

# Review Homework

|                                  | Odds      | 95% Confidence |       |          |
|----------------------------------|-----------|----------------|-------|----------|
| Variable                         | Ratio     | Lower          | Upper | P-value  |
| Age                              |           |                |       |          |
| 0-39                             | Reference |                |       |          |
| 40-49                            | 1.61      | 0.91           | 2.85  | 0.10     |
| 50-59                            | 2.22      | 1.27           | 3.85  | 0.01     |
| 60+                              | 2.97      | 1.63           | 5.39  | < 0.0001 |
| Sex                              |           |                |       |          |
| Male                             | Reference |                |       |          |
| Female                           | 0.90      | 0.62           | 1.32  | 0.60     |
| Race                             |           |                |       |          |
| Nonblack                         | Reference |                |       |          |
| Black                            | 0.73      | 0.25           | 2.20  | 0.58     |
| HLA Mismatches                   | 1.02      | 0.82           | 1.26  | 0.87     |
| Body Mass                        |           |                |       |          |
| Normal/Underweight               | Reference |                |       |          |
| Obese                            | 0.76      | 0.44           | 1.30  | 0.31     |
| Red Cell Transfusions (per unit) | 1.05      | 1.00           | 1.10  | 0.03     |
| Sumical Site Infection           | 1.53      | 1.05           | 2.23  | 0.03     |

### Review Homework

- To determine whether age works better as a continuous or categorical variable, fit both models and compute the area under the ROC curve
  - Also check whether the categorical effects look linear or nonlinear

-

 Same process for HLA as a continuous or categorical variable

### Overview

- Risk of events: Adding a time dimension
- Survival curves
   Kaplan-Meier method
- Risk as hazard
- Survival regression
   Cox Proportional Hazards model

### Survival Analysis

- Logistic regression models the likelihood of an event happening
- It ignores how long it takes, assumes everyone has similar exposure time

4

- Sometimes, the time dimension is important
- Example: how long does a transplanted liver last before it gives out?





### Survival Analysis

- The outcome measure that is appropriate for this question is the **survival time**
- What kind of variable is this? Continuous? Categorical? Binary?
- What is our favorite method to analyze this kind of outcome measure?

7

· 🐣

1

### Survival Analysis

- Survival time is a continuous variable
- Why can't we just use a linear regression to analyze time to event as our dependent variable?

### Survival Analysis

- Three patients
  - Patient 1 has a liver transplant on January 1, and on February 1 the organ is rejects and s/he gets retransplanted
  - Patient 2 has a liver transplant on July 1. As of today the organ is functioning fine.
  - Patients 3 has a liver transplant on February 1, and on March 1 moved to Thailand, never to be heard from again
- What is the survival time for each patient?

### Survival Analysis

- The survival time is:
  - Patient 1: 31 days
  - Patient 2: ?? At least 37 days...Patient 3: ?? At least 28 days...
- Because of either lack of follow-up or the end of follow-up these data are "censored"
- We could use linear regression if there was no censoring
  - But if we apply linear regression to censored data we will get biased results

10

1

12

#### Survival Analysis

- · If we compare time to event, we ignore censoring
- · If we compare proportions, we ignore time
- Survival analysis allows us to address both issues
   We study time to event while dealing with censoring

### Survival Analysis

- Our outcome measure requires two variables
   1. Time to event
  - 2. A censoring indicator that shows whether the end of the time to event was an event or a censor
- For example, our data for our three example patients would be
  - 31 days, graft failure=1
  - 37 days, graft failure=0
  - 28 days, graft failure=0

### Survival Analysis

- There are both univariate and multivariate approaches for survival analysis
- Univariate: Kaplan-Meier analysis
- Multivariate: Cox Proportional Hazards Regression
   There are others, but most of the time these are the methods that are used

13

14

### Kaplan-Meier Analysis

- Kaplan-Meier analysis produces "survival curves"
- Survival curves are estimates of the survivor function
- The survivor function is

$$S(t) = 1 - \Pr(T >$$

t)

