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bstract

This review summarizes gender differences (GDs) in drug response. Although GDs have been described both in pharmacodynamics and
harmacokinetics, their role in clinical practice is not yet completely elucidated. The evidence that women have been less enrolled in clinical trials
nd that a gender-specific analysis usually is not included in the evaluation of results, contributes largely to this uncertainty. Consequently, adverse
rug reactions (ADRs) are still higher in females than in males. Since sex is a fundamental biological variable that cannot be discounted, GDs in

harmacology have to be considered in order to improve drug safety efficacy and to optimize medical therapy both in men and women.
© 2006 Published by Elsevier Ltd.
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. Introduction

Although numerous gender differences (GDs) have been
escribed in humans, so far most clinical research has been
arried out considering the male can fulfil the function of the
rue representative of the human species. This in spite of the
ncreasing evidence pointing out physiological and pathological
ifferences between the sexes, beyond those related to the repro-
uction [1]. As women differ from men in gene expression and
egulation, in the susceptibility to, and risk for many medical
onditions and in the response to numerous drugs [1–8], GDs in
rug response may explain, at least in part, the inter-individual
ariations occurring in therapeutic response and toxicity, espe-
ially considering that female sex has been shown to be a risk
actor for the development of adverse drug reactions (ADRs)
2].

Given the complexity of gender pharmacology, the scant
vailability of adequate animal models and human studies, spe-
ific GDs are quite difficult to be evidenced [3]. Nonetheless,
urrent results indicate that GDs in pharmacological response
re more widespread than believed before and involve pharma-
odynamics and pharmacokinetics, being the pharmacokinetic
ne of the most investigated [2–4,6–8].

The role of pharmacokinetics versus pharmacodynamics is
ot completely appreciated yet and only a few contributions have
valuated the impact of genetics, hormonal variations and their
elative interactions. Indeed, GDs in drug response are not only a
atter of differences between genders, but also they necessarily

nvolve critical periods of both sexes. Only a few studies have
een dedicated to evaluate how the biological rhythms influ-
nce drug responses [9] and even more limited researches have
nvestigated whether and how they influence drug-to-drug, drug-
o-herb and drug-to-food interactions and whether this occurs in
gender-dependent manner. Additionally, fertile female popu-

ation has to be divided in two subpopulations depending on the
se of oestrogen–progestin association, because of the huge hor-
onal influence on endocrine and metabolic pathways [10]. Oral

ontraception can modify the metabolism and the concentrations
f co-administered medications, which, in turn, can affect the
ormone activity [11].

The purpose of the present manuscript is to highlight a few
pecific examples in some areas, in which GDs may be impor-
ant, considering beyond its aim to provide an extensive and
etailed overview of GDs in pharmacokinetics, pharmacody-
amics and pharmacogenetics. Moreover, this article gives a
uick snapshot view of GDs in drug response as a basis for con-
idering when GDs start, how they influence placebo response
nd therapy appropriateness.

. Have gender pharmacological differences an early
nset?

Although GDs in growth and susceptibility to diseases are

enerally believed to start at puberty, they have been evidenced
ince foetal and neonatal life [1]. Actually, GDs seem to initiate
n uterus. Indeed, Y chromosome is known to accelerate the
rowth and increase glucose metabolism [12]. At birth, growth
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e
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urve and heart rate are different in males and females [13],
hile sexual dimorphism in fat patterning starts at 5–7 years of

ge [14] and a difference in body composition could influence
harmacokinetics (see below). After 2 years of age, creatinine
learance is higher in male than in female [15] and it is possible
o assume that renal drug excretion may diverge after this age.
ctivity of cytochrome P450 (CYP), a major family of enzymes

nvolved in the metabolism of xenobiotics (see below), may be
ex-dependent even before puberty, at least in rats [16].

This is not surprising considering that the genetic sex con-
rols the development of gonadal sex. The question is whether
ex chromosome genes, which are present in different quantities
n the genome of the two sexes, might be expressed differently,
nducing sex-specific patterns of development and/or function-
ng. Male mammals possess genes on the non-recombining
egion of the Y chromosome (NRY), absent in females and
ncoding for 27 different proteins, that might cause masculine
atterns [17]. Alternatively, genes on the non-pseudoautosomal
ortion of the X chromosome (NPX), which are present in two
oses in females but only in a single dose in males, could cause
ex-specific development because of such different dosage.
hese differences are balanced by X silencing. Nevertheless,
significant percentage of NPX genes escapes inactivation,

t least in humans [18]. Therefore, cells containing genes,
hich escape to silencing, could express higher gene products

nd this could have important implications. For instance, the
astrin-releasing peptide is expressed both in active and inac-
ive X chromosomes. More elevated levels of this peptide have
een detected in smoking females and have been related to the
ncreased risk of lung cancer observed in smoking women [1].
he angiotensin II type 2 receptor (AT2R) gene, which is located
n X chromosome, is involved in left ventricular hypertrophy in
omen, but not in men [19]. In an animal model of vascular
amage, the protective effect of valsartan has been related to the
pregulation of AT2R occurring in female mice [19].

Answering the question on sex chromosome genes may
ave multiple implications. It involves the importance of non-
ormonal events on gender pharmacology, the possible different
esponses of embryos, foetuses and infants to maternal phar-
acological treatments and their relevant consequences, for

xample, in developmental toxicology [20]. GDs in pharma-
ological response in early life and throughout paediatric age
emain to be examined, although no significant GDs have been
ound for anticancer agents [21]. However, recent observations
ave revealed that boys display a higher prevalence (55.8%) for
on-steroidal anti-inflammatory drug (NSAID) hypersensitivity
han girls [22].

. Is the placebo effect a gender-related phenomenon?

