

fourth moment by the variance of a baseline signal 

from the transmission operating under nominal 

conditions, NA4* is provided with enhanced trending 

capabilities. Since it was observed that the variance 

of a damaged transmission signal is greater than that 

of a healthy transmission signal, the decision to lock 

the denominator is made based on an upper limit, L; 

given by 

σ
N

Z
vL += ----------------------- (3.20) 

Where v is the mean value of previous variances, Z is 

the probability coefficient usually chosen for a 

normal distribution, s is the standard deviation of the 

previous variances, and N is the number of samples. 

Z for a normal distribution can be found in any 

introductory statistics text. However, the actual 

choice of Z should be made based on 

experimentation as too small a value could lead to an 

over abundance of false alarms. 

3.4.8 Demodulation 

The original observation made by Stewart [11] that 

gear tooth damage causes an increase in the 

amplitude of the sidebands about the regular meshing 

components led to further investigations into the 

nature of the amplitude and phase modulation 

functions. It was proposed that the vibration signal 

could be demodulated to obtain separate 

approximations of the amplitude and phase 

modulation functions and that these approximations 

could subsequently be inspected to find early 

indications of gear damage [16, 17]. This work was 

further refined by Blunt and Forrester [18] to produce 

a useful damage indicator referred to as a bulls-eye 

plot which indicates both amplitude and phase 

demodulations simultaneously.  

4. ADVANCED SIGNAL PROCESSING 

TECHNIQUES IN VIBRATION ANALYSIS 

An overall schema for intellectual diagnostics is 

presented in Figure 5. Intelligent diagnosis begins 

with the act of data collection which is followed by 

feature extraction usually employing the frequency 

spectra. Feature extraction techniques are widespread 

and can range from statistical to model based 

techniques and comprises a variety of signal 

processing algorithms which includes wavelet 

transforms. Fault detection and identification is a 

subsequent step and is further classified in this 

review into the four categories shown in the figure - 

these will now be treated separately. 

 
Figure 5: Intelligent fault diagnosis  

With the development of soft computing techniques 

such as artificial neural network (ANN) and fuzzy 

logic, there is a growing interest in applying these 

approaches to the different areas of engineering. 

Artificial Neural Networks (ANN) have become the 

outstanding method in the recent decades exploiting 

their non-linear pattern classification properties, 

offering advantages for automatic detection and 

identification of gearbox failure conditions, whereas 

they do not require an in-depth knowledge of the 

behavior of the system. Recent systems have relied 

on artificial intelligence techniques to strengthen the 

robustness of diagnostics systems. Four artificial 

techniques have been widely applied as expert 

system, neural networks, fuzzy logic, and model-

based systems [16]. Different kinds of artificial 

intelligence method have become common in fault 

diagnosis and condition monitoring. For example, 

fuzzy logic and neural networks have been used in 

modeling and decision making in diagnostics 

schemes. Neural networks-based classifications are 

used in diagnosis of gearbox. Rafiee. J et al, proposed 

fault detection and identification of gearboxes using a 

new feature vector extracted from standard deviation 

of wavelet packet coefficients of vibration signals of 

various faultless and faulty conditions of a gearbox 

using ANN. Over and above the structure of ANN, an 

appropriate feature vector plays a vital role in 

training a high performance ANN. Ultimately a MLP 

(Multi-Layer Perceptron) network with a 16:20:5 

structure has been used that not only is small in size 

but also with a 100% perfect accuracy and 

performance to identify gear failures and detect 

bearing defects [19]. 

ANN-based research to carry out the task can be 

categorized into two distinct groups: fault 

identification systems with low efficiency which was 

presented by Kazlas et al [20] to recognize gears and 

bearings failures of a helicopter gearbox and fault 

detection systems with high efficiency which is 

illustrated by Samanta et al. [52] to detect roller-

bearing elements defects. Precisely speaking, fault 

identification proves effective in the case of 

particular fault classification systems, whereas this 

may be in conflict with a situation that there is a 

requirement to a comprehensive fault detection 

system to provide accordingly precision and 

promptness. The objective of this research was to 

develop an ANN-based system with high efficiency 

and the lowest erroneous outcome to identify faulty 

gears and detect faulty bearing of a gearbox which 

has a lot of applications for preventing from fatal 

breakdowns in rotary machineries. Zhenya et al. 

proposed a multilayer feed forward network-based 

machine state identification method. They represent 

certain fuzzy relationship between the fault 

symptoms and causes, with highly nonlinearity 

between the input and the output of the network [21]. 

