
Unit #4 : Interpreting Derivatives, Local Linearity, Newton’s
Method

Goals:

• Review inverse trigonometric functions and their derivatives.

• Create and use linearization/tangent line formulas.

• Investigate Newton’s Method as a tool for solving non-linear equations that are
not solvable by hand.



Inverse Trigonometric Functions - Introduction - 1

Inverse Trigonometric Functions

Example: Evaluate sin
(
π
3

)
.

Example: Draw a right-angle triangle with a hypotenuse of length 5, and
other side lengths of 3 and 4.

Determine the missing angles in the triangle.



Inverse Trigonometric Functions - Introduction - 2

Most students would use the “SHIFT + sin” or “sin−1” button combination on a
calculator to find the missing angles in the previous question.
Example: Why should you (as a mathematician) be suspicious of such an
easy implementation of the inverse of the sine function?

How can we remove the obstacle to an inverse of sine? (Clearly, there must be a
way since the calculator is doing something!)



Sine and arcsine - 1

Sine and arcsine

For convenience we call this new func-
tion Sin (x), where

Sin (x) = sin(x)

provided −π
2 ≤ x ≤ π

2 .
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Sine and arcsine - 2

Example: Sin(x) has an inverse:
what are two notations for this in-
verse function?

1−1
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f(x) = arcsin(x)

b

b

The domain of arcsin is: The range of arcsin is:



Sine and arcsine - 3

Sine and Arcsine as Inverses

Since arcsin undoes what sin does, and vice-versa, the following equations are true,
but only for the specified values of x:

arcsin(sinx) = x, for − π

2
≤ x ≤ π

2
sin(arcsinx) = x, for − 1 ≤ x ≤ 1.

Example: What is the value of arcsin(0.5)?



Sine and arcsine - 4

Example: sin

(
−7π

5

)
= 0.951, so what is the value of arcsin(0.951)?



Arccos and arctan - 1

Cosine and arccosine

The inverse of cosine is obtained by a calculation similar to the way the inverse of
sine was determined. We analyze cosine from 0 to π; this is shown in the graph
on the right.
For convenience, we could call this new function Cos(x) where

Cos(x) = cos(x), provided 0 ≤ x ≤ π.
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Arccos and arctan - 2

Cos(x) satisfies the horizontal line test and therefore has an inverse function which
we call the inverse cosine function and denote it as

cos−1(x) or arccos(x)

noting that

cos−1 x 6= 1

cosx
.
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Arccos and arctan - 3

Example: Compute the value of arccos(0.7) using your calculator.

Draw a triangle that would capture a relationship based on what you just
computed.



Arccos and arctan - 4

Example: When you enter arccos(2) (via the “cos−1” button) on your
calculator, it objects. Why is that?

A. The numbers involved are too large for the calculator to handle.

B. The calculator does not understand this business of taking the inverse us-
ing only part of the cosine function.

C. The cosine function does not really have an inverse.

D. The number 2 is outside the domain of the function arccos.



Arccos and arctan - 5

Tan and arctan

The inverse of tan is determined in the same way, only analyzing it from −π
2 to π

2 .
This is shown in the graph on the next page:
As done before, we name this portion of the tan function Tan(x), where

Tan(x) = tanx

provided −π
2 < x < π
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Arccos and arctan - 6

Tan(x) satisfies the horizontal line test and therefore has an inverse, which we call
the inverse tangent function and denote it as

tan−1 x or arctan(x)

once again noting that

tan−1 x 6= 1

tanx
.
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f(x) = arctan(x)

Example: What is the value of arctan(1)?



Derivative of arcsin - 1

Derivative of arcsin

Simplify sin(arcsinx)

Differentiate both sides of this equation, using the chain rule on the left. You

should end up with an equation involving
d

dx
arcsinx.



Derivative of arcsin - 2

Solve for
d

dx
arcsinx, and simplify the resulting expression by means of the

formula

cos θ =
√

1− sin2 θ,

which is valid if θ ∈ [−π
2
,
π

2
].



Derivative of arcsin - 3

Graph of arcsin(x)

Graph of
d

dx
arcsin(x)



Interpreting the Derivative - 1

Interpreting the Derivative

Example: Consider the statement “I am walking at 1.2 m/s.”
How far will you travel in the next second?

How far will you travel in the two seconds?

How far will you travel in the next
1

3
of a second?

How far will you travel in the next 10 minutes?



Interpreting the Derivative - 2

Note that all the values computed above are estimates or predictions. Which
of the estimates you just calculated will be the most accurate?