Since the pioneer work of Beecher [23], it has become evident
hat whenever a supposedly inert treatment or inert preparation
s used, a certain number of patients exhibit some benefit from

uch “placebo” (from Latin “I shall please”) treatment. Placebo-
ontrolled trials show that the supposedly inert treatment can
ven produce harmful side effects or frankly toxic effects, the
o-called “nocebo” (from Latin “I shall harm”) effect [24].
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he question of whether women and men respond differently
o placebo administration has hardly received any attention.
ccording to Rickels [25], women report side effects from both

ctive drug and placebo, whereas men have side effects mainly
n active drug. Some years later, it was shown that women seem
o be overall less responsive to placebo than men [26]. Sim-
larly, Compton et al. [27] found a greater placebo effect in

en, whereas other authors described a more important effect
n women [28,29]. However, other studies failed to observe any
D in placebo response [30–33]. At the moment, the issue is still

ontroversial and largely understudied. Therefore, further inves-
igations are needed, as gender-specific placebo effects would
ave many relevant implications for pharmacological research.
his is true especially for clinical trials performed in the absence
f golden standards, and in those clinical situations (e.g., pain
nd cough) in which the placebo effect is commonly considered
elevant [23,34].

. Gender-related pharmacokinetic and
harmacodynamic differences

.1. Pharmacokinetics

Gender-related variations in pharmacokinetics have been fre-
uently considered as potential relevant determinant for the
linical effectiveness of therapeutic agents.

Differences in the four major determinants of pharmacoki-
etic variability – bioavailability, distribution, metabolism and
limination – are theorized to stem from variations between
he sexes in factors such as body weight, plasma volume, gas-
ric emptying time, plasma protein levels, CYP activity, drug
ransporter function and clearance activity. Sex-related discrep-
ncies in the pharmacokinetic of drugs have been extensively
eviewed by numerous authors [6–8,35,36], so that the present
aper reports just a few examples derived from seminal studies
nd considered explicatory.

.1.1. Bioavailability
Changes in bioavailability will depend on the route of drug

dministration and differences in organs of absorption. Regard-
ng pharmacokinetic parameters of drugs assumed by the oral
oute, gastrointestinal motility has been shown to be affected
y sex hormones [37,38], with the transit time reported slower
n females than in males [39,40]. Gastrointestinal enzymes
esponsible for drug metabolism also differ by sex. For exam-
le, GDs in gastric alcohol dehydrogenase activity have been
escribed with higher levels occurring in males compared to
emales, so that more elevated alcohol concentrations may be
ound in women than in men, also following an equivalent
rink [41].

Enterocytes express high levels of isoenzymes of CYP, which
ontribute significantly to the first-pass metabolism of a number
f orally administered drugs. Investigations using midazolam

ave demonstrated higher bioavailability in women [42]; the
ioavailability of oral verapamil resulted also greater in women
43]. Potential gender variability in intestinal-specific expres-
ion of enzymes that modulate gut transport of drugs such as

p
t
G
G
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-glycoprotein (or multidrug resistance transporter-1, MDR-1)
as been postulated, mainly based on reports of differences in
he hepatic content [44]. Recent studies, using oral fexofenadine
s a probe of P-glycoprotein in humans, failed to find any GDs
n the profile of plasma concentration time of this compound
45], thus weakening the hypothesis that significant GDs occur
n the expression of intestinal P-glycoprotein.

.1.2. Distribution
The distribution of a drug is influenced by numerous factors

ncluding body mass index, composition, plasma volume and the
xtent of plasma protein binding of the drug. Body composition
iffers with the sex.

The disparity in body fat may explain the current greater
olumes of distribution for lipophilic agents, even though such
ifferences commonly exert only scant influences on the phar-
acokinetic profile of drugs. Clinical exceptions include the

educed distribution volume of alcohol in women, responsi-
le for the increased initial levels and stronger effects for an
quivalent ingestion [46], and the major volume of distribu-
ion for diazepam in women, responsible for the longer duration
f effects induced by the prolonged elimination time [47,48].
nhanced fat stores have been also regarded as motive for the

aster onset and increased duration of neuromuscular blockade
ccurring in women with vecuronium and rocuronium [49,50].

Since protein binding affects drug distribution volume, GDs
n the binding might theorically lead to different pharmacokinet-
cs for some compounds. Concentrations of albumin, the major
lasma protein involved in reversible drug binding, do not con-
istently vary with the gender, whereas �-1 acid glycoprotein
nd �-globulins have been reported to change with both endoge-
ous and exogenous oestrogens [51–53]. The clinical relevance
f these observations has not been fully defined in humans yet,
ven if their practical impact has been questioned by investiga-
ions that failed to observe GDs in free fractions of highly bound
rugs [54].

It is commonly believed that the most prominent factor in
dapting medication dosages between the sexes is to tailor for
ody size. Therefore, at steady state some of the pharmacokinetic
ex differences, due to different body weight and composi-
ion, can be corrected by normalizing the dose for body weight
r surface [55], and such corrections are particularly proper
hen drugs with a narrow therapeutic index are administered.
owever, it is not obvious that adjustments for body size auto-
atically optimize the therapy, since there are differences in drug
etabolism that remain also after these corrections have been

erformed. Table 1 summarizes gender-related differences iden-
ified for the pharmacokinetic parameters, such as bioavailability
nd distribution.

.1.3. Metabolism
Discrepancies in drug metabolism between sexes are cur-

ently thought to play a leading role in determining GDs in

harmacokinetic parameters. The CYP450 superfamily is one of
he major drug metabolizing systems in humans and significant
Ds in some key CYP450 enzymes have been demonstrated.
enes encoding for CYP isoenzymes are prevalently located on
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Table 1
Gender differences in pharmacokinetic parameters: bioavailability, distribution
volume, protein binding

Bioavailability by
oral route

Gastrointestinal emptying time ↑ in women

Drug transporter such as P-gp No sex differences

Distribution volume Gut enzymes
AD ↑ in women
CYP3A4 No sex differences

Water soluble drugs ↑ in men
Lipophilic drugs ↑ in women

Protein binding Albumin No sex differences
� acid glycoprotein ↑ in men
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D: alcohol dehydrogenase; P-gp: P-glycoprotein.

utosomal chromosomes, so that gender-associated dissimilari-
ies based on allele variations are not expected [56]. Therefore,
he reported sex discrepancies can be ascribed to changes in
he regulation of their expression and activity, most probably
hrough environmental factors (inducers and inhibitors) and
ndogenous hormones influences [55]. In the following exam-
les, individual CYP isoenzymes are discussed in the attempt to
emonstrate sex-based variance in drug metabolism.

