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Lecture 7: Survival Analysis 

Christopher S. Hollenbeak, PhD 
Jane R. Schubart, PhD 
 
The Outcomes Research Toolbox 
 

Review Homework 

2	

Review Homework 

•  To determine whether age works better as a 
continuous or categorical variable, fit both models 
and compute the area under the ROC curve 
–  Also check whether the categorical effects look linear or 

nonlinear 

•  Same process for HLA as a continuous or 
categorical variable 
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Overview 

•  Risk of events: Adding a time dimension 
•  Survival curves 
–  Kaplan-Meier method 

•  Risk as hazard 
•  Survival regression 
–  Cox Proportional Hazards model 
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Survival Analysis 

•  Logistic regression models the likelihood of an 
event happening 

•  It ignores how long it takes, assumes everyone has 
similar exposure time 

•  Sometimes, the time dimension is important 
•  Example: how long does a transplanted liver last 

before it gives out? 

5	
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Survival Analysis 

•  The outcome measure that is appropriate for this 
question is the survival time 

•  What kind of variable is this? Continuous? 
Categorical? Binary? 

•  What is our favorite method to analyze this kind of 
outcome measure? 
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Survival Analysis 

•  Survival time is a continuous variable 
•  Why can’t we just use a linear regression to analyze 

time to event as our dependent variable? 

8	

Survival Analysis 

•  Three patients 
–  Patient 1 has a liver transplant on January 1, and on 

February 1 the organ is rejects and s/he gets 
retransplanted 

–  Patient 2 has a liver transplant on July 1.  As of today 
the organ is functioning fine. 

–  Patients 3 has a liver transplant on February 1, and 
on March 1 moved to Thailand, never to be heard from 
again 

•  What is the survival time for each patient? 

9	
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Survival Analysis 

•  The survival time is: 
–  Patient 1: 31 days 
–  Patient 2: ??  At least 37 days… 
–  Patient 3: ?? At least 28 days… 

•  Because of either lack of follow-up or the end of 
follow-up these data are “censored”  

•  We could use linear regression if there was no 
censoring 
–  But if we apply linear regression to censored data we will 

get biased results 
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Survival Analysis 

•  If we compare time to event, we ignore censoring 
•  If we compare proportions, we ignore time 
•  Survival analysis allows us to address both issues 
–  We study time to event while dealing with censoring 
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Survival Analysis 

•  Our outcome measure requires two variables 
1.  Time to event 
2.  A censoring indicator that shows whether the end of 

the time to event was an event or a censor 

•  For example, our data for our three example 
patients would be 
–  31 days, graft failure=1 
–  37 days, graft failure=0 
–  28 days, graft failure=0 

12	
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Survival Analysis 

•  There are both univariate and multivariate 
approaches for survival analysis 

•  Univariate: Kaplan-Meier analysis 
•  Multivariate: Cox Proportional Hazards Regression 
–  There are others, but most of the time these are the 

methods that are used 
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Kaplan-Meier Analysis 

•  Kaplan-Meier analysis produces “survival curves” 
•  Survival curves are estimates of the survivor 

function 
•  The survivor function is 

–  The probability of surviving beyond some time period t 
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S(t) = 1� Pr(T > t)
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Kaplan-Meier Analysis 

•  The Kaplan-Meier method computes the survival 
probability as a compound probability 
–  The probability of being alive at time 2 is the probability of 

surviving time 1 times the probability of surviving time 2 
•  At t = 0, everyone is alive 
•  Then for each time period after, the probability of 

surviving is a function of patients available in the 
current period 
–  The denominator changes at each new time period 

•  Censoring is handled by dropping them from the 
denominator 

16	

Kaplan-Meier Example 
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Reading a Kaplan-Meier Curve 

•  How many events occurred during this study? 
•  How many patients were censored? 
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Reading a Kaplan-Meier Curve 
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20	

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years since Treatment

Pe
rc

en
t S

ur
vi

vi
ng

Events	occur	where	curve	bends	 Censoring	is	indicated	with	symbols	

Reading a Kaplan-Meier Curve 

•  Considerations for large data sets 
•  With a large number of observations 
–  There may be too many events to count on a curve 
–  There may be too many censoring events to plot along 

the curve 

•  Frequently the censoring symbols are omitted  

21	
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Stata Code 

•  stset command is used to tell Stata the format of 
your survival data 

•  Example: stset gs_days, failure(gfail==1) 
–  Only have to “tell” Stata once, after which all survival 

analysis commands (the st commands) will use this 
information 

•  Stata needs to know the time at risk (e.g., time 
from diagnosis to death or censoring) AND the 
failure indicator (e.g. whether or not the 
patient died) 
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Stata Code 