What assumptions are you using to reach your answers?



Interpreting the Derivative - 3

Example: Let R = f (A) be the monthly revenue for a company, given ad-
vertising spending of A per month. Both variables are measured in thousands
of dollars.

Interpret f ′(200) = 1.8 in words.



Interpreting the Derivative - 4

If A = 200 currently, and you increased advertising spending by 2 thousand
dollars, what would you expect your revenue increase to be?

If A = 200 currently, and you increased advertising spending by 1 million
dollars, what would you expect your revenue increase to be?

If f ′(200) = 0.8, and you are currently spending 200 thousand on advertising,
should you spend more or less next month?



Interpreting the Derivative - 5

Question: A chemical reaction consumes reactant at a rate given by f (c), where
c is the amount (mg) of catalyst present. f (c) is given in moles per second.
The units of the derivative, f ′(c), are

(a) mg/s

(b) moles/s

(c) moles/(s mg)

(d) (mg moles)/s



Interpreting the Derivative - 6

Question: If f ′(10) = −0.2,

(a) Adding more catalyst to the 10 mg present will speed up the reaction.

(b) Adding more catalyst to the 10 mg present will slow down the reaction.

(c) Removing catalyst, from 10 mg present, will speed up the reaction.

(d) Removing catalyst, from 10 mg present, will slow down the reaction.



Local Linearity - 1

Local Linearity

In all these estimates we have been making, we have been relying on the local
linearity of a differentiable function.

If a function is differentiable at a point, then it behaves like a linear function for x
sufficiently close to that point.

Another interpretation of differentiability is that if we “zoom in” sufficiently on a
point, the graph will eventually look like a straight line.



Local Linearity - 2

Consider the graph of y = sin(x) at different scales, around the point x = 0.4:
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Local Linearity - 3

And the more exotic y = sin(1/x) at different scales, around x = 0.1:
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Local Linearity - 4

Sketch a graph of a locally linear function f (x). Add on the tangent line, and
use the derivative to estimate ∆y for a given change in x.



Local Linearity - 5

Derivative as Approximation of Change

f ′(x) =
dy

dx
≈ ∆y

∆x
so given a value of ∆x,

∆y ≈ f ′(x) ·∆x

assuming that ∆x is “sufficiently” small.
The larger ∆x is, the worse the approximation will generally be.



Local Linearity - 6

Let’s return for a minute to an earlier example, and see how we can formalize our
previous work.
Example: Let R = f (A) be the monthly revenue for a company, given ad-
vertising spending of A per month. Both variables are measured in thousands
of dollars.
If A = 200 currently, and you increased advertising spending by 2 thousand
dollars, what would you expect your revenue increase to be?

If A = 200 currently, and you increased advertising spending by 1 million
dollars, what would you expect your revenue increase to be?



The Tangent Line, or Local Linearization - 1

The Tangent Line, or Local Linearization

In the last few examples, we focused on the change in y (or f , or revenue, etc.),
based on a set change in the input. Note that all these changes were relative to a
given starting value. (A = 200, c = 10, etc.)
We can take the ideas one step further and create a linear function that approxi-
mates our given (usually non-linear) function.



The Tangent Line, or Local Linearization - 2

Example: Let us return to the advertising problem, where R = f (A) repre-
sents the revenue of a company (in thousands of dollars), given the amount
A spent on advertising (also in thousands of dollars).
Suppose f (200) = 1500, and f ′(200) = 1.8.

State the interpretation of both values in words.



The Tangent Line, or Local Linearization - 3

Recall the point/slope form for a linear function:

y = m(x− a) + c

Sketch out the graph of this function, indicating the effect of the parameters
m, a and c on the graph.



The Tangent Line, or Local Linearization - 4

Use the point/slope formula, and the information that f (200) = 1500 and
f ′(200) = 1.8, to build a local linear approximation for the revenue function
R for advertising budgets A around 200.



The Tangent Line, or Local Linearization - 5

What revenue would we expect if we reduced advertising to 190 thousand dol-
lars?



Linearization Formula and Examples - 1

Linearization Formula

We can construct a linear approximation of a function, given a reference point
x = a, using

f (x) ≈ f ′(a)(x− a) + f (a)

This approximation is good assuming that the x values used are “sufficiently” close
to the reference point x = a.
The larger (x− a) (or ∆x) is, the worse the approximation will generally be.



Linearization Formula and Examples - 2

Show that f (x) ≈ f ′(a)(x−a)+f (a) is equivalent to our earlier approximation

f ′(a) ≈ ∆y

∆x



Linearization Formula and Examples - 3

Example: Build a local linear approximation formula for the population
of Canada, given it is currently 33 million, and the population is currently
increasing at a rate 300,000 people per year.