.1.4. Phase I metabolism

.1.4.1. CYP1A2. CYP1A2 is involved in the clearance of
everal medications, including caffeine and theophylline. Evalu-
tion of urinary concentrations of caffeine metabolites revealed
lower CYP1A2 activity in women, at least in some specific

thnic groups, such as the Chinese population [57], with no
ex-related differences in poor metabolizers. Conversely, theo-
hylline metabolism was found to be faster in women than
n men [58]. The antipsychotic agents thiothixene, olanzapine
nd clozapine, all CYP1A2 substrates, also exhibit a signifi-
ant higher clearance in men than in women [59]. Similarly,
tudies on riluzole pharmacokinetics showed lower clearance
n women [60]. Interestingly, oestrogen replacement treatment
r contraceptive pills have been demonstrated to remove the
Ds in metabolism of CYP1A2 substrates such as caffeine [61],
aracetamol [62] and ronipirole [63].

.1.4.2. CYP3A4. CYP3A4 is the most abundantly expressed
ember of the CYP450 superfamily in human liver [64]. There

s substantial evidence to support a role of sex in the control
f these enzymes, since many drugs, substrates for CYP3A4,
xhibit higher clearance in women, and this difference even
ersists after correcting for physiological factors such as body
eight [65]. CYP3A4 drug substrates showing greater clear-

nce in women include cyclosporine [66], erythromycin [67],
irilazad [68], verapamil [69], nifedipine [70], diazepam [48]
nd alfentanil [71].

The observation that the excretion of CYP3A4 substrates is

requently higher in females than males was initially assumed
o be the consequence of enhanced CYP3A4 protein expression
n women, although there is no firm evidence to substantiate
uch hypothesis. Conversely, higher CYP3A4 enzyme activity of

o
m
n
w
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uman liver microsomes from women was repeatedly detected
72,73]. To clear up this in vivo/in vitro discordance, it has
een suggested that changes in P-glycoprotein expression lev-
ls should impact on the intracellular drug concentrations and,
n turn, the rate of metabolism [74]. The evidence that hepatic
-glycoproteins were lower in females suggested the hypothesis

hat gender-associated discrepancies were induced by dissimilar
evels of P-glycoprotein rather than CYP3A4 [75]. According
o the proposed hypothesis, higher P-glycoprotein in men would
esult in lower intracellular hepatocyte levels of drug compared
o women, with subsequent reductions in CYP3A4 metabolism
nd clearance in this group. Many convincing observations seem
o corroborate this assumption, even though some counterexam-
les are available, too. For instance, alfentanil and nifedipine
hat are substrates of P-glycoprotein have been demonstrated
o be more metabolized by women [70,71], suggesting that,
t least in some circumstances, the supposed contribution of
-glycoprotein to sex-related pharmacokinetic differences of
YP3A4 substrates has to be considered uncertain.

Substrate-dependent differences could also be caused by
eterotrophic cooperativity, which seems to be common for
YP3A4 [64,76]. For instance, St. John’s worth has been

eported to be able to increase CYP3A4 activity more in women
90%) than in men (50%), also enhancing CYP1A2 (20%)
n women but not in men [77]. In conclusion, gender repre-
ents a relevant factor for CYP3A4 expression in humans, thus
ccounting for many of the previous reported observations of
ex-dependent discrepancies in drug clearance. Finally, the evi-
ence that drugs metabolized by CYP3A4 could be eliminated
aster by women should be carefully evaluated for the potential
linical consequences.

.1.4.3. CYP2D6. Although most studies carried out to investi-
ate potential sex differences in CYP activity have prominently
ocused on CYP3A4, other isoenzymes should be taken into
ccount. CYP2D6 represents the second most frequent enzyme
mplicated in the biotransformation of therapeutic drugs.

Numerous medications are partially or exclusively processed
y CYP2D6 including sparteine, codeine, dextrometorphan,
mitriptilyne, clomipranine, imipranine and �-blockers such as
ropanolol and metoprolol [78]. Earlier studies failed to demon-
trate any gender influences on the metabolism of sparteine [11]
nd debrisoquine [79]. Conversely, more recent studies with dex-
rometorphan and metoprolol in extensive metabolizers showed
aster clearance in men compared to women [80]. Levels of ser-
raline, a CYP2D6 substrate, were reported to be higher in young

en [81] as well as oral clearance of desipramine has been found
reater in males compared to females [82]. Similarly, mirtaza-
ine, an antidepressant metabolized mainly by CYP2D6 and
YP3A, has been reported to exhibit faster clearance in men

83]. One study showed that tardive dyskinesia, a side effect of
ome antipsychotics, occurred more frequently in female Chi-
ese subjects than in males, probably due to enhanced frequency

f a defective CYP2D6 allele [84]. Sex differences in propanolol
etabolism have been also shown in Caucasians [85] and Chi-

ese subjects, with propanolol clearance found decreased in
omen compared to men [86]. Considering the combined data,
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Table 3
Gender differences in pharmacokinetic parameters: phase II metabolism

Conjugative Model substrate Clearance

Thiopurine methyl transferase 6-Mercaptopurine ↑ in men
Glucuronidation Paracetamol ↑ in men
Dihydropyrimidine dehydrogenase 6-Mercaptopurine ↑ in men
UDP-gluronosyl transferase Caffeine ↑ in men
N-Acetyltransferase Caffeine, dapsone No sex
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t appears that CYP2D6 activity may be higher in men than in
omen.