•  After you run the st set command, other commands are 
available to: 
–  Plot the Kaplan-Meier curve 
–  Perform a statistical test to compare Kaplan-Meier curves 
–  List the points that are graphed 

•  Code to plot Kaplan-Meier curves 
–  sts graph, by(strata) 

•  Code to compare Kaplan-Meier curves 
–  sts test strata 

•  Code to list survival percents 
–  sts list 
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Kaplan-Meier Example 

•  We want to know whether surgical site infection 
increases the likelihood of losing the organ after 
liver transplantation 

•  We have the following variables: 
–  gs_days   tells how long the organ lasted 
–  gfail       is an indicator for whether the liver failed 
–  ssi           is our surgical site infection variable 

•  Step 1: stset the data 
–  stset gs_days, failure(gfail) 

24	
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Kaplan-Meier Example 

•  Step 2: Plot the Kaplan-Meier curves, stratified by SSI 
–  sts graph, by(ssi) title("") xtitle("Days Since Liver 

Transplant") ytitle("Percent with Functioning Graft") 
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Kaplan-Meier Example 

•  Step 3: Perform log rank test to compare the 
curves 
–  sts test ssi 

26	

Log-rank test for equality of survivor functions 
 
      |   Events         Events 
ssi   |  observed       expected 
------+------------------------- 
0     |        86         100.49 
1     |        73          58.51 
------+------------------------- 
Total |       159         159.00 
 
            chi2(1) =       5.69 
            Pr>chi2 =     0.0171 

Kaplan-Meier Example 

•  Step 4: What is the percent of organs still 
functioning one year after transplant? 
–  sts list, by(ssi)  

27	

 Beg.          Net            Survivor      Std. 
  Time    Total   Fail   Lost           Function     Error     [95% Conf. Int.] 
------------------------------------------------------------------------------- 
ssi=0  
     1      485      6      0             0.9876    0.0050     0.9727    0.9944 
     2      479      0      3             0.9876    0.0050     0.9727    0.9944 
     . 
     . 
     . 
   334      423      1      0             0.9009    0.0137     0.8704    0.9246 
   371      422      1      0             0.8988    0.0139     0.8680    0.9228 
 
ssi=1  
     6      292      0      1             1.0000         .          .         . 
     9      291      1      0             0.9966    0.0034     0.9759    0.9995 
     . 
     . 
     . 
   330      235      1      0             0.8700    0.0202     0.8243    0.9045 
   376      234      0      1             0.8700    0.0202     0.8243    0.9045 
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R Code 

•  R follows a similar pattern 
–  Create a survival object 
–  Apply functions to the survival object 

•  Step 1: Install the “survival” package 
–  install.packages(“survival”) 

•  Step 2: Load the “survival” library 
–  library(survival) 

•  Step 3: Create a survival object 
–  sv1 <- Surv(time, failure) ~ strata 

R Code 

•  Step 4: Perform log rank test using survdiff() 
–  survdiff(sv1) 

Call: 
survdiff(formula = sv1) 
 
             N Observed Expected (O-E)^2/E (O-E)^2/V 
dat1$ssi=0 485       86    100.5      2.09      5.69 
dat1$ssi=1 292       73     58.5      3.59      5.69 
 
 Chisq= 5.7  on 1 degrees of freedom, p= 0.0171  

R Code 

•  Step 4: Produce Kaplan-Meier plots by plotting a 
survfit 
–  plot(survfit(sv1)) 
–  Use options for aesthetics 

•  plot(survfit(sv1), xlab="Days since 
Treatment", ylab="Percent Surviving", 
lty=c(1,2), col=c("black","grey75"), lwd=2, 
cex=2, mark.time=FALSE)  

–  lty = line type (1 = solid, 2=dash, 3=dots, etc.) 
–  lwd = line width (scaling factor) 
–  mark.time = turn censoring markers on or off 
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R Code 
sv1 <- Surv(dat1$gs_days, dat1$gfail) ~ dat1$ssi 
plot(survfit(sv1), xlab="Days since Treatment",  

 ylab="Percent Surviving", lty=c(1,2),  
 col=c("black","grey75"), lwd=2, cex=2, mark.time=FALSE) 
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R Code 

•  To add a figure legend use the legend() function 
–  legend(2000, 1, c("SSI","No SSI"), 
lty=c(1,2), col=c("black", "grey75"), 
bty="n") 