Use your approximation to estimate the Canadian population two years from
now.



Linearization Formula and Examples - 4

Question: Given that the Canadian population is growing exponentially (around
1% per year), will your previous population estimate above an underestimate or
an overestimate of the real population in that year?

(a) Overestimate

(b) Underestimate



Linearization Formula and Examples - 5

Support your answer with a sketch of the population curve, and the linear
approximation.



Geometric Applications of Linearization - 1

Geometric Applications of Linearization

We can also construct and answer interesting geometric questions using tangent
lines.

Example: Find the equations of all the lines through the origin that are
also tangent to the parabola.

y = x2 − 2x + 4



Geometric Applications of Linearization - 2

Continued. y = x2 − 2x + 4



Geometric Applications of Linearization - 3

Sketch the parabola and the lines you found.



Solving Nonlinear Equations - 1

Solving Nonlinear Equations

Example: Solve the equation x2 + 3x− 4 = 0.



Solving Nonlinear Equations - 2

Example: Solve the equation 10e−x = 7



Solving Nonlinear Equations - 3

Example: Solve the equation 10e−x + x = 7



Solving Nonlinear Equations - 4

Perhaps surprisingly to some students, there are many relatively simple equations
that cannot be solved by hand. We look now at a classical numerical method
that lets us approximate the solution.
Note: It is never better to use numerical methods instead of solving by hand, if a
by-hand solution is available.

• Numerical solutions are always approximations, not exact.

• By-hand solutions can often be generalized, while numerical solutions have to
be re-calculated if anything changes.



Linearity to Help Solve Nonlinear Equations - 1

The equation 10e−x+x = 7 is non-linear, and is of a form that cannot be solved by
hand. We will introduce an approach to get high-accuracy approximate solutions
instead.
Re-arrange the equation 10e−x + x = 7 so the RHS is zero.

Call the LHS f (x), and plot a few points of its graph, between x = 0 and
x = 4.



Linearity to Help Solve Nonlinear Equations - 2

Where could a solution to f (x) = 0 be, based on the points you plotted?

Bonus: what property of f (x) did you use to find the region of the solution?



Linearity to Help Solve Nonlinear Equations - 3

Here are a few more points on the graph. f (x) = 10e−x + x− 7
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For maybe not-so-obvious reasons, compute the derivative of f (x) at x = 0.5,
a point which is close to a root/solution.



Linearity to Help Solve Nonlinear Equations - 4

Use the derivative information to sketch the tangent line at x = 0.5 on the
zoomed-in graph below.
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Sketch the curve on the same graph (lightly, since we don’t know its exact
shape).

Would the root of the tangent line be close to the root of the real (curved)
function? Why?



Newton’s Method - 1

Newton’s Method

1. Convert an equation like g(x) = h(x) into a function on the left hand side:
f (x) = g(x)− h(x) = 0

2. Select a starting value of x, x0, near a root of f (x).

3. Use the formula xn+1 = xn−
f (xn)

f ′(xn)
to find the root of the tangent line at xn.

4. Repeat Step 3 until the xn+1 estimate is sufficiently close to a root.



Newton’s Method - 2

Rationale for Step 3 of Newton’s Method: For an arbitrary function,
f (x), and a point x = xn, find where a tangent line to f (x) at xn would reach
y = 0.



Newton’s Method - 3

Apply Newton’s method twice to improve our estimate of the solution, x = 0.5,
to the earlier equation 10e−x + x− 7 = 0.



Newton’s Method - 4

Evaluate the quality of the x estimate you found.



Newton’s Method - 5

Sketch the values we computed on the axes below.



Newton’s Method - 6

It can be shown that, under certain common conditions, and a “sufficiently close”
initial estimate of the root, Newton’s method will converge very quickly towards a
nearby root. It will always give just an estimate, though, not an exact answer; as
a result, you always have to trade off the amount of work you are willing to do for
more steps/increased accuracy.



Newton’s Method Example - 1

Example: Try to find a solution to sin(x) =
x

3
by hand.

Example: Sketch both functions to identify roughly what x values might be
solutions.



Newton’s Method Example - 2

Use three iterations of Newton’s method to find an approximate non-zero so-

lution to sin(x) =
x

3
.



Newton’s Method Example - 3

Confirm your approximate solution by subbing it in to the equation sin(x) =
x

3
,

and checking that the LHS and RHS are (very close to) equal.