- The probability of surviving beyond some time period t





### Kaplan-Meier Analysis

- The Kaplan-Meier method computes the survival probability as a compound probability
  - The probability of being alive at time 2 is the probability of surviving time 1 times the probability of surviving time 2
- At t = 0, everyone is alive
- Then for each time period after, the probability of surviving is a function of patients available in the current period
- The denominator changes at each new time period
   Consoring is bandled by dropping them from the
- Censoring is handled by dropping them from the denominator

| Time<br>Period | Patients<br>At Risk | Patients<br>Censored | Patients<br>Died | Patients<br>Survived | Kaplan-Meier<br>Survival Probability           |
|----------------|---------------------|----------------------|------------------|----------------------|------------------------------------------------|
| Year 1         | 100                 | 3                    | 5                | 95                   | (95/100)=0.95                                  |
| Year 2         | 92                  | 3                    | 10               | 82                   | (95/100)x(82/92)=0.8467                        |
| Year 3         | 79                  | 3                    | 15               | 64                   | (95/100)x(82/92)x(64/79)=0.70                  |
| Year 4         | 61                  | 3                    | 20               | 41                   | (95/100)x(82/92)x(64/79)x(41/61)=0.4611        |
| Year 5         | 38                  | 3                    | 25               | 13                   | (95/100)x(82/92)x(64/79)x(41/61)x(13/38)=0.157 |
|                |                     |                      |                  |                      |                                                |
|                |                     |                      |                  |                      |                                                |











### Reading a Kaplan-Meier Curve

- Considerations for large data sets
- With a large number of observations
  - There may be too many events to count on a curve
  - There may be too many censoring events to plot along the curve

21

· Frequently the censoring symbols are omitted

#### Stata Code

- stset command is used to tell Stata the format of your survival data
- Example: stset gs\_days, failure(gfail==1)
   Only have to "tell" Stata once, after which all survival analysis commands (the st commands) will use this information
- Stata needs to know the time at risk (e.g., time from diagnosis to death or censoring) AND the failure indicator (e.g. whether or not the patient died)

22

23

24

#### Stata Code

- After you run the st set command, other commands are available to:
  - Plot the Kaplan-Meier curve
  - Perform a statistical test to compare Kaplan-Meier curves
- List the points that are graphed
  Code to plot Kaplan-Meier curves
  sts graph, by(strata)
- Code to compare Kaplan-Meier curves - sts test strata
- Code to list survival percents
   sts list

#### Kaplan-Meier Example

- We want to know whether surgical site infection increases the likelihood of losing the organ after liver transplantation
- We have the following variables:
  - gs\_days tells how long the organ lasted
  - gfail is an indicator for whether the liver failed
     ssi is our surgical site infection variable
- Step 1: stset the data
  stset gs\_days, failure(gfail)





### Kaplan-Meier Example

Step 3: Perform log rank test to compare the curves

- sts test ssi

Log-rank test for equality of survivor functions

26

| ssi   | Events<br>  observed | Events<br>expected |
|-------|----------------------|--------------------|
| 0     | 86<br>  73           | 100.49<br>58.51    |
| Total | +<br>  159           | 159.00             |
|       | chi2(1) =            | 5.69               |

#### Kaplan-Meier Example • Step 4: What is the percent of organs still functioning one year after transplant? - sts list, by(ssi) Beg. Net Survivor Std. Time Total Fail Lost Function Error [95% Conf. Int.] ssi=0 485 6 0 479 0 3 0.9876 0.0050 0.9727 0.9944 0.9876 0.0050 0.9727 0.9944 334 371 423 422 1 0 0.9009 0.0137 0.8704 0.9246 0.8988 0.0139 0.8680 0.9228 1.0000 0.9966 0.0034 0.9759 0.9995 292 291 0 1 330 235 1 0 376 234 0 1 0.8700 0.0202 0.8243 0.9045 0.8700 0.0202 0.8243 0.9045 7



#### R Code

- R follows a similar pattern - Create a survival object - Apply functions to the survival object
- Step 1: Install the "survival" package - install.packages("survival")
- Step 2: Load the "survival" library - library(survival)
- Step 3: Create a survival object - sv1 <- Surv(time, failure) ~ strata

1

-

1

#### R Code

• Step 4: Perform log rank test using survdiff() - survdiff(sv1)

Call: survdiff(formula = sv1)

N Observed Expected (O-E)^2/E (O-E)^2/V 85 86 100.5 2.09 5.69 92 73 58.5 3.59 5.69 dat1\$ssi=0 485 dat1\$ssi=1 292

Chisq= 5.7 on 1 degrees of freedom, p= 0.0171

#### R Code

• Step 4: Produce Kaplan-Meier plots by plotting a survfit

```
- plot(survfit(sv1))
- Use options for aesthetics
```

```
plot(survfit(sv1), xlab="Days since
Treatment", ylab="Percent Surviving",
lty=c(1,2), col=c("black","grey75"), lwd=2,
cex=2, mark.time=FALSE)
```

- lty = line type (1 = solid, 2=dash, 3=dots, etc.)
- lwd = line width (scaling factor)
- mark.time = turn censoring markers on or off