•  To add a p-value use the text() function 
–  text(2350, .73, "P = 0.0171") 

R Code 

•  Step 5: Get a detailed list of survival percentages 
by time using summary(survfit(sv1)) 
> summary(survfit(sv1)) 
Call: survfit(formula = sv1) 
 
                dat1$ssi=0  
 time n.risk n.event survival std.err lower 95% CI upper 95% CI 
    1    485       6    0.988 0.00502        0.978        0.998 
    3    476       1    0.986 0.00542        0.975        0.996 
    5    471       1    0.983 0.00580        0.972        0.995 
    6    468       1    0.981 0.00616        0.969        0.993 

 … 
                dat1$ssi=1  
 time n.risk n.event survival std.err lower 95% CI upper 95% CI 
    9    291       1    0.997 0.00343        0.990        1.000 
   20    287       1    0.993 0.00487        0.984        1.000 
   23    286       1    0.990 0.00596        0.978        1.000 
   26    284       1    0.986 0.00688        0.973        1.000 
   30    282       1    0.983 0.00770        0.968        0.998 
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Summary 

•  Analysis of time-to-event data requires special methods 
•  Not all subjects will have experienced the event by the 

end of the study; others may be lost to follow-up 
•  This is called censoring 
•  Survival curves account for this censoring as well as 

the total time of exposure 
•  Kaplan-Meier analysis is the most common method for 

estimating survival curves 
–  It allows simple (one variable) stratification and comparisons 

34	

Yet Another Measure of Risk 

•  When risk of an event involves time we need a new 
measure of risk 

•  Hazard is the “instantaneous” risk of an event 
–  The risk of having an event at time point t given that the 

event has not yet occurred 

•  Example: 
–  Among all liver transplant patients, 5% of transplants fail 

per year.  This implies that grafts fail at a certain rate per 
month, or per week, or per day.  The hazard is the 
probability of failure as the time point shrinks to 0 

35	

Hazard of and Event 

•  We can compute the average hazard rate as 
–  Total number of failures divided by observed survival 

time (units are therefore 1/t or 1/pt-yrs) 

•  Example: In our liver transplant data set we have 
159 graft failures and 1,061,029 patient days  
What is the average hazard rate? 
–  159/1,061,029 = 0.0001499 failures per patient day 
–  159/(1,061,029/30) = 0.004496 failures per month 
–  159/(1,061,029/365.25) = 0.0547 failures per year 

36	
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Cox Proportional Hazards Model 

•  The Cox Proportional Hazards Model is the most 
commonly used multivariate survival method 

•  Models the hazard rate of an event as a function of 
covariates 

•  Separates the “baseline” hazard rate from 
covariates 

37	

Cox Proportional Hazards Model 

•  h0(t) is called the baseline hazard 
–  It is the hazard assuming all covariates equal zero 
–  The hazard for the reference patient 

•  Covariates impact the hazard rate by scaling the 
baseline hazard by a constant 

•  This means that the model assumes that the effect of 
a covariate is proportional across all units of time: 
proportional hazards assumption 
–  e.g. being male implies you have x times the hazard at ANY 

point in time: time 0, time 10, or time 100000000000  

38	

h(t) = h0(t)e
�1x1+�2x2+···+�kxk

Proportional Hazards Assumption 

39	
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Proportional Hazards Assumption 

•  Always compute Kaplan-Meier curves first 
•  See whether any lines cross for your covariates 
•  If they cross, proportional hazards assumption is 

violated and you can’t do Cox Regression 
•  If they don’t cross, you have a green light to do Cox 

Regression 

40	

Cox Proportional Hazards Model 

•  Take logs of both sides, and voila!  Linear survival 
model 

•  Coefficients are the effect of the covariate on the 
log hazard rate 

•  Exponentiate the coefficient and you get the 
hazard ratio 

41	

ln(h(t)) = ln(h0(t)) + �1x1 + �2x2 + · · ·+ �kxk

Interpreting Hazard Ratios 

•  Hazard Ratio tells you how covariate changes the 
baseline hazard proportionally to the reference 
group 

•  Recall hazard is risk of an event at any point in 
time 
–  HR > 1 means increased hazard 
–  HR = 1 mean equal hazard 
–  HR < 1 means reduced hazard 

42	
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Time Out 

•  I know this looks scary and the equations are 
initimidating! 