.1.4.4. CYP2C9. Several drugs including phenitoin, warfarin,
aproxen, piroxicam, tolbutamide and irbesartan are predomi-
antly substrates for CYP2C9 isoenzymes [78]. Although very
imited information is available on any sex difference in the

etabolism involving this CYP, its activity does not appear to
e gender specific, at least not to a clinically significant extent
65].

.1.4.5. CYP2C19 and CYP2E1. CYP2C19 represents the
ajor catabolic pathway for therapeutic agents such as (S)-
ephenytoine, omeprazole, pantoprazole, citalopram [87]. The

xistence of a gender effect in the activity of this isoenzyme
emains still controversial.

Although a few studies suggested that CYP2C19 activity
ight be higher in men than in women [78], the bulk of data

upports no significant GDs in the clearance of CYP2C19 sub-
trates.

On the contrary, GDs have been reported for CYP2E1 activity
n healthy subjects, with higher metabolism occurring in men
ompared to women [88,89].

Finally, in addition to CYP isoenzymes, sex-related varia-
ions have been reported for other enzyme systems implicated in
hase I metabolic reactions. For instance, xantine oxidase, which
ediates the clearance of caffeine and theophylline, exhibits a

reater activity in women than in men [90].
Table 2 reports sex-based differences in metabolic factors,

hase I.

.1.5. Phase II metabolism
Phase II reactions involve glucuronidation, sulfation, acety-

ation or methylation of the parent drug or its phase I metabolite
o generate polar conjugates for renal excretion. Although most
vidence indicates the existence of substantial racial variations
n prevalence of specific genotypes, some findings support the
ccurrence of GDs in reactions involved in phase II metabolism
Table 3).
In fact, convincing data suggest GDs in the glucuronidation
f some therapeutic compounds, but not others [35,91]. For
xample, a gender effect has been demonstrated for both parac-
tamol and diflunisal glucuronidation, being higher in men than

able 2
ender differences in pharmacokinetic parameters: phase I metabolism

epatic Model substrate Clearance

YP1A2 Caffeine, paracetamol ?↑ in men

YP3A4 Midazolam, nifedipine,
erythromycin

↑ in women

YP2D6 Dextrometorphan,
debrisoquine, sparteine

↑ in men

YP2C9 (S)-Mephenitoine No sex differences
YP2C19

YP2E1 Chlorzoxazone ↑ in men
ransporter hepatic P-gp ↑ in women

-gp: P-glycoprotein.

o
e
t
m
t
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t
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g

atechol-O-methyl transferase Norepinephrine,
epinephrine

↑ in men

n women [90,92], whereas glucuronidation of zidovudine was
ound as not gender-dependent [93].

GDs have also been reported for some sulfotransferase
soenzymes [94], as well as sex-specific disparities have been
ocumented in thiopurine methyltransferase activity with more
levated levels detected in male liver biopsies [95]. A number
f clinical investigations have also found that both fluorouracil
nd doxorubicin show a lower clearance in women than in men
96–98].

Similarly, when human liver samples have been analyzed for
atechol-O-methyltransferase (COMT), which metabolizes the
eurotransmitters norepinephrine, epinephrine and dopamine as
ell as catechol drugs (such as l-dopa), it has been demonstrated

hat women have shown about 25% lower levels of enzyme
ctivity than men [99]. Such variations might be of significant
mportance for drugs with a narrow therapeutic index and also in
eurotransmitter metabolism that, in turn, influences the effect
f psychopharmacological agents.

.1.6. Excretion
Renal excretion of compounds that are non-actively released

r reabsorbed is determined by the Glomerular Filtration Rate
GRF) that is known to be proportional to body weight. Since
n average GRF is higher in men than women, some apparent
ex differences might merely be body weight effects that usually
isappear after adjustment for weight.

However, it is noteworthy that population kinetic analysis
f methotrexate reported a gender effect on kidney excretion
ven after normalization for body weight [100], suggesting
hat, in some circumstances, sex-adjusted dosages are required,

ainly for renally eliminated compounds with narrow therapeu-
ic index.

Actually, medications actively secreted by the kidney have
een found to display more pronounced GDs. For amantadine, an
rganic cation with renal clearance, a significantly higher excre-
ion has been observed in men [101]. These findings agree with
tudies carried out in rats, showing that sex hormone differences
re responsible for gender disparities in kidney clearance for
rganic ions [102,103]. However, additional investigations on
ex differences in renal excretion are needed to better understand
he real contribution of this factor in humans.
The above reported examples demonstrate a sex dimorphism
n drug pharmacokinetics, since several mechanisms relevant to
bsorption, disposition and metabolism have been shown to exert
ender-specific activity differences. GDs in pharmacokinetics
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re often only subtle and clinical relevance is probably achieved
nly by medications with narrow therapeutic index. Therefore,
n light of all these considerations, the evaluation of GDs in
harmacokinetics, especially during drug development, appears
andatory and the potential impact of GDs on clinical practice

eserves a more adequate attention, even if their importance
hould not be overemphasized in any case.

.2. Pharmacodynamic

.2.1. Drugs acting in the central nervous system
GDs have been repetitively described for a number of drugs

cting in central nervous system. Women have been reported
o exhibit significantly higher dopamine D2-like receptor bind-
ng than men in the frontal cortex. This may contribute to
Ds in the incidence, clinical course, or treatment response of
europsychiatric diseases associated with changes in cortical
opaminergic neurotransmission [104]. Although the literature
s still not completely concordant, it seems that antipsychotics
nduce a greater improvement and more severe ADRs in women
35,105–107]. In a study comparing conventional and unconven-
ional antipsychotic agents, clozapine and fluphenazine resulted
qually effective in increasing basal ganglia and decreasing cin-
ulate metabolism in women but not in men [108]. Women
isplayed higher [18F]-fluorodopa uptake than men into stria-
um [109], thus suggesting that female sex hormones enhance
resynaptic dopamine turnover. A large body of results from pre-
linical studies supports this claim [110–112]. Indeed, the effects
f gonadal hormones have been postulated to have important
mplications for GDs in the acute and chronic responses to psy-
hostimulants. In general, females are more sensitive to cocaine
nd methylphenidate [113] as well as to other psychostimulant
rugs [114]. However, in humans a marked sex difference in
triatal dopamine response to amphetamine has been reported
ith women exhibiting lower neurotransmitter release [115].
ifferently from preclinical investigations, human studies have

