Review of Slow and Fast Tuners

S. Simrock, DESY

12th International Workshop on SRF Superconductivity, Cornell University, Ithaca, New York, July 10-15, 2005

Outline

- Objectives for Cavity Frequency Tuners
- Types of Tuners
- Parameters
- Examples for Recent Tuner Designs
- Performance Data
- Future Challenges

Objectives for Tuners

- Tune cavity resonance to operating frequency
 - during initial and subsequent cool-down
 - compensate slow drift of frequency
- De-tune cavities to bypass for operation
- Compensate Lorentz Force De-tuning (static and dynamic)
- Control of Microphonics (typically up to few 10 Hz)
- Long life time (~ 20 years of operation)

Objectives for Tuner (C'tnd)

- Compact design (especially longitudinal, fill factor !)
- Hysteresis free
- Tuning range limited (to avoid plastic deformation of cavity)
- Maintain field flatness of accelerating mode
- No "cross"-tuning of neighboring cavities
- No significant cryo heatload
- Easy to maintain and repair
- Cost efficient

Types of Frequency Tuners

- Mechanical length change or other deformation of the cavity
 - based on a motor driven mechanism (slow)
 - based on PZT or magnetostrictive Element (fast)
- VXC (external reactance) or ferrite based tuner
- Other: Pneumatic, thermal, electronic damping

Note: Tuners which control in addition to frequency also loaded Q and incident phase are possible.

Accelerator facility	KEK	CERN/LEP	DESY	CERN/SPS
Type of accelerator	e ⁻ e' collider	e ⁻ e ⁻ collider	e ⁻ collider	e ⁻ ,e ⁺ ,p, p
	8–29 GeV at 15 mA	20-46 GeV at 40 mA	26–40 GeV at 70 mA	collider, booster
Cavity material (RRR)	Nb (200)	Nb (280) and Nb/Cu (30)	Niobium (280)	Niobium
Operating temperature (K)	4.2	4.2	4.2	4.2
Cavities installed (operational)	32 (32)	8 Nb + 4 Nb/Cu (8+4)	16 (16)	1(1)
Number of cells	5	4	4	4
Frequency (MHz)	508	352	500	352
Q_{o}/Q_{L}	2.10^9 / 1.10^6	$3 \cdot 10^9$ / 2.2 \cdot 10^6	$2 \cdot 10^9$ / $2.4 \cdot 10^5$ variable	3.10^{9} / N.A.
Design (average) operating gradient (MV/m)	5 (3.5 – 4.7)	5 (3.7) Nb, 6 (4) Nb/Cu	5 (4)	5 (5)
Normal operating gradient control range (MV/m)	2.5-4.5	2-4	1-5	4-6
Gradient control range for conditioning (MV/m)	0.1–9.0	1-7	1–7	N/A
Power amplifier	Klystron 1 MW	Klystron 1.2 MW	Klystron 1.6 MW	Tetrode 50 kW
# Cavities/power amplifier	4	16	16	1
Beam time (h)	25,000	several 100	15,000	30,000
Mechanical sensitivity (Hz/µm)	80	40	80	≈40
Pressure sensitivity (Hz/mBar)	30	8	-90	8
Gradient sensitivity (Hz/(MV/m)**2)				
Frequency predictability for first cooldown (kHz)	±100	±30	±90	
Frequency predictability for		<5	±few kHz	
Tuning principle	length variation	length variation	length variation	length variation
Tuning mechanism	stepping motor + piezoelectric	thermal expansion + magnetostrictive	stepping motor	thermal expansion + magnetostrictive
Frequency range and settability of coarse tuner (kHz)	350	50	800	50
Frequency range and (settability) of fine tuner (Hz)	6000 (N.A.)	2000 (N.A.)	N.A.	2000 (N.A.)
Tuner control automated or manual	automated	automated	automated	automated
Bandwidth of tuner control (Hz)	10	<1 Hz	<1	

