Unit \#4 : Interpreting Derivatives, Local Linearity, Newton's Method

Goals:

- Review inverse trigonometric functions and their derivatives.
- Create and use linearization/tangent line formulas.
- Investigate Newton's Method as a tool for solving non-linear equations that are not solvable by hand.

Inverse Trigonometric Functions
Example: Evaluate $\sin \left(\frac{\pi}{3}\right)$.

$$
\begin{aligned}
\sin (\pi / 3) & \simeq 0.866 \cdots \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

Example: Draw a right-angle triangle with a hypotenuse of length 5, and other side lengths of 3 and 4. $\cos (\phi)=\frac{4}{5} \rightarrow \phi=0.635 \mathrm{rd}$

$$
\begin{aligned}
\sin (\theta) & =\frac{4}{5} \\
\theta & =0.927 \mathrm{rod}
\end{aligned}
$$

Determine the missing angles in the triangle.

$$
\left.\swarrow_{1, \ldots}^{\text {reciprocal, }} \stackrel{1}{ \pm}\right)
$$

Most students would use the "SHIFT $+\sin$ " or " $\sin ^{-1}$ " button combination on a calculator to find the missing angles in the previous question.
Example: Why should you (as a mathematician) be suspicious of such an easy implementation of the inverse of the sine function?

$$
y
$$

How can we remove the obstacle to an inverse of sine? (Clearly, there must be a way since the calculator is doing something!)

Sine and arcsine

For convenience we call this new functon $\operatorname{Sin}(x)$, where

$$
\underline{\underline{S i n}}(x)=\sin (x)
$$

provided $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

hoijatal lime

$$
\operatorname{ten} t .
$$

Example: $\operatorname{Sin}(x)$ has an inverse: what are two notations for this inverse function?

The domain of arcsin is:
The range of arcsin is:
acceptable inputs to
(output)
\arcsin (ratios \rightarrow angles)

$$
(-\pi / 2, \pi / 2]
$$

\rightarrow derain $[-1,1]$

$$
\text { line } e^{\ln (x)}=x
$$

Since arcsin undoes what sin does, and vice-versa, the following equations are true, but only for the specified values of x :

$$
\begin{array}{lll}
\underset{\sim}{\arcsin (\sin x)}=x, & \text { for } & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\underbrace{}_{\sin (\arcsin x)}=x, & \text { for } & -1 \leq x \leq 1
\end{array}
$$

Example: What is the value of $\arcsin (0.5) ? \rightarrow \sin (\theta)=0.5=\frac{1}{2} \frac{0}{\mathrm{H}}$
Colculotor: $\cos \sin (0.5) \simeq 0.524$

$$
\theta=\pi / 6=0.524 \ldots
$$

Example: $\quad \sin \left(\frac{-7 \pi}{5}\right)=0.951$, so what is the value of $\arcsin (0.951)$?
colcubtor $\operatorname{cacsin}(0.951)=1.256 \mathrm{rad} .\left(\neq \frac{-7 \pi}{5}\right)$

$$
-\frac{15 \pi}{10}=-3 \pi / 2
$$

Cosine and arccosine

The inverse of cosine is obtained by a calculation similar to the way the inverse of sine was determined. We analyze cosine from 0 to π; this is shown in the graph on the right.
For convenience, we could call this new function $\operatorname{Cos}(x)$ where

$\operatorname{Cos}(x)$ satisfies the horizontal line test and therefore has an inverse function which we call the inverse cosine function and denote it as
noting that

$$
\begin{gathered}
\cos ^{-1}(x) \text { or } \arccos (x) \\
\text { inverg } \\
\cos ^{-1} x \neq \frac{1}{\cos x}
\end{gathered}
$$

Example: Compute the value of $\arccos (0.7)$ using your calculator.

$$
\begin{array}{cc}
\arccos (0.7) & 0.795 \\
\text { ratio radians } \\
\operatorname{ar} & \text { angle }
\end{array}
$$

Draw a triangle that would capture a relationship based on what you just computed.