•  But Cox regression is really just like logistic 
regression, only applied to time-to-event data 

•  We start with an unintuitive measure of risk 
(hazard versus odds), take logs, and get a linear 
model 

•  When we exponentiate the coefficients we get a 
hazard ratio (versus an odds ratio) 

•  Interpretation is very similar 
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Stata Code 

•  Must start with an st set statement 
•  Then you specify the model with stcox 
    stcox covar1 covar2 … covark 

•  For example, to estimate the effect of covariates on 
graft survival in liver transplant patients 

 stset gs_days, failure(gfail) 

 stcox ssi age4049 age5059 age60 ///    
 female black ab0 ab1 ab2 ab3 

44	

Stata Results 

45	

No. of subjects =          777                     Number of obs   =       777 
No. of failures =          159 
Time at risk    =      1061029 
                                                   LR chi2(10)     =     26.36 
Log likelihood  =   -1003.7557                     Prob > chi2     =    0.0033 
 
------------------------------------------------------------------------------ 
          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         ssi |   1.505696   .2426318     2.54   0.011     1.097925    2.064915 
     age4049 |   1.423765   .3460387     1.45   0.146     .8842152    2.292547 
     age5059 |   1.730902   .4066374     2.34   0.020     1.092198    2.743112 
       age60 |   2.246839   .5611624     3.24   0.001     1.377143    3.665768 
      female |   .9552656   .1552651    -0.28   0.778     .6946615    1.313636 
       black |    .763481   .3520942    -0.59   0.558     .3092075    1.885153 
         ab0 |   .9113616   .6554753    -0.13   0.897      .222579    3.731619 
         ab1 |   .2120457   .2136852    -1.54   0.124     .0294203    1.528314 
         ab2 |    .952278   .2372452    -0.20   0.844     .5843866     1.55177 
         ab3 |   1.273965   .2203778     1.40   0.162     .9076359    1.788147 
------------------------------------------------------------------------------ 
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R Code 

•  Use the coxph() function to create a proportional 
hazards object 

•  Then summarize the object 
–  cox1 <- coxph(Surv(dat1$gs_days, 
dat1$gfail) ~ data1$age4049 + 
data1$age5059 + data1$age60 + 
data1$female + data1$black + data1$abmm 
+ data1$ssi) 

–  summary(cox1) 

R Results 
> summary(cox1) 
 
  n= 777, number of events= 159  
 
                  coef exp(coef) se(coef)      z Pr(>|z|)     
data1$age4049  0.38022   1.46260  0.24249  1.568 0.116892     
data1$age5059  0.58394   1.79309  0.23453  2.490 0.012779 *   
data1$age60    0.82178   2.27453  0.24905  3.300 0.000968 *** 
data1$female  -0.05649   0.94508  0.16266 -0.347 0.728377     
data1$black   -0.26939   0.76384  0.46115 -0.584 0.559099     
data1$abmm     0.05595   1.05755  0.09012  0.621 0.534682     
data1$ssi      0.40825   1.50418  0.16071  2.540 0.011077 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
              exp(coef) exp(-coef) lower .95 upper .95 
data1$age4049    1.4626     0.6837    0.9093     2.353 
data1$age5059    1.7931     0.5577    1.1323     2.839 
data1$age60      2.2745     0.4397    1.3960     3.706 
data1$female     0.9451     1.0581    0.6871     1.300 
data1$black      0.7638     1.3092    0.3094     1.886 
data1$abmm       1.0576     0.9456    0.8863     1.262 
data1$ssi        1.5042     0.6648    1.0977     2.061 
 
Concordance= 0.593  (se = 0.024 ) 
Rsquare= 0.025   (max possible= 0.927 ) 
Likelihood ratio test= 19.43  on 7 df,   p=0.006939 
Wald test            = 18.92  on 7 df,   p=0.008455 
Score (logrank) test = 19.35  on 7 df,   p=0.007162 

48	
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The Narrative 

49	

Age had a significant association with graft survival. 
Patients age 50-59 had a 73% greater hazard of 
losing their graft (p=0.02) and patients age 60+ had 
2.25 times greater hazard of losing their graft 
(p=0.001).  Patients with a surgical site infection 
were 51% more likely to lose their graft than patients 
without a surgical site infection (p=0.011).  

Homework 

•  Using the Liver Transplant data: 
•  Create Kaplan-Meier survival curve using patient 

survival and explore how survival is influenced by 
age, sex, and SSI 
–  Test whether curves are different using log rank test 

•  Fit a Cox proportional hazards model and control 
for covariates you used in your logistic regression 
model of mortality 
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