
1

Automated Deduction - George Necula - Lecture 2 1

Axiomatic Semantics

Automated Deduction - George Necula - Lecture 2 2

• Still need volunteers to teach
– BDDs

– SAT-solvers

– SAT-based decision procedures

– Temporal logic (and maybe other modal logics)

– ESC/Java

• Please let me know soon

Automated Deduction - George Necula - Lecture 2 3

Review - Operational Semantics

• We have an imperative language with pointers and
function calls

• We have defined the semantics of the language

• Operational semantics
– Relatively simple

– Not compositional (due to loops and recursive calls)

– Adequate guide for an implementation

Automated Deduction - George Necula - Lecture 2 4

More Semantics

• There is also denotational semantics
– Each program has a meaning in the form of a mathematical
object

– Compositional

– More complex formalism

• e.g. what are appropriate meanings ?

• Neither is good for arguing program correctness
– Operational semantics requires running the code

– Denotational semantics requires complex calculations

• We do instead: Programs → Theorems → Proofs

Automated Deduction - George Necula - Lecture 2 5

Programs →→→→ Theorems. Axiomatic Semantics

• Consists of:
– A language for making assertions about programs

– Rules for establishing when assertions hold

• Typical assertions:
– During the execution, only non-null pointers are dereferenced

– This program terminates with x = 0

• Partial vs. total correctness assertions
– Safety vs. liveness properties

– Usually focus on safety (partial correctness)

Automated Deduction - George Necula - Lecture 2 6

Partial Correctness Assertions

• The assertions we make about programs are of the
form:

{A} c {B }

with the meaning that:
– Whenever we start the execution of c in a state that
satisfies A, the program either does not terminate or it
terminates in a state that satisfies B

• A is called precondition and B is called postcondition

• For example:

{ y � x } z := x; z := z +1 { y < z }

is a valid assertion

• These are called Hoare triple or Hoare assertions

2

Automated Deduction - George Necula - Lecture 2 7

Total Correctness Assertions

• {A} c {B } is a partial correctness assertion. It does
not imply termination

• [A] c [B] is a total correctness assertion meaning that

Whenever we start the execution of c in a state that
satisfies A the program does terminate in a state that
satisfies B

• Now let’s be more formal
– Formalize the language of assertions, A and B

– Say when an assertion holds in a state

– Give rules for deriving Hoare triples

Automated Deduction - George Necula - Lecture 2 8

Languages for Assertions

• A specification language
– Must be easy to use and expressive (conflicting needs)

• Most often only expression �

– Syntax: how to construct assertions

– Semantics: what assertions mean

• Typical examples
– First-order logic

– Temporal logic (used in protocol specification, hardware
specification)

– Special-purpose languages: Z, Larch, Java ML

Automated Deduction - George Necula - Lecture 2 9

State-Based Assertions

• Assertions that characterize the state of the
execution
– Recall: state = state of locals + state of memory

• Our assertions will need to be able to refer to
– Variables

– Contents of memory

• What are not state-based assertions
– Variable x is live, lock L will be released

– There is no correlation between the values of x and y

Automated Deduction - George Necula - Lecture 2 10

An Assertion Language

• We’ll use a fragment of first-order logic first
Formulas P ::= A | T | ⊥⊥⊥⊥ | P1 ∧ P2 | ∀x.P | P1 ⇒ P2 |

Atoms A ::= f(A1,…,An) | E1 ≤ E2 | E1 = E2 | …

• We can also have an arbitrary assortment of function
symbols
– ptr(E,T) - expression E denotes a pointer to T

– E : ptr(T) - same in a different notation

– reachable(E1,E2) - list cell E2 is reachable from E1

– these can be built-in or defined

Automated Deduction - George Necula - Lecture 2 11

Semantics of Assertions

• We introduced a language of assertions, we need to
assign meanings to assertions.
– We ignore for now references to memory

• Notation ρ, σ � A to say that an assertion holds in a
given state.
– This is well-defined when ρ is defined on all variables
occurring in A and σ is defined on all memory addresses
referenced in A

• The � judgment is defined inductively on the
structure of assertions.