Fuzzy logic-based fault diagnosis methods have the 

advantages of embedded linguistic knowledge and 

approximate reasoning capability. The Fuzzy logic 

proposed by Zadeh [22] performs well at qualitative 

description of knowledge. However, the design of 

such a system depends heavily on the intuitive 

experience acquired from practicing operators thus 

resulting in subjectivity of diagnosed faults. The 



                                           International Journal of Advanced Engineering Technology           E-ISSN 0976-3945 

IJAET/Vol.III/ Issue II/April-June, 2012/04-12 

 

fuzzy membership function and fuzzy rules cannot be 

guaranteed to be optimal in any case. Furthermore, 

fuzzy logic systems lack the ability of self learning, 

which is compulsory in some highly demanding real-

time fault diagnosis cases [25]. Rough set based 

intelligence diagnostic systems have been constructed 

and used in diagnosing valves in three-cylinder 

reciprocating pumps [24] and turbo generators [25].  

Intelligent systems cover a wide range of techniques 

related to hard science such as modeling and control 

theory, and soft science such as the artificial 

intelligence. Intellectual systems, including neural 

networks, fuzzy logic, and hybrid techniques, utilize 

the concepts of biological systems and human 

cognitive capabilities. These three systems have been 

recognized as a robust and alternative to some of the 

classical modeling and control methods [24]. 

5. CONCLUSION 

In this paper, authors have been presented a brief 

review of some current vibration based techniques 

used for condition monitoring in geared transmission 

systems. After the review of literature on gear fault 

analysis, the following points are concluded. 

(i) Gearbox vibration signals are usually periodic 

and noisy. Time-frequency domain average 

technique successfully removes the noise from 

the signal and captures the dynamics of one 

period of the signals.  

(ii) Time domain techniques for vibration signal 

analysis as waveform generation, Indices 

(RMS value, Peak Level value, and crest 

factor) and overall vibration level do not 

provide any diagnostic information but may 

have limited application in fault detection in 

simple safety critical accessory components. 

The statistical moment as kurtosis is capable to 

identify the fault condition but skewness trend 

has not shown any effective fault 

categorization ability in this present gear fault 

condition.  
(iii) Spectral analysis may be useful in the 

detection and diagnosis of shaft faults. 

(iv) In frequency domain analysis, it is concluded 

that FFT is not a suitable technique for fault 

diagnosis if multiple defects are presents on 

gearbox. The envelope analysis and Power 

Spectrum Density techniques have shown a 

better representation for fault identification. 

The Hilbert Transform and PSD techniques are 

suitable for multiple point defect diagnostics 

for condition monitoring. 

(v) Synchronous signal averaging has the potential 

of greatly simplifying the diagnosis of shaft 

and gear faults (i.e., the safety critical failures) 

by providing significant attenuation of non-

synchronous vibrations and signals on which 

ideal filtering can be used. Further 

development needs to done on the 

implementation of synchronous averaging 

techniques and the analysis of results. 

(vi) Expert system based on ANN and fuzzy logic 

can be developed for robust fault 

categorization with the use of extracted 

features from vibration signal. 

(vii) The results further show that the waveform 

generation in case of multiple faults at gear 

contact surfaces is only useful to find the 

healthy or faulty condition but not capable to 

identify the categories of fault. 

These conclusions motivate further research to 

incorporate other parameters and symptoms with 

vibration features to develop more robust expert 

systems for diagnose the problem of gear faults 

signature analysis. 

It has been shown that using these ways of vibration 

signal analysis there are possibilities to detect signal 

faults and distributed faults in gearboxes. A signal 

fault is caused by a tooth crack/fracture and breakage, 

a spall in a gearing or in an inner or outer race of a 

bearing, a spall on a rolling element of a bearing; 

distributed faults are caused by uneven wear (pitting, 

scuffing, abrasion, erosion). 
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