Accelerator facility	CEBAF	S-DALINAC	LISA	MACSE	HEPL
Type of accelerator	e recyclotron (5-pass)	e recyclotron (3-pass)	e linac	electron accelerator	e ⁻ recyclotron
	0.5-4.0 GeV at 200 μA	20-130 MeV at 20 µA	25 MeV linac for FEL	test facility	Nucl. Phys. and FEL
Cavity material (RRR)	Nb (300)	Nb (100 – 280)	Nb (100 – 200)	Nb	Nb
Operating temperature (K)	2.0	2.0	4.2	2.0	2.0
Cavities installed (operational)	306 (258)	10+1 (10+1)	4 (3)	4+1 (4+1)	7 (7)
Number of cells	5	20/5	4	4-5	7/23/55
Frequency (MHz)	1497	2997	500	1497	1300
Q_0/Q_L	$6 \cdot 10^9$ / $6 \cdot 10^6$	2.10^9 / 3.10^7	1.10^9 / 5.10^6	5.10^9 / 5.10^6	$2 \cdot 10^{9} / 4 \cdot 10^{6}$
Design (average) operating gradient (MV/m)	5 (7.2)	5 (3.0)	5 (3.5)	5 (4-5)	5 (3.5/2.5)
Normal operating gradient control range (MV/m)	3–7	2-4		4–5	2-5
Gradient control range for conditioning (MV/m)	0.5-7	1-10 (variable coupler)		N.A.	0.1–9.0
Power amplifier	Klystron 5 kW	Klystron 0.5 kW	Klystron 15 kW	Klystron 5 kW	Klystron 10 KW
# Cavities/power amplifier	1	1	1	1	1
Beam time (h)	4,000	7,000	> 200	100	30,000
Mechanical sensitivity (Hz/µm)	500	500	60	500	N.A.
Pressure sensitivity (Hz/mBar)	-60(-10)	-15	······································	-60	
Gradient sensitivity (Hz/(MV/m)**2)	-3	-4		-3	
Frequency predictability for first cooldown (kHz)	±20	±200		±50	13
Frequency predictability for repeated cool down (kHz)	±2	±20		±25	1
Tuning principle	length variation	length variation	length variation	length variation	length variation
Tuning mechanism	stepping motor	DC-motor+ magnetostrictive	stepping motor	stepping motor + magnetostrictive	stepping motor
Frequency range and settability of coarse tuner (kHz)	400 (0.002)	1000 (0.01)	600 (<0.01)	1500	25
Frequency range of fine tuner (Hz)		1500	· · · · · · · · · · · · · · · · · · ·		
Tuner control automated or manual	automated	automated	automated	automated	N/A
Bandwidth of tuner control (Hz)	0.1	1			

Accelerator facility	Atlas	Stony Brook	ALPI
Type of accelerator	Heavy in Linac	Heavy ion linac	Heavy ion linac
Cavity material (RRR)	Nb (20 – 200)	Pb/Cu	Pb/Cu
Operating temperature (K)	4.7	4.5	4.2
Cavities installed (operational)	62 (62)	42 (40)	32 (20)
Number of cells	N.A.	N.A.	N.A.
Frequency (MHz)	48,72,92,145	150.4	80, 160
Q_0/Q_L	typ. $2 \cdot 10^9 / 1 \cdot 10^7$	1.10^{8} / 1.10^{7}	1.10^{8} / 1.10^{7}
Design (average) operating gradient (MV/m)	3-4	3	3
Normal operating gradient control range (MV/m)	1-3.5		
Gradient control range for conditioning (MV/m)	1-8		
Power amplifier	200 W class A solid state	200 W class A solid state	100 W class A solid state
# Cavities/power amplifier	1	1	1
Beam time (h)	>50,000	30,000	some hours
Mechanical sensitivity (Hz/µm)	100		6
Pressure sensitivity (Hz/mBar)	2		
Gradient sensitivity (Hz/(MV/m)**2)	-100	-100	
Frequency predictability for first cool down (kHz)	< 10	<5	<10
Frequency predictability for	< 3	<1	<1
repeated cooldown (KHZ)	Defermention	Deformation of bottom plate (OWP)	Deformation of bottom plate
uning principle	Deformation	or end cells (SLR)	
Tuning mechanism	He-pressure actuated	Stepping motor, screw, lever	Stepping motor +step reducer
Frequency range and settability	100 (0.001)	±5 kHz (QWR)	30 (0.002)
of coarse tuner (kHz)		±20 kHz (SLR)	
Frequency range and (settability) of fine tuner (Hz)	200 (2°rf phase)		
uner control automated or	automated	coarse tuner manual	manual
nanual		fine tuner automated	
Average tuner control (Hz/day)	> 1000 for slow tuner		
Bandwidth of tuner control (Hz)	< 1 for slow tuner		