Example: When you enter $\arccos (2)$ (via the " $\cos ^{-1}$ " button) on your calculator, it objects. Why is that?
A. The numbers involved are too large for the calculator to handle.
B. The calculator does not understand this business of taking the inverse using only part of the cosine function. X
C. The cosine function does not really have an inverse. (it does f we limit domain)
D. The number 2 is outside the domain of the function arccos.

$$
\text { ratio of } \frac{\text { adj }}{\text { hyp }}=2
$$

Tan and arctan

The inverse of \tan is determined in the same way, only analyzing it from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. This is shown in the graph on the next page:
As done before, we name this portion of the tan function $\operatorname{Tan}(x)$, where
$\operatorname{Tan}(x)=\tan x$
provided $-\frac{\pi}{2}<x<\frac{\pi}{2}$.

$\operatorname{Tan}(x)$ satisfies the horizontal line test and therefore has an inverse, which we call the inverse tangent function and denote it as
once again noting that

$$
\tan ^{-1} x \text { or } \arctan (x)
$$

$$
\lim \arctan (x)=\pi / 2
$$

$$
\tan ^{-1} x \neq \frac{1}{\tan x}
$$

$$
x \rightarrow \infty
$$

$$
\lim _{x \rightarrow-\infty} \operatorname{arctam}(x)=-\pi / 2
$$

Example: What is the value of $\arctan (1) ?=0.785=\pi / 4$

$$
\text { Gtio } \frac{\text { opp }}{\text { adj }}
$$

Derivative of arcsin

Simplify $\sin (\arcsin x)=x$
\square

Differentiate both sides of this equation, using the chain rule on the left. You should end up with an equation involving $\frac{d}{d x} \arcsin x$.

$$
\begin{array}{r}
\frac{d}{d x}(\sin (\arcsin (x)))=\frac{d}{d x}(x) \\
\frac{\cos (\arcsin (x))}{}\left[\frac{d}{d x}(\arcsin (x))\right]
\end{array}
$$

Solve for $\frac{d}{d x} \arcsin x$, and simplify the resulting expression by means of the formula

$$
\cos \theta=\sqrt{1-\sin ^{2} \theta}, \quad \cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

which is valid if $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
True, but

$$
\begin{aligned}
\frac{d}{d x}(\arcsin (x)) & =\frac{1}{\cos (\arcsin (x))} \text { not useful } \\
& =\frac{1}{\sqrt{1-[\sin (\arcsin (x))]^{2}}} \\
\frac{d}{d x} \arcsin (x) & =\frac{1}{\sqrt{1-x^{2}}} \sqrt[\arcsin (x)]{ }
\end{aligned}
$$

Interpreting the Derivative
Example: Consider the statement "I am walking at $1.2 \mathrm{~m} / \mathrm{s}$. "
How far will you travel in the next second?
1.2 m

How far will you travel in the two seconds?

$$
2.4 m=\left[v \cdot \operatorname{tim}=\left(\frac{1.2 \mathrm{~m}}{s}\right)(2 \mathrm{~s})\right]
$$

How far will you travel in the next $\frac{1}{3}$ of a second?

$$
\text { asst }=\left(1.2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(\frac{1}{3} \mathrm{~s}\right)=0.4 \mathrm{~m}
$$

How far will you travel in the next 10 minutes?

$$
\text { cist }=\left(1.2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(10 \text { with })\left(\frac{60 \mathrm{~s}}{\mathrm{~m} \pi \mathrm{k}}\right)=720 \mathrm{~m}
$$

Note that all the values computed above are estimates or predictions. Which of the estimates you just calculated will be the most accurate?

most arcunary.
What assumptions are you using to reach your answers?
on shorter tine imverarals,
boss change

Example: Let $R=f(A)$ be the monthly revenue for a company, given advertising spending of A per month. Both variables are measured in thousands of dollars. $\begin{aligned} & \text { slope } \\ & \left.\text { Interpret }\left(f^{\prime}\right) \frac{200}{A}\right)=1.8 \text { in words. }\end{aligned}$.
 ot $\$ 1.8$ thousods revenue per
\$ 1 thousand extra spent on advertising. (from a base of $\$ 200$ tHousand current adventijig)

If $A=200$ currently, and you increased advertising spending by 2 thousand dollars, what would you expect your revenue increase to be?

$$
\text { revenue incr by }(1.8)(2)=3.6 \text { thousand. }
$$ revenue.