hown that women in the luteal phase of menstrual cycle dis-
lay reduced subjective responses to amphetamine and cocaine
ompared to men [116,117]. Women are also less vulnera-
le to methamphetamine toxicity [118], and female stimulant
busers show decreased electroencephalogram (EEG) abnor-
alities than male stimulant users [119]. At moment, it is

ossible to assume that differences between women and men
n striatal dopamine release may serve as possible mechanism
nderlying the observed GDs in consequences of stimulant use.

Depression is twice as common in women as in men, although
t seems that there are no differences between genders in the
everity and symptomatology of the depressive pathology [120].
n women, the incidence of depression peaks during childbear-
ng years seems to be associated with cyclic hormonal changes
121]. Oestrogens and progesterone are, indeed, regarded as
esponsible for the lower serotonin reserve and activity reported
n female brain [122]. This suggests that women could have
more susceptible serotonergic system compared with men,
nd therefore could respond disproportionately to extraneous
actors, including medications. It this regard, PET and MRI
cans provided evidence that young depressed women have a

t
n
r
m
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igher impairment of serotonin synthesis than men [123], and
cute tryptophan depletion produces more profound depressive
ymptoms and signs in women than in men [122,124]. Tryp-
ophan pyrrolase, which reduces blood tryptophan levels, is
elatively overactive in women, especially during childbearing
ears [125]. Fluoxetine treatment raises serum tryptophan about
3% and 32% in women and in men, respectively [125], and
-triiodothyronine augmentation hastens the onset of tricyclic
ntidepressant (TCA) response to a greater extent in women
han in men [126].

Some studies reported that women seem to respond better to
elective serotonin uptake inhibitors (SSRI) than TCA, whereas
en tend to respond better to TCA than SSRI [127,128]. A

ecent investigation, including SSRI and selective noradrenaline
euptake inhibitors (SNRI), showed that premenopausal women
espond better to SNRI than men, even if not to the same extent
s that found with SSRI medications [129,130]. Finally, some
uthors described a gender-dependent pharmacokinetic profile
131,132]; nevertheless, it has been assumed that the pattern of
ntidepressant response in men and women is similar [132–136].
he previous findings could suggest the need for clinical stud-

es conducted with a gender-specific approach, since GDs might
ave implications for the design and interpretation of antidepres-
ant clinical trials and raise the possibility that antidepressants
ay work somewhat differently in men and women.
Conversely, only minor differences in clinical responses to

ood stabilizing agents have been demonstrated between gen-
ers [137].

Anxiety disorders are the most common psychiatric dis-
ases and women are two-fold more likely than men to develop
hem during lifetime [138]. Anxiolytics are largely prescribed

edications, which, beyond pharmacokinetic GD [139], may
isplay some gender-related effects, such as the benzodiazepine-
nduced sexual dimorphism on EEG [140]. Benzodiazepines
ave dependency-producing properties, and the majority of
atients who are prescribed benzodiazepines and are treated
or benzodiazepine dependency are women. These differences
ight be ascribed to different brain levels of neuroactive

teroids, which have been reported to affect GABAA receptors
n a sex-specific manner [140–142]. However, differently from
reclinical studies, which demonstrate sex discrepancies in the
ctivity of anxiolytics, clinical data, at present, indicate no rele-
ant GDs in pharmacodynamics, although the existence of subtle
Ds, which require larger and specifically designed studies to
e recognized, can not be ruled out.

GDs in pharmacodynamics have been also observed in drug-
nduced analgesia and anaesthesia, showing that females are less
ensitive (30–40%) than males to propofol [143] and that they
isplay a greater sensitivity to morphine. It is, indeed, calculated
hat males need morphine doses 60% higher than females to
chieve equivalent pain relief [139]. On the other hand, females
xperience respiratory depression more frequently than males
139]. Furthermore, females are also more sensitive than males

o the analgesic effect of � (OP2) receptor agonists pentazocine,
albuphine and butorphanol [30,144]. Gender-specific analgesic
esponses to NSAIDs have been less explored. Walker and Car-
ody [145] indicated ibuprofen as a compound more active in
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en than in women, although this does not represent a general
nding for the majority of NSAIDs [27].

Sex hormones control excitability of cortex and may alter
eizure threshold [1]. Therefore, for many women the seizure
ontrol is more difficult to reach in puberty, in certain period of
ycle (e.g. catamenial epilepsy) and during perimenopause [1].
estrogens administered in menopausal period may exacerbate

eizures. In addition some antiepileptic drugs may decrease sex
ormones, leading to sexual dysfunction [1]. Optimal manage-
ent of epileptic women incorporates the understanding of the

ole of hormones, both endogenous and exogenous.
Aetiology, epidemiology, consequences and mechanisms of

rug abuse seem to be different in male and females [146]. Most
eported findings are based on laboratory research in animals,
ut there are corroborating reports from human clinical and epi-
emiological studies [147]. GDs occur in all phases of drug
buse, from the initial acquisition of drug self-administration
n drug-naive animals, to maintenance, escalation and relapse
147]. Female animals appear to be more sensitive to the reward-
ng effects than males throughout these phases, and oestrogens
eem to be a determining factor. In addition, females are more
ffected by behaviours related to drug abuse, such as conditioned
lace preference, intracranial self-stimulation, and intake of pre-
erred dietary substances [147]. Generally, prospective animal
tudies agree with initial epidemiological reports in humans,
hich show that females progress from drug-use to abuse faster

han males, even if they respond to treatment as well as males,
r even better [147,148].