Automated Deduction - George Necula - Lecture 2 12

Semantics of Assertions

• Formal definition (we drop σ for simplicity):

ρ � true always
ρ � e1 = e2 iff ρ ⊢ e1 ⇓ n1 and ρ ⊢ e2 ⇓ n2 and n1 = n2
ρ � e1 ≥ e2 iff ρ ⊢ e1 ⇓ n1 and ρ ⊢ e2 ⇓ n2 and n1 ≥ n2
ρ � A1 ∧ A2 iff ρ � A1 and ρ � A2

ρ � A1 ∨ A2 iff ρ � A1 or ρ � A2

ρ � A1 ⇒ A2 iff ρ � A1 implies ρ � A2

ρ � ∀x.A iff ∀n∈Z.ρ[x:=n] � A
ρ � ∃x.A iff ∃n∈Z.ρ[x:=n] � A

3

Automated Deduction - George Necula - Lecture 2 13

Semantics of Assertions

• Now we can define formally the meaning of a partial
correctness assertion
� { A} c { B }:
∀ρσ .∀ρ’σ’.(ρ,σ � A ∧ ρ, σ ⊢ c ⇓ ρ’, σ’) ⇒ ρ’,σ’ � B

• … and the meaning of a total correctness assertion
� [A] c [B] iff
∀ ρσ.∀ρ’σ’.(ρ,σ � A ∧ ρ, σ ⊢ c ⇓ ρ’, σ’) ⇒ ρ’,σ’ � B

∧

∀ρσ. ρ,σ � A ⇒ ∃ρ’σ’. ρ, σ ⊢ c ⇓ ρ’, σ’

Automated Deduction - George Necula - Lecture 2 14

Why Isn’t This Enough?

• Now we have the formal mechanism to decide when
{A} c {B }
– Start the program in all states that satisfies A

– Run the program

– Check that each final state satisfies B

• This is exhaustive testing

• Not enough
– Can’t try the program in all states satisfying the precondition

– Can’t find all final states for non-deterministic programs

– And also it is impossible to effectively verify the truth of a
∀x.A postcondition (by using the definition of validity)

Automated Deduction - George Necula - Lecture 2 15

Derivations as Proxies for Validity

• We define a symbolic technique for deriving valid
assertions from others that are known to be valid
– We start with validity of first-order formulas

• We write ⊢A when we can derive (prove) the
assertion A
– We wish that (∀ρσ. ρ,σ � A) iff ⊢ A

• We write ⊢ {A} c {B} when we can derive (prove) the
partial correctness assertion
– We wish that � {A} c {B} iff ⊢ {A} c {B}

Automated Deduction - George Necula - Lecture 2 16

Derivation Rules for Assertions

• The derivation rules for ⊢ A are the usual ones from
first-order logic with

• Natural deduction style axioms:

⊢ A ∧ B

⊢ A ⊢ B

⊢ ∀x.A

⊢ [a/x]A (a is fresh)

⊢ ∃x.A

⊢ [E/x]A

⊢ B

⊢ A ⇒ B ⊢ A

⊢ A ⇒ B

⊢ A

…

⊢ B ⊢ B

⊢ [a/x]A

…

⊢ B

⊢ ∃x.A

⊢ [E/x]A

⊢ ∀x.A

Automated Deduction - George Necula - Lecture 2 17

Derivation Rules for Hoare Triples

• Similarly we write ⊢ {A} c { B} when we can derive the
triple using derivation rules

• There is one derivation rule for each command in the
language

• Plus, the rule of consequence

⊢ {A’} c {B’}

⊢ A’ ⇒ A ⊢ {A} c {B} ⊢ B ⇒ B’

Automated Deduction - George Necula - Lecture 2 18

Derivation Rules for Hoare Logic

• One rule for each syntactic construct:

⊢ {A} skip {A}

⊢ {A} c1; c2 {C}

⊢ {A} c1 {B} ⊢ {B} c2 {C}

⊢ {A} if b then c1 else c2 {B}

⊢ {A ∧ b} c1 {B} ⊢ {A ∧ ¬ b} c2 {B}

4

Automated Deduction - George Necula - Lecture 2 19

Derivation Rules for Hoare Logic (II)

• The rule for while is not syntax directed
– It needs a loop invariant

– Exercise: try to see what is wrong if you make changes to the
rule (e.g., drop “∧ b” in the premise, …)

⊢ {A} while b do c {A ∧ ¬ b}

⊢ {A ∧ b} c {A}

Automated Deduction - George Necula - Lecture 2 20

Hoare Rules: Assignment

• Example: { A } x := x + 2 {x >= 5 }. What is A?
– A has to imply x ≥ 3

• General rule:

• A is “*y = 5 or x = y”

• How come the rule does not work?

• Surprising how simple the rule is !

• But try { A } *x = 5 { *x + *y = 10 }

⊢ {[e/x]A} x := e {A}

Automated Deduction - George Necula - Lecture 2 21

Example: Assignment

• Assume that x does not appear in e

Prove that {true} x := e { x = e }

• We have

because [e/x](x = e) ≡ e = [e/x]e ≡ e = e

• Assignment + consequence:

⊢ {e = e} x := e {x = e}

⊢ {e = e} x := e {x = e}

⊢ {true} x := e {x = e}

⊢ true ⇒ e = e

Automated Deduction - George Necula - Lecture 2 22

The Assignment Axiom (Cont.)

• Hoare said: “Assignment is undoubtedly the most
characteristic feature of programming a digital
computer, and one that most clearly distinguishes it
from other branches of mathematics. It is surprising
therefore that the axiom governing our reasoning
about assignment is quite as simple as any to be found
in elementary logic.”

• Caveats are sometimes needed for languages with
aliasing:
– If x and y are aliased then

{ true } x := 5 { x + y = 10}

is true

Automated Deduction - George Necula - Lecture 2 23

Multiple Hoare Rules

• For some constructs multiple rules are possible:

• Exercise: these rules can be derived from the
previous ones using the consequence rules

⊢ {A} x := e {∃x0.[x0/x]A ∧ x = [x0/x]e}

⊢ {A} while b do c {B}

⊢ A ∧ b ⇒ C ⊢ {C} c {A} ⊢ A ∧ ¬ b ⇒ B

(This was the “forward” axiom for assignment
before Hoare)

⊢ {b ⇒ C ∧ ¬ b ⇒ B} while b do c {B}

⊢ {C} c {b ⇒ C ∧ ¬ b ⇒ B}

Automated Deduction - George Necula - Lecture 2 24

Example: Conditional

• D1 is obtained by consequence and assignment

• D2 is also obtained by consequence and assignment

⊢ {true} if y � 0 then x := 1 else x := y {x > 0}

D1 :: ⊢ {true ∧ y � 0} x := 1 {x > 0}

D2 :: ⊢ {true ∧ y > 0} x := y {x > 0}

⊢ {true ∧ y � 0} x := 1 {x ≥ 0}

⊢ {1 > 0} x := 1 {x > 0}

⊢ true ∧ y � 0 ⇒ 1 > 0

⊢ {true ∧ y > 0} x := y {x > 0}

⊢ {y > 0} x := y {x > 0}

⊢ true ∧ y > 0 ⇒ y > 0

5

Automated Deduction - George Necula - Lecture 2 25

Example: Loop

• We want to derive that

⊢ {x � 0} while x � 5 do x := x + 1 { x = 6}

• Use the rule for while with invariant x � 6

• Then finish-off with consequence

⊢ {x � 6} while x � 5 do x := x + 1 { x � 6 ∧ x > 5}

⊢ {x + 1 � 6} x := x + 1 { x � 6 }

⊢ {x � 6 ∧ x � 5 } x := x + 1 {x � 6}

⊢ x � 6 ∧ x � 5 ⇒ x + 1 � 6

⊢ {x � 6} while … { x � 6 ∧ x > 5}

⊢ {x � 0} while … {x = 6}

⊢ x � 0 ⇒ x � 6

⊢ x � 6 ∧ x > 5 ⇒ x =6

Automated Deduction - George Necula - Lecture 2 26

Another Example

• Verify that

⊢ {A } while true do c { B}

holds for any A, B and c

• We must construct a derivation tree

• We need an additional lemma:

∀c. ⊢ { true } c {true}
– How do you prove this one?