Typical Parameters of Multi-Cell Cavities

	CEBAF	CEBAF Upgrade (SL21,FEL03)	CEBAF Upgrade (Renascence)	RIA b =0.47	SNS b =0.61	SNS b =0.81	TESLA 500
Frequency (MHz)	1497	1497	1497	805	805	805	1300
Gradient (MV/m)	5	12.5	18	10	10.3	12.1	23.4
Operating Mode	CW	CW	CW	CW	Pulsed, 60 Hz	Pulsed 60 Hz	Pulsed 5Hz
Bandwidth (Hz)	220	75	75	40	1100	1100	520
Loaded Q (1e6)	6.6	20	20	20	0.7	0.7	3.0
Lorentz Force detuning (Hz)	75	312	324	1600	470	1200	434
Micro- phonics (Hz, 6 s)	-	+-10	+-10	+-10	+-100	+-100	NA
Stiffness (lb/in)	26,000 (calc'd)	37,000 (calc'd)	20,000-40,000 (calc'd)	<10,000	8,000 (meas'd)	17,000 (meas'd)	31,000 (est'd)
Sensitivity (Hz/ mm)	373	267	~300 (calc)	> 100	290	230	315

compiled by E. Daly (ERL workshop 2005)

Tuner Requirements & Specifications

	CEBAF	CEBAF Upgrade (SL21,FEL03)	CEBAF Upgrade (Renascence)	RIA b =0.47	SNS b =0.61	SNS b =0.81	TESLA 500
Coarse Range (kHz)	+-200	+-200	+-40	950	+-245	+-220	+-220
Coarse Resolution (Hz)	NA	<2	2-3	<1	2-3	2-3	<1
Backlash (Hz)	>>100	<3	<3	NR	<10	<10	NR
Fine Range (Hz)	NA	>550 @ 150V	1.2k @ 1 kV	11k @ 100 V	>2.5k @ 1KV	>2.5k @1kV	NA
Fine Resolution (Hz)	NA	<1	<1	<1	<1	<1	
Demo of active Microphonics Damp- ing	No		No	Yes	No	No	No
Tuning Method	Tens. & Comp.	Tension	Tension	NA	Comp.	Comp.	Comp.
Mechanism	Immersed	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum
Drive Comp.	Vac/Warm	Vac/Warm	Vac/Cold	Vac/Ext.	Vac/Cold	Vac/Cold	Vac/Cold

compiled by E. Daly (ERL workshop 2005)

Mechanical Tuner

• Principle: Mechanical change of length or mechanical deformation of the cavity

Mechanical Principle of Present TTF Tuner

- Double lever system ratio ~1:17
- Stepping motor with harmonic drive gear box
- Screw-nut system : lubricant treatment (balzers Balinit C coating) for working at cold and in vacuum
- $\Delta Z = +-5$ mm and $\Delta f = +-2.6$ MHz
- Theoretical resolution : $\delta z = 1.5 \text{ nm}$!

P. Bosland

Integration of Piezo Tuner and Calculation of Forces

- The Piezo actuator is kept under compression by the support F_{compress}
- The effective pre-load strength on the stack is

 $F_{preload} = F_{compress} - F_{cav}/2$

- $\Delta L_{cav} = \Delta L_{piezo}/2$ if
 - tuner is infinit rigid (100 kN/mm vs 3 kN/mm for the cavity)
- the piezo displacemet speed is slow compared to the system response
- the tuner is not at the neutral point

Upgrade Tuner for SL21 und FEL03

- Scissor jack mechanism
 - Ti-6AI-4V Cold flexures & fulcrum bars
 - Cavity tuner in tension only
 - Attaches on hubs of cavity
- Warm transmission
 - Stepper motor, harmonic drive, ball screw and piezo mounted on top of CM
 - Openings required in shielding and vacuum tank
- No bellows between cavities
 - Need to accomodate thermal contraction of cavity string
 - Pre-load and offset each tuner while warm