#### R Code

 To add a figure legend use the legend() function

 legend(2000, 1, c("SSI", "No SSI"), lty=c(1,2), col=c("black", "grey75"), bty="n")

-

To add a p-value use the text() function
 text(2350, .73, "P = 0.0171")

### Summary

- · Analysis of time-to-event data requires special methods
- Not all subjects will have experienced the event by the end of the study; others may be lost to follow-up
- This is called censoring
- Survival curves account for this censoring as well as the total time of exposure
- Kaplan-Meier analysis is the most common method for estimating survival curves
  - It allows simple (one variable) stratification and comparisons

34

35

36

#### Yet Another Measure of Risk

- When risk of an event involves time we need a new measure of risk
- Hazard is the "instantaneous" risk of an event
   The risk of having an event at time point t given that the event has not yet occurred
- Example:
  - Among all liver transplant patients, 5% of transplants fail per year. This implies that grafts fail at a certain rate per month, or per week, or per day. The hazard is the probability of failure as the time point shrinks to 0

#### Hazard of and Event

- We can compute the average hazard rate as

   Total number of failures divided by observed survival time (units are therefore 1/t or 1/pt-yrs)
- Example: In our liver transplant data set we have 159 graft failures and 1,061,029 patient days What is the average hazard rate?
  - 159/1,061,029 = 0.0001499 failures per patient day
  - 159/(1,061,029/30) = 0.004496 failures per month
  - 159/(1,061,029/365.25) = 0.0547 failures per year

#### Cox Proportional Hazards Model

- The Cox Proportional Hazards Model is the most commonly used multivariate survival method
- Models the hazard rate of an event as a function of covariates

37

38

Separates the "baseline" hazard rate from covariates

### Cox Proportional Hazards Model

$$h(t) = h_0(t)e^{\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k}$$

- *h*<sub>0</sub>(*t*) is called the **baseline** hazard

   It is the hazard assuming all covariates equal zero
   The hazard for the reference patient
- Covariates impact the hazard rate by scaling the baseline hazard by a constant
- This means that the model assumes that the effect of a covariate is proportional across all units of time: proportional hazards assumption
   a effect of times the hazard at ANX

 e.g. being male implies you have x times the hazard at ANY point in time: time 0, time 10, or time 100000000000





#### Proportional Hazards Assumption

- Always compute Kaplan-Meier curves first
- See whether any lines cross for your covariates
- If they cross, proportional hazards assumption is violated and you can't do Cox Regression
- If they don't cross, you have a green light to do Cox Regression

40

41

42

#### Cox Proportional Hazards Model

Take logs of both sides, and voila! Linear survival model

 $\ln(h(t)) = \ln(h_0(t)) + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$ 

- Coefficients are the effect of the covariate on the log hazard rate
- Exponentiate the coefficient and you get the hazard ratio

### Interpreting Hazard Ratios

- Hazard Ratio tells you how covariate changes the baseline hazard proportionally to the reference group
- Recall hazard is risk of an event at any point in time
  - HR > 1 means increased hazard
  - HR = 1 mean equal hazard
  - HR < 1 means reduced hazard

#### Time Out

- I know this looks scary and the equations are initimidating!
- But Cox regression is really just like logistic regression, only applied to time-to-event data
- We start with an unintuitive measure of risk (hazard versus odds), take logs, and get a linear model
- When we exponentiate the coefficients we get a hazard ratio (versus an odds ratio)

43

44

Interpretation is very similar

#### Stata Code

- Must start with an st set statement
- Then you specify the model with stcox stcox covar1 covar2 ... covark
- For example, to estimate the effect of covariates on graft survival in liver transplant patients

stset gs\_days, failure(gfail)
stcox ssi age4049 age5059 age60 ///
female black ab0 ab1 ab2 ab3