If $A=200$ currently, and you increased advertising spending by 1 million dollars, what would you expect your revenue increase to be? 1000
revenue incr by $(1.8)(1000)=1800$ Suspect) large change in A. or 1.8 million incr If $f^{\prime}(200)=0.8$, and you are currently spending 200 thousand on advertising, should you spend more or less next month?
incr adreltisig \Rightarrow incr of $\$ 0.8$ thousand in revenue for eoe bl extra spent on advent Big.
spend $\$ 1$ thorusod tor get $\$ 800 \ldots$
\rightarrow we should decrease on ad spending.

Question: A chemical reaction consumes reactant at a rate given by $f(c)$, where c is the amount (mg) of catalyst present. $f(c)$ is given in moles per second. The units of the derivative, $f^{\prime}(c)$, are
(a) mg / s
(b) moles/s

(d) $(\mathrm{mg}$ moles $) / \mathrm{s}$

Interpreting the Derivative - $\quad \ell^{C=10 \mathrm{mg}}$ Question: If $f^{\prime}(10)=-0.2$, per mig of cotadded
(a) Adding more catalyst to the 10 mg present will speed up the reaction.
(b) Adding more catalyst to the 10 mg present will slow down the reaction.
(c) Removing catalyst, from 10 mg present, will speed up the reaction.
(d) Removing catalyst, from 10 mg present, will slow down the reaction. X

Local Linearity

In all these estimates we have been making, we have been relying on the local linearity of a differentiable function.

If a function is differentiable at a point, then it behaves like a linear function for x sufficiently close to that point. Ls hove slope

Another interpretation of differentiability is that if we "zoom in" sufficiently on a point, the graph will eventually look like a straight line.

Consider the graph of $y=\sin (x)$ at different scales, around the point $x=0.4$:

And the more exotic $y=\sin (1 / x)$ at different scales, around $x=0.1$:

Sketch a graph of a locally linear function $f(x)$. Add on the tangent line, and use the derivative to estimate Δy for a given change in x.

$$
\begin{aligned}
& \frac{\Delta y \cong}{\Delta x} \cong f^{\prime}(x) \\
& \Delta y \cong f^{\prime}(x) \cdot \Delta x \\
& \\
& (\text { vel }) \cdot(\Delta t)
\end{aligned}
$$

Derivative as Approximation of Change in stantanerus

$$
f^{\prime}(x)=\frac{d y}{d x} \approx \frac{\Delta y}{\Delta x}<\text { arog. rote of chaze. }
$$

so given a value of Δx,

$$
\underline{\Delta y} \approx f^{\prime}(x) \cdot \Delta x
$$

assuming that Δx is "sufficiently" small.
The larger Δx is, the worse the approximation will generally be.

Let's return for a minute to an earlier example, and see how we can formalize our previous work.
Example: Let $R=f(A)$ be the monthly revenue for a company, given advertising spending of A per month. Both variables are measured in thousands of dollars.
If $A=200$ currently, and you increased advertising spending by $\underset{\sim}{2}$ thousand dollars, what would you expect your revenue increase to be?

$$
\left[\begin{array}{rl}
\left.\frac{d R}{d A}=\right] f^{\prime}(A) \cong \frac{\Delta R}{\Delta A} & \Delta r
\end{array} \begin{array}{rl}
\Delta R & \cong f^{\prime}(A) \cdot \Delta A \\
& =(1.8)(2)=\$ 3.6 \text { thomson }
\end{array}\right.
$$

If $A=200$ currently, and you increased advertising spending by 1 million dollars, what would you expect your revenue increase to be?

$$
\Delta A=1000
$$

$$
\begin{aligned}
& \Delta R \cong f^{\prime}(A) \cdot \Delta A \\
& =(1.8)(1000)=\$ 1800 \text { thousand } \\
& =\$ 1.8 \mathrm{millom} \text {. }
\end{aligned}
$$

The Tangent Line, or Local Linearization

$$
\Delta y \cong f^{\prime}(x) \Delta x
$$

In the last few examples, we focused on the change in y (or f, or revenue, etc.), based on a set change in the input. Note that all these changes were relative to a given starting value. ($A=200, c=10$, etc.)
We can take the ideas one step further and create a linear function that approximates our given (usually non-linear) function.