{true} while true do c {true ∧ false}

⊢ {true ∧ true} c { true }

⊢ {A} while true do c { B}

⊢ A ⇒ true

⊢ true ∧ false ⇒ B

Automated Deduction - George Necula - Lecture 2 27

GCD Example

Automated Deduction - George Necula - Lecture 2 28

GCD Example (2)

• Crucial to select good loop invariant

Automated Deduction - George Necula - Lecture 2 29

GCD Example (3)

Automated Deduction - George Necula - Lecture 2 30

GCD Example (4)

6

Automated Deduction - George Necula - Lecture 2 31

GCD Example (5)

Automated Deduction - George Necula - Lecture 2 32

GCD Example (6)

• The above can be proved by realizing that
gcd(x,y) = gcd(x-y,y)

• Q.e.d.

• This completes the proof

• We used a lot of arithmetic

• We had to invent the loop invariants

• What about the proof for total correctness?

Automated Deduction - George Necula - Lecture 2 33

Hoare Rule for Function Call

• If no recursion we can inline the function call

• In general,
1. each function f has a Pref and Postf

2. For each function we check { Pref } Cf {Postf }

⊢ {A[e1/x1,…,en/xn]} x := f(e1, …, en) {B}

f(x1,…,xn) = Cf ∈ Program { A } Cf {B[f/x]}

⊢ {Pref[e1/x1,…,en/xn]} x := f(e1, …, en) {Postf [x/f] }

Automated Deduction - George Necula - Lecture 2 34

Axiomatic Semantics
in Presence of Side-Effects

Automated Deduction - George Necula - Lecture 2 35

Naïve Handling of Program State

• We allow memory read in assertions: *x + *y = 5

• We try:

{ A } *x = 5 { *x + *y = 10 }

• A ought to be “*y = 5 or x = y”

• The Hoare rule would give us:

(*x + *y = 10)[5/*x]

= 5 + *y = 10

= *y = 5 (we lost one case)

• How come the rule does not work?
Automated Deduction - George Necula - Lecture 2 36

Handling Program State

• We cannot have side-effects in assertions
– While creating the theorem we must remove side-effects !

– But how to do that when lacking precise aliasing information ?

• Important technique: Postpone alias analysis

• Model the state of memory as a symbolic mapping
from addresses to values:
– If E denotes an address and M a memory state then:

– sel(M,E) denotes the contents of memory cell

– upd(M,E,V) denotes a new memory state obtained from M by
writing V at address E

7

Automated Deduction - George Necula - Lecture 2 37

More on Memory

• We allow variables to range over memory states
– So we can quantify over all possible memory states

• And we use the special pseudo-variable µ in assertions
to refer to the current state of memory

• Example:

“∀i. i ≥ 0 ∧ i < 5 ⇒ sel(µ, A + i) > 0” = allpositive(µ, A, 0, 5)

says that entries 0..4 in array A are positive

Automated Deduction - George Necula - Lecture 2 38

Semantics of Memory Expressions

• We need a new kind of values (memory values)
Values v ::= n | a | σ

ρ, σ ⊢ µ ⇓ σ

ρ, σ ⊢ sel(Em, E2) ⇓ σ’(a)

ρ, σ ⊢ Em ⇓ σ’ ρ, σ ⊢ E2 ⇓ a

ρ, σ ⊢ upd(Em, Ea, Ev) ⇓ σ’[a := v]

ρ, σ ⊢ Em ⇓ σ’ ρ, σ ⊢ Ea ⇓ a ρ, σ ⊢ Ev ⇓ v

Automated Deduction - George Necula - Lecture 2 39

Hoare Rules: Side-Effects

• To correctly model writes we use memory expressions
– A memory write changes the value of memory