In addition psychoactive effects of 3,4-methylenedioxy-
ethamphetamine (MDMA) have been reported to be more

ntense in women than in men [149]. Women especially exhib-
ted higher scores for MDMA-induced perceptual changes,
hought disturbances, and fear of loss of body control. The evi-
ence that equal doses of MDMA produce stronger responses
n women compared to men is consistent with an enhanced
usceptibility of women to the 5HT-releasing effect of MDMA.

.2.2. Drugs acting on the cardiovascular system
Men and women differ in some aspects of cardiovascular

ystem in terms of anatomy, physiology and ageing [1]. For
xample, women have a smaller heart, higher resting heart
ate (three to five beats higher than in men) and the cardiac
ycle length is prolonged during menstruation [150]. GDs have
een demonstrated for the coronary left main and left anterior
escending arteries that are smaller in women, independent of
heir body size [151]. Simply by virtue of their smaller diam-
ter vessels, women may be more prone to coronary occlusion
han men. Moreover, there is initial intriguing epidemiological
vidence that the inflammatory process associated with plaque
evelopment may differ in women and men. Interestingly, C
eactive protein (CRP) appears to be enhanced in the presence
f increased oestrogen levels, as evidenced by recent clinical tri-
ls of hormone replacement therapy (HRT) [152,153]. Together,

hese findings suggest that oestrogens may be involved in alter-
ng plaque stability, via inflammatory mechanisms. Recent data
how that a greater incidence of plaque erosion rather than
laque rupture occurs in women compared to men [154].

t
d
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s
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Traditional risk factors differ between men and women.
lthough in the past the difference was attributed to the pres-

nce of oestrogens in the premenopausal period, one of the
ost significant differences to be considered is diabetes mel-

itus, which is associated with a three- to seven-fold increased
oronary artery disease (CAD) risk in women, compared to a
wo- to three-fold elevation in CAD risk in men. The reason for
his gender difference is not known [155]. In women older than
5 years, dyslipidemia may also put women at a greater risk
han men. High levels of triglycerides and low levels of high-
ensity lipoproteins (HDLs) are strongly correlated with CAD
n women [156]. In addition to these data, further sexual dimor-
hic targets have been identified (e.g. Akt, �1a and �1b receptors,
2 receptors, endothelin and ryanodine receptors, K+ channels)

157–160]. Some of them (but not all) have been demonstrated
o be hormone-dependent [19,159–161].

Despite the first GD in clinical setting (hypertension) was
escribed in 1913 [162], more than one-third of the drugs
pproved by FDA between 1998 and 2000 lack information
n sex-related responses; in particular 22% of reports fail to
rovide separate efficacy data for women and men, and 17%
mit sex-based safety data in their New Drug Applications
163]. The numerous GDs in sympathetic, pararasympatethic
nd rennin–angiotensin systems [1,19,164] could explain GDs
n cardiovascular drug responses. Sexual dimorphism has
een documented with angiotensin converting enzyme (ACE)
nhibitors [165], which seem to produce less benefits in old
omen, than in men or younger females [166]. Subgroup anal-
sis of the CONSENSUS study demonstrated a statistically
ignificant reduction in mortality with enalapril (after 6 months
f treatment) in men but not in women [167]. CONSESUS II
tudy evidenced that 13.5% of women treated with enalapril died
ompared with 11.2% of women treated with placebo [168]. Fur-
hermore, the SOLVD study confirmed again a wider reduction
n mortality and in the rate of first heart failure hospitalization
n men than in women [169]. Captopril resulted associated with

22% decrease in the risk of death in men, but only with a
% decrease in women [170]. However, an overview of 30 ran-
omized controlled trials with ACE-inhibitors in heart failure
dentified a total of 5399 men and 1991 women, revealing that the
revious results can reflect, once again, the relatively exiguous
umber of women enrolled in each single study [171]. Moreover,
recent meta-analysis has evidenced that women with asymp-

omatic left ventricular systolic dysfunction may not achieve
mortality benefit when treated with ACE-inhibitors [172].

inally, the frequency of cough, the major concern for therapy
iscontinuation, has been reported to be higher in women than
n men [173].

The classical �-blockers propranolol and metoprolol reach
igher plasma concentrations in women than in men [174,175]
nd a gender stereoselective metabolism has been also described
or these drugs [175]. The same dose of these �-blockers in
omen is able to induce a larger decrease in heart rate and sys-
olic blood pressure than in men. However, no gender-related
ifferences were measured in either heart rate or blood pres-
ure when concentration–response curves were performed. This
uggests that the greater pharmacodynamic effect measured in
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omen is the result of the higher plasma concentrations and
reater drug exposure, secondary to pharmacokinetic differ-
nces [175].

Regarding heart failure, the under-representation of women
<21%) is maintained also in clinical trials with �-blockers,
his small number being, at least in part, responsible for the
ncertainty of results. The “Metoprolol for the Treatment of
ongestive Heart Failure” (MERIT-HF) and “The Carvedilol
rospective Randomized Cumulative Survival” trials failed to
nd any mortality benefit for women enrolled [176,177]. How-
ver, a successive evaluation of the Packer’s study reported an
qual morbidity benefit over 65 years of age [178]. On the other
and, the post hoc analysis of the “Cardiac Insufficiency Biso-
rolol Study”, adjusted for older age, found a major benefit
n women [179]. Finally, a meta-analysis of �-blocker trials,
nrolling women with class III and IV congestive heart failure,
emonstrated a beneficial effect of drug treatment in women,
fter adjustment for age and risk factors between men and
omen [180]. These findings have been also confirmed later

172]. It is still a matter of discussion whether the response to
n old drug such as digoxin is gender related. Women usually
resent, indeed, higher digoxin serum levels and have higher
ortality [181,182]. Actually the question of gender-specific

isk with digoxin might not be properly answered in the absence
f appropriate gender-specific randomized clinical studies [183],
lthough it has been evidenced that prudentially the dose of
igoxin, in women, should be selected in order to maintain
lasma levels below 0.8 ng/ml [19].