Warm Drive Components of Upgrade

- Stepper Motor
 - 200 step/rev
 - 300 RPM
- Low Voltage Piezo
 - 150V
 - 50 µm stroke
- Harmonic Drive
 - Gear Reduction 80:1
- Ball Screw
 - Lead = 4 mm
 - Pitch = 25.75 mm
- Bellows/slide
 - axial thermal
 - contraction

Renascense Tuner Assembly with Cold PZT

RIA Tuner - Rocker Arm / Schematic

SNS Tuner Assembly with PZT

SNS Tuner Installed

SNS Cryomodule

TESLA Blade Tuner with Piezo Tuner

- Mechanism All cold, in vacuum
 - Titanium fixture
 - Attaches to helium vessel
 - Pre-tune using bolts pushing on shellrings
 - Dichronite coating on bearings and drive screw
 - Cavity tuned in tension or compression blades provide axial deflection

Saclay Tuner II

Saclay Tuner II

- Pre-load is applied to the piezo by cavity elasticity
- Will allow tuning of +-2 MHz
 @300K and +-460 kHz @ 2 K
- 2 piezo actuators are inserted at symmetric positions. Both can act either as actuator or sensor
- The 2 piezo actuator are guided by 2 flexible steel foils with 2 functions:
 - Allowing axial stroke. Stiffness of steel foils (1kN/mm) is small compared to piezo (300kN/ mm)
 - Compensating transverse forces

Saclay Tuner II

The 2 flexible foils in green and pink allow axial movements with limited stress, and provide a good transverse stiffness

- Piezos are mounted with a sphere cone system
 - to equilibrate the forces on the 2 piezos. Poor tolerance of piezos (+-0.5mm) requires precise machining
 - mimize the deformation of the steel foils

VCX Tuner

• Principle: Variable external Reactance controls Resonance frequency of System

- Reactive power required: $P = 8 \times \pi \times \Delta f \times U_o$
- Example TESLA cavity @ 25MV/m and 1kHz tuning $P = 8 \times \pi \times 1000 \text{ Hz} \times 76 \text{ J} = 2 \text{ MW}$

VCX Tuner

Example: VCX Tuner for RIA Distributed-element low-pass filter Fast tuner state =>generator capacitors PIN diodes • VCX drive at 25 kHz S-Parameter/Magnitude in dB Coaxial 0 transmission line -20 -40 Bandpass characteristics of • low-pass filter modeled with -60 Microwave Studio -80 -100

RF from cavity

at 345 MHz

Main objective is to provide larger tuning range at higher gradients

higher power handling capability

200

0

S1, 2

S2, 2

600

400

Frequency/MHz

VCX Tuner

• Realization with Ferrite based Electronic Phaseshifters:

• Advantage: Controll of Q_L and Δf (within limited range)

Ferrite Tuner Test at Darmstadt

500 MS/s

Ferrite Tuner Development

YIG Ferrite Phase Shifter Prototypes (1300 MHz Waveguide Style)

Iouri Terechkine, Timergali Khabiboulline, Ivan Gonin (TD)

Ferrite Tuner (coax)

- Coax design is preferred at 325MHz
- In-house design tested to 660kW at 1300 MHz
- To be tested with Araonne / APS 352MHz Klystron
- Fast coil and flux return should respond in ~50us

B. Foster

Dave Wildman (AD), Vladimir Kashikhin, Emanuela Barzi (TD)

1300 MHz Waveguide **YIG Ferrite Phase Shifter** Low Power Measurements

for bias range 1350-3000 G.

Absorption <0.1dB with phase shift ~160 degrees

High Power measurements coming soon

Development Contract Placed with AFT for full-spec 1300 MHz I/Q tuner assembly

AFT 352 MHz Single tuner built for CERN SPL

Complete I/Q **Tuner Including:**

- Two Phase Shifters
- Hybrid
- Control Electronics
- FNAL-Provided Power Supply

Al Moretti (AD)

Conclusion

- Frequency tuner designs have advanced significantly during during the last decade to meet the needs of the high gradient and/or pulsed superconducting accelerators
- A variety of technologies are available for cavity tuner designs. However no tuner will fulfill all requirements simultaneously. The art is to find the best compromise.
- Challenges nowadays
 - Integration of slow and fast tuner with well defined pre-load on piezoelectric or magnetostrictive actuator
 - Developement of fast ferrite tuner for high power applications
 - Easy Maintenance
 - Cost Reduction