Example: Let us return to the advertising problem, where $R=f(A)$ represents the revenue of a company (in thousands of dollars), given the amount A spent on advertising (also in thousands of dollars).
Suppose $f(200)=1500$, and $f^{\prime}(200)=1.8$.
State the interpretation of both palues in words.
\rightarrow revenue will incr by
if we spend
$\$ 200$ brosond on
advertising, then
revenue is $\$ 1500$ throusod

$$
\text { (or } \$ 1.5 \text { million) }
$$

Recall the point/slope form for a linear function:

$$
y=\frac{m}{1}(x-a)+c
$$

Sketch out the graph of this functor, indicating the effect of the parameters m, a and c on the graph. slope

$$
\begin{gathered}
y=m(x-a)+c \\
\text { (ere }
\end{gathered}
$$

- slope un
- through (a, c).

Use the point/slope formula, and the information that $\overbrace{f(200)=1} 1500$ and $f^{\prime}(200)=1.8$, to build a local linear approximation for the revenue function R for \&dvertring budgets A around 200.
slope
approximate for R.

$$
\begin{aligned}
& R(A) \stackrel{@}{\cong} 1.8(A-200)+1500 \\
& y=m(x-a)+c \quad \text { hor }
\end{aligned}
$$

What revenue would we expect if we reduced advertising to 190 thousand dollars?

$$
4=190
$$

Petition: $R=1.8(190-200)+1500$

$$
=-18+1500
$$

$$
=\$ 1482 \text { thousand }
$$

or 51.482 million.
Revenue dee to $\$ 1.482$ ilion.

Linearization Formula

We can construct a linear approximation of a function, given a reference point $x=a$, using $\quad m(x-a)+c$

This approximation is good assuming that the x values used are "sufficiently" close to the reference point $x=a$.
The larger $(x-a)$ (or Δx) is, the worse the approximation will generally be.

Show that $f(x) \approx f^{\prime}(a)(x-a)+f(a)$ is equivalent to our earlier approximation

$$
\frac{d y}{d x}=f^{\prime}(a) \approx \frac{\Delta y}{\Delta x}
$$

$$
\begin{aligned}
& f(x) \approx f^{\prime}(a)(x-a)+f(a) \\
& f(x) \approx f^{\prime}(a) \cdot \Delta x+f(a)
\end{aligned}
$$

$$
f(x)-f(a) \approx f^{\prime}(a) \Delta x
$$

$$
\Delta y \approx f^{\prime}(a) \cdot \Delta x
$$

$$
f^{\prime}(a) \cong \frac{\Delta y}{\Delta x}
$$

$$
f(x)-1
$$

1
1

Example: Build a local linear approximation formula for the population of Canada, given it is currently 33 million, and the population is currently increasing at a rate 300,000 people per year. $\quad P(0)=33,000,000$

$$
\begin{aligned}
& \text { now: } t=0 \backslash P^{\prime}(0)=300,000 \\
& P(t) \cong 300,000(t-0)+33,000,000 \\
& (t=\text { years from now) }
\end{aligned}
$$

Use your approximation to estimate the Canadian population two years from now.

$$
\begin{aligned}
\text { PR) } & \approx 300,000(2-0)+33,000,080 \\
& \cong 33,600,000
\end{aligned}
$$

Question: Given that the Canadian population is growing exponentially (around 1% per year), will your previous population estimate above an underestimate or an overestimate of the real population in that year?
(a) Overestimate
(b) Underestimate

Support your answer with a sketch of the population curve, and the linear approximation.

Geometric Applications of Linearization
We can also construct and answer interesting geometric questions using tangent lines.

Example: Find the equations of all the lines through the origin that are also tangent to the parabola.