• Important technique: treat memory as a whole

• And reason later about memory expressions with
inference rules such as (McCarthy):

{ B[upd(µ, E1, E2)/µ] } *E1 := E2 {B}

if E1 = E3E2

if E1 ≠ E3sel(M, E3)
sel(upd(M, E1, E2), E3) =

Automated Deduction - George Necula - Lecture 2 40

Memory Aliasing

• Consider again: { A } *x = 5 { *x + *y = 10 }

• We obtain:

A = (*x + *y = 10)[upd(µ, x, 5)/µ]
= (sel(µ, x) + sel(µ, y) = 10) [upd(µ, x, 5)/µ]
= sel(upd(µ, x, 5), x) + sel(upd(µ, x, 5), y) = 10 (*)

= 5 + sel(upd(µ, x, 5), y) = 10
= if x = y then 5 + 5 = 10 else 5 + sel(µ, y) = 10
= x = y or *y = 5 (**)

• To (*) is theorem generation

• From (*) to (**) is theorem proving

Automated Deduction - George Necula - Lecture 2 41

Alternative Handling for Memory

• Reasoning about aliasing is expensive (NP-hard)

• Sometimes completeness is sacrificed with the
following (approximate) rule:

otherwise (p is a fresh
new parameter)

p

if E1 = (obviously) E3E2

if E1 ≠ (obviously) E3sel(M, E3)sel(upd(M, E1, E2), E3) =

• The meaning of “obvious” varies:
• The addresses of two distinct globals are ≠
• The address of a global and one of a local are ≠

• PREfix and GCC use such schemes
Automated Deduction - George Necula - Lecture 2 42

Using Hoare Rules. Notes

• Hoare rules are mostly syntax directed

• There are three wrinkles:
– When to apply the rule of consequence ?

– What invariant to use for while ?

– How do you prove the implications involved in consequence ?

• The last one is how theorem proving gets in the
picture
– This turns out to be doable !

– The loop invariants turn out to be the hardest problem !

(Should the programmer give them? See Dijkstra.)

8

Automated Deduction - George Necula - Lecture 2 43

Where Do We Stand?

• We have a language for asserting properties of
programs

• We know when such an assertion is true

• We also have a symbolic method for deriving
assertions

A
{ A} c {B}

ρ, σ � A
� { A} c {B}

⊢ A
⊢ { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness

Automated Deduction - George Necula - Lecture 2 44

Soundness of Axiomatic Semantics

• Formal statement
If ⊢ { A } c { B} then � { A} c { B}

or, equivalently
For all ρ, σ, if ρ, σ � A and D :: ρ, σ ⊢ c ⇓ ρ’, σ’
and H :: ⊢ { A } c { B} then ρ’, σ’ � B

Automated Deduction - George Necula - Lecture 2 45

Completeness of Axiomatic Semantics
Weakest Preconditions

Automated Deduction - George Necula - Lecture 2 46

Completeness of Axiomatic Semantics

• Is it true that whenever � {A} c {B} we can also derive
⊢ {A} c {B} ?

• If it isn’t then it means that there are valid
properties of programs that we cannot verify with
Hoare rules

• Good news: for our language the Hoare triples are
complete

• Bad news: only if the underlying logic is complete
(whenever � A we also have ⊢ A)

- this is called relative completeness

Automated Deduction - George Necula - Lecture 2 47

Proof Idea

• Dijkstra’s idea: To verify that { A } c { B}
a) Find out all predicates A’ such that � { A’} c { B}

• call this set Pre(c, B)

b) Verify for one A’ ∈ Pre(c, B) that A ⇒ A’

• Assertions can be ordered:

false true⇒

strong weak
Pre(c, B)

weakest
precondition: WP(c, B)

• Thus: compute WP(c, B) and prove A ⇒WP(c, B)

A

Automated Deduction - George Necula - Lecture 2 48

Proof Idea (Cont.)