| Stata Results                                                 |                                  |                         |                         |                                  |                                  |
|---------------------------------------------------------------|----------------------------------|-------------------------|-------------------------|----------------------------------|----------------------------------|
|                                                               |                                  |                         |                         |                                  |                                  |
| No. of subjects =<br>No. of failures =<br>Time at risk = 1061 | 777<br>159<br>029                |                         | Numbe                   | er of obs =                      | 777                              |
| Log likelihood = -1003.7                                      | 557                              |                         | LR cl<br>Prob           | ni2(10) =<br>> chi2 =            | 26.36<br>0.0033                  |
| _t   Haz. Ratio                                               | Std. Err.                        | z                       | ₽>   z                  | [95% Conf.                       | Interval]                        |
| ssi   1.505696<br>age4049   1.423765<br>age5059   1.730902    | .2426318<br>.3460387<br>.4066374 | 2.54<br>1.45<br>2.34    | 0.011<br>0.146<br>0.020 | 1.097925<br>.8842152<br>1.092198 | 2.064915<br>2.292547<br>2.743112 |
| age60   2.246839<br>female   .9552656<br>black   .763481      | .5611624<br>.1552651<br>.3520942 | 3.24<br>-0.28<br>-0.59  | 0.001<br>0.778<br>0.558 | 1.377143<br>.6946615<br>.3092075 | 3.665768<br>1.313636<br>1.885153 |
| ab0   .9113616<br>ab1   .2120457<br>ab2   .952278             | .6554753<br>.2136852<br>.2372452 | -0.13<br>-1.54<br>-0.20 | 0.897<br>0.124<br>0.844 | .222579<br>.0294203<br>.5843866  | 3.731619<br>1.528314<br>1.55177  |
| ab3   1.273965                                                | .2203778                         | 1.40                    | 0.162                   | .9076359                         | 1.788147                         |
|                                                               |                                  |                         |                         |                                  | 45                               |



### R Code

- Use the coxph () function to create a proportional hazards object
- Then summarize the object

```
- cox1 <- coxph(Surv(dat1$gs_days,
    dat1$gfail) ~ data1$age4049 +
    data1$age5059 + data1$age60 +
    data1$female + data1$black + data1$abmm
 + data1$ssi)
- summary(cox1)
```

-

| R Results                                                                                                                                                                                                                                                                               |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <pre>&gt; summary(cox1) n = 777, number of events= 159</pre>                                                                                                                                                                                                                            |    |
| data18qas059 1.7931 0.5377 1.1233 2.839<br>data18qas059 0.23740 0.1397 1.1303 1.00<br>data18black 0.7438 1.002 0.0394 1.100<br>data18black 0.7438 1.0392 0.0394 1.886<br>data18black 0.7438 1.0927 0.4863 1.262<br>data18m1 1.0542 0.4864 1.0977 2.061<br>Concordances 0.533 (se 0.024) |    |
| Requare= 0.025 (max possible 0.927)<br>Likelikoo stato text= 14.0 on 7 df, ps0.00633<br>Mald text = 18.52 on 7 df, ps0.008435<br>Score (Logrank) text = 19.33 on 7 df, ps0.007142                                                                                                       | 20 |



|                         | Hazard 95% Confidence |       | nfidence | _       |
|-------------------------|-----------------------|-------|----------|---------|
| Variable                | Ratio                 | Lower | Upper    | P-value |
| 100                     |                       |       |          |         |
| nge<br>0-39             | REFERENCE             |       |          |         |
| 40-49                   | 1.42                  | 0.88  | 2.29     | 0 146   |
| 50-59                   | 1.73                  | 1.09  | 2 74     | 0.020   |
| 60+                     | 2.25                  | 1.38  | 3.67     | 0.001   |
| Sex                     |                       |       |          |         |
| Male                    | REFERENCE             |       |          |         |
| Female                  | 0.96                  | 0.69  | 1.31     | 0.778   |
| Race                    |                       |       |          |         |
| Nonblack                | REFERENCE             |       |          |         |
| Black                   | 0.76                  | 0.31  | 1.89     | 0.558   |
| HLA Mismatches          |                       |       |          |         |
| 0                       | 0.91                  | 0.22  | 3.73     | 0.897   |
| 1                       | 0.21                  | 0.03  | 1.53     | 0.124   |
| 2                       | 0.95                  | 0.58  | 1.55     | 0.844   |
| 3                       | 1.27                  | 0.91  | 1.79     | 0.162   |
| 4                       | REFERENCE             |       |          |         |
| Surgical Site Infection | 1.51                  | 1.10  | 2.06     | 0.011   |
| Surgical Site Infection | 1.51                  | 1.10  | 2.06     | 0.011   |



### The Narrative

Age had a significant association with graft survival. Patients age 50-59 had a 73% greater hazard of losing their graft (p=0.02) and patients age 60+ had 2.25 times greater hazard of losing their graft (p=0.001). Patients with a surgical site infection were 51% more likely to lose their graft than patients without a surgical site infection (p=0.011).

#### Homework

- Using the Liver Transplant data:
- Create Kaplan-Meier survival curve using **patient** survival and explore how survival is influenced by age, sex, and SSI
  - Test whether curves are different using log rank test
- Fit a Cox proportional hazards model and control for covariates you used in your logistic regression model of mortality

50