$$
\uparrow
$$

$$
\begin{aligned}
& \stackrel{f}{f}(x) \\
& =y=\overbrace{x^{2}-2 x+4}
\end{aligned}
$$

linear approx
parabola

$$
\text { (opens }-p \text {) }
$$

Equation of tagged tine

$$
y=f^{\prime}\binom{a}{3}(x-a)+f(a)
$$

based on point $x=a$ on
We wont a's such that line passes parabola through $(0,0) \rightarrow x=0, y=0$ satifies line equation

$$
0=f^{\prime}(a)(0-a)+f(a)
$$

Continued. $\quad y=x^{2}-2 x+4$
so $f^{\prime}(x)=2 x-2 \quad \rightarrow \quad f^{\prime}(a)=(2 a-2)$
Sub into target the formal, also satisfying $(0,0)$

$$
\begin{aligned}
& 0=(2 a-2)(0-a)+\left(a^{2}-2 a+4\right) \\
& 0=-2 a^{2}+2 a+a^{2}-2 a+4 \\
& 0=-a^{2}+4 \\
& a^{2}=4 \text { or } a=2,-2
\end{aligned}
$$

paints on parabola where tangent lime will poss through the origin

Sketch the parabola and the lines you found.

$$
y=x^{2}-2 x+4
$$

x	y
-2	12
-1	7
0	4
1	3
2	4
3	7

confirmed $x=2, x=-2$; taught lives to parbark poss through origin

Solving Nonlinear Equations
Example: Solve the equation $x^{2}+3 x-4=0$.

1) factoring:
2)

$$
\begin{aligned}
& (x+4)(x-1)=0 \\
& x=-4 \text { or } x=1
\end{aligned}
$$

$$
x=\frac{-3 \pm \sqrt{9-4(1)(-4)}}{2}
$$

$$
=\frac{-3}{2} \pm \frac{5}{2}
$$

$$
=-\frac{8}{2}, \frac{2}{2}=-4,1
$$

Example: Solve the equation $10 e^{-x}=7$
isobte x
\ln of both sides

$$
\begin{aligned}
e^{-x} & =\frac{7}{10} \\
\ln \left(e^{-x}\right) & =\ln \left(\frac{7}{10}\right) \\
-x & =\ln \left(\frac{7}{10}\right) \\
x & =-\ln \left(\frac{7}{10}\right)
\end{aligned}
$$

Example: Solve the equation $10 e^{-x}+x=7 \quad \rightarrow \quad x=7-10 e^{-x}$

$$
\begin{aligned}
10 e^{-x} & =7-\underline{\underline{E}} \\
\ln \left(e^{-x}\right) & =\ln \left(\frac{7-x}{10}\right) \\
-x & =\ln \left(\frac{7-x}{10}\right) ? ? ?
\end{aligned}
$$

Cannot isolate that x.

Perhaps surprisingly to some students, there are many relatively simple equations that cannot be solved by hand. We look now at a classical numerical method that lets us approximate the solution.
Note: It is never better to use numerical methods instead of solving by hand, if a by-hand solution is available.

- Numerical solutions are always approximations, not exact.
- By-hand solutions can often be generalized, while numerical solutions have to be re-calculated if anything changes.

$$
\begin{aligned}
& 10 e^{-x}+x=7 \\
& \text { how to search... }
\end{aligned}
$$

The equation $10 e^{-x}+x=7$ is non-linear, and is of a form that cannot be solved by hand. We will introduce an approach to get high-accuracy approximate solutions instead.
Re-arrange the equation $10 e^{-x}+x=7$ so the $R H S$ is zero.

$$
\begin{aligned}
10 e^{-x}+x-7 & =0 \\
f(x) & =0
\end{aligned}
$$

Call the LHS $f(x)$, and plot a few points of its graph, between $x=0$ and

x	$f(x)$
0	3
1	-2.3
2	-3.6
3	-3.5
4	-2.8

Where could a solution to $f(x)=0$ be, based on the points you plotted? on interval $x=0 \ldots$ I

Bonus: what property of $f(x)$ did you use to find the region of the solution?

Here are a few more points on the graph.

$$
f(x)=10 e^{-x}+x-7
$$

For maybe not-so-obvious reasons, compute the derivative of $f(x)$ at $x=0.5$, a point which is close to a root/solution.

$$
\begin{aligned}
& f^{\prime}(x)=10\left(e^{-x} \cdot(-1)\right)+1-0 \\
&=1-10 e^{-x} \\
& f^{\prime}(0,5) \cong-5.07
\end{aligned}
$$

Use the derivative information to sketch the tangent line at $x=0.5$ on the zoomed-in graph below.

$$
f^{\prime}(0,5) \approx-5
$$

Sketch the curve on the same graph (lightly, since we don't know its exact shape).