• Completeness of axiomatic semantics:
If � { A } c { B } then ⊢ { A } c { B}

• Assuming that we can compute wp(c, B) with the
following properties:
1. wp is a precondition (according to the Hoare rules)

⊢ { wp(c, B) } c { B}

2. wp is the weakest precondition
If � { A } c { B} then � A ⇒ wp(c, B)

• We also need that whenever � A then ⊢ A !

⊢ {A} c {B}

⊢ A ⇒ wp(c, B) ⊢ {wp(c, B)} c {B}

9

Automated Deduction - George Necula - Lecture 2 49

Weakest Preconditions

• Define wp(c, B) inductively on c, following Hoare rules:

wp(c1; c2, B) = wp(c1, wp(c2, B))

wp(x := e, B) = [e/x]B

wp(if E then c1 else c2, B) = E ⇒ wp(c1, B) ∧ ¬ E ⇒ wp(c2, B)

{ A } c1; c2 {B}

{A} c1 {C} {C} c2 {B}

{ [e/x]B } x := E {B}

{ E ⇒ A1 ∧ ¬ E ⇒ A2} if E then c1 else c2 {B}

{A1} c1 {B} {A2} c2 {B}

Automated Deduction - George Necula - Lecture 2 50

Weakest Preconditions for Loops

• We start from the equivalence

while b do c = if b then c; while b do c else skip

• Let w = while b do c and W = wp(w, B)

• We have that

W = b ⇒ wp(c, W) ∧ ¬ b ⇒ B

• But this is a recursive equation !
– We know how to solve these using domain theory

• We need a domain for assertions

Automated Deduction - George Necula - Lecture 2 51

A Partial-Order for Assertions

• What is the assertion that contains least information?
– true – does not say anything about the state

• What is an appropriate information ordering ?
A ⊑ A’ iff � A’ ⇒ A

• Is this partial order complete?
– Take a chain A1 ⊑ A2 ⊑ …

– Let ∧Ai be the infinite conjunction of Ai

σ � ∧Ai iff for all i we have that σ � Ai

– Verify that ∧Ai is the least upper bound

• Can ∧Ai be expressed in our language of assertions?
– In many cases yes (see Winskel), we’ll assume yes

Automated Deduction - George Necula - Lecture 2 52

Weakest Precondition for WHILE

• Use the fixed-point theorem

F(A) = b ⇒ wp(c, A) ∧ ¬ b ⇒ B
– Verify that F is both monotonic and continuous

• The least-fixed point (i.e. the weakest fixed point) is

wp(w, B) = ∧Fi(true)

Automated Deduction - George Necula - Lecture 2 53

Weakest Preconditions (Cont.)

• Define a family of wp’s
– wpk(while e do c, B) = weakest precondition on which the loop
if it terminates in k or fewer iterations, it terminates in B

wp0 = ¬ E ⇒ B

wp1 = E ⇒ wp(c, wp0) ∧ ¬ E ⇒ B

…

• wp(while e do c, B) = ∧k ≥ 0 wpk = lub {wpk | k ≥ 0}

• Is it the case that wpk ⇒ wpk-1 ? The opposite?

• Weakest preconditions are
– Impossible to compute (in general)

– Can we find something easier to compute yet sufficient ?

Automated Deduction - George Necula - Lecture 2 54

Weakest Precondition. Example 1

• Consider the code:

while x � 5 do x := x + 1

with postcondition P = x ≥ 7

• What is the weakest precondition ?

• wp(x := x + 1, A) = A[x+1/x]

• WP0 = ¬ (x � 5) ⇒ x ≥ 7 = x ∉ { 6 }

• WP1 = x � 5 ⇒ x +1 ∉ 6 ∧WP0 = x ∉ { 5, 6}

• WP2 = x � 5 ⇒ x + 1 ∉ { 5, 6 } ∧WP0 = x ∉ { 4, 5, 6 }

• …

• WP = x ≥ 7

10

Automated Deduction - George Necula - Lecture 2 55

Weakest Precondition. Example 2

• Consider the code:

while x ≥ 5 do x := x + 1

with postcondition P = x ≥ 7

• What is the weakest precondition ?