Even after adjustment for baseline blood pressure, age,
eight and dose for body weight, women had a higher response

ate and a major decrease in blood pressure with amlodipine,
ompared with men [184]. Compliance did not account for the
ifference in drug response observed, being similar between the
exes. Also the hormonal replacement therapy did not help to
xplain the significant differences reported in women [184].

Slight GDs have been reported for diuretics, the hypokalemic
nd hyponatremic effects being more pronounced and occurring
ore frequently in women [185]. This might account for the

reater vulnerability to arrhythmia that women exhibit, also in
onsideration of their QT length. A gender response to clonidine
as been also observed; �2 adrenoceptors display a dimor-
hic expression and density in kidney [186,187] and cutaneous
essels [188]. Significant GDs have been demonstrated in the
ocal vascular response to azepexole. Men exhibit less ven-
dilation than women at low dose of azepexole, but manifest
ore venoconstriction at higher dosage. This effect appears to

e also age-dependent [189]. Furthermore, platelet �2 receptors
re influenced by menstrual cycle, being higher at the onset of
enses [190].
GDs have been observed in haemostasis and platelet aggre-

ation [191], since platelets were found less responsive to
hysiological ADP-induced aggregation in males [192]. Women
ave been reported to display a major risk of intracranial haemor-

hage with fibrinolytic therapy [193]. Such risk could be reduced
djusting the dosage for body size, although the correction for
ody weight and renal functionality may be not sufficient to abol-
sh the increased bleeding, thus suggesting an involvement of

d
l
e
w
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harmacodynamic mechanisms [194,195]. Conversely, no sig-
ificant GDs have been described with the glycoprotein IIb/IIIa
nhibitors [196], even if women with acute ischemic stroke seem
o get more benefits from recombinant tissue plasminogen acti-
ator than men [197]. In this contest, it is important to remind
hat women have poorer stroke outcomes than men, even after
djustment for age [198–200].

One of the main corner stone of antiaggregating therapy is
spirin. It has a higher bioavailability in women than in men,
robably because men conjugate more aspirin with glycine
nd glucuronic acid [201]. As oral contraceptives can stimulate
hese metabolic processes, the difference in aspirin bioavailabil-
ty disappears in women under hormonal contraception [201].
dditionally, aspirin has been reported to be more active in
itro in male than in female platelets [201], although this issue
emains still controversial, since a recent study has shown that
omen experience the same or greater decrease in platelet reac-

ivity after low dose aspirin therapy compared with men [201].
spirin therapy reduces the risk of cardiovascular disease in

dults who are at increased risk. However, it is unclear whether
omen derive the same benefit as men.
In actuality, because of the paucity of data, the effect of aspirin

n the primary prevention of cardiovascular disease in women
emains uncertain. The recent Women’s Health Study, the first
rimary prevention trial of aspirin therapy specific to women
202], has demonstrated that aspirin decreased the risk of stroke
ithout affecting the risk of myocardial infarction (MI) or vas-

ular death, an effect different from that found in studies that
nrolled exclusively or predominantly men. Thus, a differential
eneficial effect of aspirin therapy may exist between men and
omen.
Event rates of stroke and MI differ. Women have a greater

roportion of strokes compared with MI, whereas men have a
reater proportion of MI compared with strokes. In addition,
spirin resistance tends to be more common among women than
en [203].
Clinical trials have demonstrated that lowering cholesterol

ecreases CAD morbidity and mortality and slows lesion pro-
ression in men, but most studies have included few women
204]. In general, both diet and pharmacological lipid lowering
ecreases first and subsequent cardiac events in women. The
ffect of lovastatin treatment on the reduction of first events has
een reported to be greater in women than in men [205]. For
ecurrent cardiac events, women display twice the rate of risk
eduction as men when given equivalent doses of pravastatin
206]. Diet and lifestyle changes can have a profound effect on
orbidity and mortality from CAD in women. Therefore, there

s strong evidence that CAD in women is largely preventable
hrough diet and lifestyle modifications.

.2.3. Energy metabolism
Many GDs are present in the control of energy homeostasis

207]. Interestingly, male rat brains are more sensitive to low

oses of insulin, whereas female brains are more sensitive to
eptin [207]. These observations, beyond their importance for
nergy balance control, imply that strategy for reducing body
eight might be different in male and female. Insulin sensitivity,
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nsulin–receptor binding and tissue glucose utilization are not
nfluenced by menstrual cycle [208]. However, peripheral insulin
ensitivity is significantly higher in females as compared to men
209]; even if, age-induced increase in insulin resistance is more
ronounced in females [208].

Sex hormones have a crucial role in the metabolism of lipids,
uch as high-density lipoprotein and triglycerides (TG). A meta-
nalysis has demonstrated that an 80-mg/dl increase in TG
levates cardiovascular risk by 75% in women [210]. Unfor-
unately, most of the existing guidelines on risk assessment are
eavily based on low-density lipoprotein (LDL), the lipid abnor-
ality so prevalent in males. A sexual dimorphism has been

xperimentally documented for fibrates, which activate the per-
xisome proliferator-activated receptor (PPAR)-� [211–213]. In
ddition, GDs in the pharmacokinetics of pioglitazone, a PPAR-
activator, have been described in rats and some authors suggest

hat this could help to explain, at least in part, why women have
higher response to this insulin sensitizer [19].

Despite some pharmacokinetic GDs, statins seem to have
omparable effects in lowering cholesterol both in men and
omen [204], although, one paper evidenced a greater reduction
f first events in women treated with lovastatin, as compared to
en [205]. Recently, it has been experimentally reported that

he polymorphism in oestrogen receptor � can be associated,
n a gender-specific manner, with a greater HDL increase with
torvastatin [214]. However, women experience more myopathy
nd rhabdomyolysis, at least with cerivastatin, an agent recently
ithdrawn from the market [150].