Would the root of the tangent line be close to the root of the real (curved) function? Why?

Newton's Method - fi-dij approx solutions to equations

1. Convert an equation like $g(x)=\underline{h(x)}$ into a function on the left hand side: $f(x)=g(x)-h(x)=0 \quad$ roat finding problen
2. Select a starting value of \underline{x}, x_{0}, near a root of $f(x)$.
3. Use the formula $\frac{x_{n+1}}{\text { new }}=\frac{x_{n}}{\overline{\text { ald }}}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ to find the root of the tangent line at x_{n}.
4. Repeat Step 3 until the x_{n+1} estimate is sufficiently close to a root.

Rationale for Step 3 of Newton's Method: For an arbitrary function, $f(x)$, and a point $x=x_{n}$, find where a tangent line to $f(x)$ at x_{n} would reach $y=0$.

where $y=0$

$$
\begin{aligned}
& \text { (root of target) } \\
& \text { lire } O=f^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)+f\left(x_{n}\right) \\
&-f\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right) \\
& x_{n+1}-x_{n}=\frac{-f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \Rightarrow x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

Apply Newton's method twice to improve our estimate of the solution, $x=0.5$, to the earlier equation $\underbrace{10 e^{-x}+x-7}_{f(x)}=0$.

$$
\text { so } f^{\prime}(x)=-10 e^{-x}+1
$$

$$
\begin{array}{l|l|l|l}
x_{n} & f\left(x_{n}\right) & f^{\prime}\left(x_{n}\right) & x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
\hline 0.5 & -0.43 & -5.07 & 0.5-\frac{-0.43}{-5.07}=\underbrace{0.414}_{\substack{\text { new } \\
\text { estimate }}} \\
0.414 & 0.24 & -5.61 & 0.414-\frac{0.24}{-5.61} \\
0.4183 & \underbrace{6.05 \times 10^{-6}} & =0.4183 & \text { sot } \\
& \approx 0 \text { so } & \\
& x=0.4183-s \approx \text { solution. }
\end{array}
$$

Evaluate the quality of the x estimate you found.
original eyriation
Check: $x=0.4183 \quad 10 e^{-x}+x=7$

$$
\begin{aligned}
L H S & =10 e^{-0.4183}+0.4183 \\
& =6.999947
\end{aligned}
$$

$$
R H S=7
$$

So $x=0.4183$ is a high accurry Solution estingte

Sketch the values we computed on the axes below.

It can be shown that, under certain common conditions, and a "sufficiently close" initial estimate of the root, Newton's method will converge very quickly towards a nearby root. It will always give just an estimate, though, not an exact answer; as a result, you always have to trade off the amount of work you are willing to do for more steps/increased accuracy.

Example: Try to find a solution to $\sin (x)=\frac{x}{3}$ by hand.

$$
\begin{gathered}
x=3 \sin (x) \quad x=? ? ? \\
\arcsin (\sin (x))=\arcsin (x / 3) \\
x=\arcsin \left(\frac{x}{3}\right) \quad x=? ? ?
\end{gathered}
$$

Example: Sketch both functions to identify roughly what x values might be solutions.

Use three iterations of Newton's method to find an approximate non-zero solution to $\sin (x)=\frac{x}{3} . \quad \rightarrow \quad \underbrace{\sin (x)-\frac{x}{3}}_{f(x)}=0$

x_{n}	$f\left(x_{n}\right)$	$f^{\prime}\left(x_{n}\right)$	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$	$f(x)=\sin (x)-\frac{x}{3}$
2	0.243	-0.749	2.324	so
2.324	-0.045	-1.017	2.280	$f^{\prime}(x)=\cos (x)-\frac{1}{3}$
2.280	-1.119×10^{-3}	-0.985	2.279	
2.279				

Confirm your approximate solution by subbing it in to the equation $\sin (x)=\frac{x}{3}$, and checking that the LHS and RHS are (very close to) equal.

Check $x=2.279$ is \approx solution

$$
\begin{aligned}
& \text { CHS }=\sin (2.279)=0.7595 \\
& \text { RHS }=\frac{2.279}{3}=0.7596
\end{aligned}
$$

\Rightarrow confirms that $x=2.279$
is (very close) to a solution to $\sin (x)=\frac{x}{3}$.