• wp(x := x + 1, A) = A[x+1/x]

• WP0 = ¬ (x ≥ 5) ⇒ x ≥ 7 = x ≥ 5

• WP1 = x ≥ 5 ⇒ x +1 ≥ 5 ∧WP0 = x ≥ 5

• …

• WP = x ≥ 5

Automated Deduction - George Necula - Lecture 2 56

Theorem Proving and Program Analysis
(again)

• Predicates form a lattice:
WP(s, B) = lub⇒(Pre(s, B))

• This is not obvious at all:
– lub {P1, P2} = P1 ∨ P2
– lub PS = ∨P ∈ PS P

– But can we always write this with a finite number of ∨ ?

• Even checking implication can be quite hard

• Compare with program analysis in which lattices are of
finite height and quite simple

Program Verification is Program Analysis on the
lattice of first order formulas

Automated Deduction - George Necula - Lecture 2 57

Verification Conditions

Automated Deduction - George Necula - Lecture 2 58

Not Quite Weakest Preconditions

• Recall what we are trying to do:

false true⇒

strong weak
Pre(s, B)

weakest
precondition: WP(c, B)A

verification
condition: VC(c, B)

• We shall construct a verification condition: VC(c, B)
– The loops are annotated with loop invariants !

– VC is guaranteed stronger than WP

– But hopefully still weaker than A: A ⇒ VC(c, B) ⇒WP(c, B)

Automated Deduction - George Necula - Lecture 2 59

Verification Conditions

• Factor out the hard work
– Loop invariants

– Function specifications

• Assume programs are annotated with such specs.
– Good software engineering practice anyway

• We will assume that the new form of the while
construct includes an invariant:

whileI b do c

– The invariant formula must hold every time before b is
evaluated

Automated Deduction - George Necula - Lecture 2 60

Invariants Are Not Easy

• Consider the following code from QuickSort
int partition(int *a, int L0, int H0, int pivot) {

int L = L0, H = H0;

while(L < H) {

while(a[L] < pivot) L ++;

while(a[H] > pivot) H --;

if(L < H) { swap a[L] and a[H] }

}

return L

}

• Consider verifying only memory safety

• What is the loop invariant for the outer loop ?

11

Automated Deduction - George Necula - Lecture 2 61

Verification Condition Generation (1)

• Mostly follows the definition of the wp function

VC(skip, B) = B

VC(c1; c2, B) = VC(c1, VC(c2, B))

VC(if b then c1 else c2, B) = b ⇒ VC(c1, B) ¬b ⇒ VC(c2, B)

VC(x := e, B) = [e/x]B

VC(let x = e in c, B) = [e/x] VC(c, B)

VC(*e1 := e2, B) = [upd(µ, e1, e2)/µ]B
VC(while b do c, B) = ?

Automated Deduction - George Necula - Lecture 2 62

Verification Condition Generation for WHILE

VC(whileI e do c, B) =

I ∧ (∀x1…xn. I ⇒ (e ⇒ VC(c, I) ∧ ¬ e ⇒ B))

• I is the loop invariant (provided externally)

• x1, …, xn are all the variables modified in c

• The ∀ is similar to the ∀ in mathematical induction:
P(0) ∧ ∀n ∈ N. P(n) ⇒ P(n+1)

I holds
on entry

I is preserved in
an arbitrary iteration

B holds when the
loop terminates

in an arbitrary iteration

Automated Deduction - George Necula - Lecture 2 63

Verification Conditions for Function Calls

• VC(x := f(e1,…,en), P) =

Pref[Ei/xi] ∧ ∀µ∀f Postf ⇒ P[f/x]

• We check the precondition
– with actuals substituted for formals

• We assume that the memory and “f” are changed

• We check that function postcondition is stronger than
P

Automated Deduction - George Necula - Lecture 2 64

Soundness and Completeness of VCGen

• We must prove that, for all c and B
� { VC(c, B) } c { B}

• Or, equivalently

VC(c, B) ⇒WP(c, B)

• Try it (the case for loops is interesting)

• Completeness is trickier

• One formulation: it is possible to choose the loop
invariants such that

WP(c, B) ⇒ VC(c, B)

• Try it !!