.2.4. Immune system and drugs
Laboratory and clinical studies have suggested that gender is a

ignificant determinant of prognosis in patients after trauma and
nfection, with better outcomes generally reported for women
215–219]. The influence of sex hormones on the host immune
esponse has been proposed as an explanation for this unequal
ender distribution in sepsis [217,220]. Hormone factors reg-
late immunity and affect also susceptibility to autoimmune
iseases. Indeed, many of gender biases in the susceptibility
o autoimmune and allergic disorders become apparent after
uberty, but there are obviously additional factors [221]. Asthma
xemplifies the reciprocal effects of hormones and age: it is
ore common in boys than in girls until puberty, but, at that

ime, the ratio reverts [221]. In addition, asthma severity is
ffected by menses, pregnancy and menopause [221]. More-
ver, a positive dose-relationship between oestrogen use and the
isk of adult-onset asthma has been observed in postmenopausal
omen [222]. The previous findings emphasize the impor-

ance to develop a gender-related therapy in allergy. As already
entioned, male and female have different immune responses,
omen being privileged organ recipients [223]. No current

uppressive therapy discriminates between genders [223] and
nly few studies have addressed this important clue. Indeed,
very small study evidenced a gender and ethnic effect with
yclosporin A, plasma levels being lower in African American
en and higher in Caucasian women [224]. Interestingly, pre-

linical data show an oestrogen-independent gender dimorphic
ffect of cyclosporin A on bone [225]. Moreover, young male

s
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ats have lower cyclosporine plasma levels than young females,
ut they survive more after skin grafts [226].

A recent meta-analysis, which re-evaluated 49 randomized
ontrolled trials, including only 12.25% women, evidenced
hat antiretroviral therapy seems to be more efficacious in
omen than in men [6]. Females have also more frequent and

evere ADR with protease inhibitors and nucleoside reverse
ranscriptase inhibitors [6,227]. For instance, the protease
nhibitor-associated lipodystrophy is more frequent in women
227]. Considering that females have lower expression of drug
ransporter P-glycoprotein and that antiretroviral agents are good
ubstrates for this mechanism, it is conceivable that ritonavir
nd saquinavir achieve more elevated cellular concentrations in
omen [228,229].

. Is gender difference a risk factor for ADR?

It has been estimated that ADRs occur approximately in
–5% of subjects taking a drug [230] but the gender’s impor-
ance as a risk factor remains a matter of debate. A recent study,
hich reviewed 10 years (1986–1996) of ADR in a Canadian

nstitution, reported that more than 70% of the 2367 patients
ssessed were females [2]. Several reports have revealed that
omen are more exposed to ADRs than men [230–234] and this

s in line with the evidence that 8 of 10 drugs, which have been
ropped out from US market, were responsible for more ADR
n women then in men. This was still true also when the analysis
as performed in the absence of drugs that are more used by

emales [235].
Female sex is a risk factor to develop long QT syndrome

236,237], a ventricular arrhythmia induced by different classes
f drugs, e.g., antipsychotic, antiarrhythmics, H1 antagonists,
ntimicrobial and antimalarial agents [238], probably because
omen have a longer QT interval then men. Actually there are

pproximately 50 different drugs that can cause QT prolongation
nd torsades, most likely by blocking potassium ions currents
f the heart. In single cell experiments, two repolarization cur-
ents, IKr (rapid delayed rectifier) and IK1 (inward rectifier), were
easured and showed a lower outward current density in cells

rom female rabbit hearts, which may contribute to these sex-
ased differences [239]. In a small clinical trial the IKr blocking
rug ibutilide was administered to normal human subjects and
remenopausal women varied in response over their menstrual
ycle, with greatest QT prolongation during the menses and
vulation phases. The change in QT length during the luteal
hase was similar to the change in men [240]. Anorexigen drug-
nduced cardiac valvulopathy has been reported to be more
requent in women [241], whereas blood dyscrasias are more
requent in men [232,242]. Furthermore, women generally pre-
ominate among patients with drug-induced liver injury [243]
nd also they appear to be more susceptible to neuropsychi-
tric ADR, gastrointestinal (especially with NSAIDs) [231,244]
nd cutaneous allergic reactions [245]. Finally, genito-urinary,

ex hormones, antineoplastic and respiratory agents give more
DRs in females than in men [242].
In conclusion, the majority of the studies indicate that females

re more prone to ADR. This enhanced risk could be related to
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he class of therapeutic agents, to the type of ADR, to the age and
hysiological status of female, but also to the fact that women
re generally treated with doses that essentially reflect the results
btained by trials carried out mainly in men.

. Conclusions

From the previous examples it is apparent that differences
n the pharmacokinetics, pharmacodynamics and side effects
f medications are gender-dependent and might correspond to
ifferent effect profiles of drugs. The effect of gender on drug
esponse has begun to be investigated only recently for most
rugs, and even more recently, the effect of specific dosages and
outes of administration have begun to be explored. Despite the
act that, in the last years, more women have been enrolled in
linical trials, the frequency of ADRs in women has not sig-
ificantly decreased [246]. This indicates the need for a specific
ender analysis as the only suitable procedure to detect the differ-
nces. At moment the vast majority of product description does
ot include information about GDs. The paucity of data avail-
ble both in scientific literature and from reference resources
egarding such difference represents a clear demonstration that
any issues remain to be addressed. There are more women

han men in the population, more women with chronic diseases
han men, and more women visiting physicians. It is, therefore,
bvious that there is more interest in knowing how women react
o drugs. Therefore, it is crucial to investigate the complexity
f GDs, since a better knowledge on female biology at the end
esults in an ameliorated knowledge on male too. Ultimately, a
etter understanding of sex-related influences on drug responses
ill help to improve drug safety and efficacy and will also permit

o “tailor” pharmacological treatments both in men and women.
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