Automated Deduction - George Necula - Lecture 2 65

Forward Verification Condition Generation

• Traditionally VC is computed backwards
– Works well for structured code

• But it can also be computed in a forward direction
– Works even for un-structured languages (e.g., assembly
language)

– Uses symbolic evaluation, a technique that has broad
applications in program analysis

• e.g. the PREfix tool (Intrinsa, Microsoft) works this way

Automated Deduction - George Necula - Lecture 2 66

Symbolic Evaluation

• Consider the language of instructions:
x := e | f() | if e goto L | goto L | L: | return | inv e

• The “inv e” instruction is an annotation
– Says that boolean expression e holds at that point

• Programs are sequences of instructions

• Notation: Ik is the instruction at address k

12

Automated Deduction - George Necula - Lecture 2 67

Symbolic Evaluation. Basic Intuition

• VC generation is traditionally backwards due to
assignments

VC(x1 := e1; …, xn := en, P) =

(P[en/xn]) [en-1/xn-1] … [e1/x1]

• We can use the following rule

(P[e2/x2])[e1/x1] = P[e2[e1/x1]/x2, e1/x1]

• Symbolic evaluation computes the substitution in a
forward direction, and applies it when it reaches the
postcondition

Automated Deduction - George Necula - Lecture 2 68

Symbolic Evaluation. The State.

• We set up a symbolic evaluation state:

Σ : Var→ SymbolicExpressions

Σ(x) = the symbolic value of x in state Σ
Σ[x:=e] = a new state in which x’s value is e

We shall use states also as substitutions:

Σ(e) - obtained from e by replacing x with Σ(x)

So far this is pretty much like the operational semantics

Automated Deduction - George Necula - Lecture 2 69

Symbolic Evaluation. The Invariants.

• The symbolic evaluator keeps track of the
encountered invariants

• A new element of execution state: Inv ⊆ {1…n}

• If k ∈ Inv then
– Ik is an invariant instruction that we have already executed

• Basic idea: execute an inv instruction only twice:
– The first time it is encountered

– And one more time around an arbitrary iteration

Automated Deduction - George Necula - Lecture 2 70

Symbolic Evaluation. Rules.

• Define a VC function as an interpreter:

VC : 1..n × SymbolicState × InvariantState → Assertion

if Ik = returnΣ(Postcurrent-function)
if Ik = x := eVC(k+1, Σ[x:=Σ(e)], Inv)

VC(k, Σ, Inv) =

if Ik = f()

Σ(Pref) ∧
∀a1..am.Σ’(Postf) ⇒ VC(k+1, Σ’, Inv)
(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and Σ’ = Σ[y1 := a1, …, ym := am]

if Ik = if e goto L
e ⇒ VC(L, Σ, Inv) ∧

¬ e ⇒ VC(k+1, Σ, Inv)

if Ik = goto L VC(L, Σ, Inv)

Automated Deduction - George Necula - Lecture 2 71

Symbolic Evaluation. Invariants.

Two cases when seeing an invariant instruction:

1. We see the invariant for the first time
– Ik = inv e.

– k ∉ Inv

– Let {y1, …, ym} = the variables that could be modified on a
path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, Σ, Inv) =
Σ(e) ∧ ∀a1…am. Σ’(e) ⇒ VC(k+1, Σ’, Inv ∪ {k}])

with Σ’ = Σ[y1 := a1, …, ym := am]
(like a function call)

Automated Deduction - George Necula - Lecture 2 72

Symbolic Evaluation. Invariants.

2. We see the invariant for the second time
– Ik = inv E

– k ∈ Inv

VC(k, Σ, Inv) = Σ(e)
(like a function return)

• Some tools take a more simplistic approach
– Do not require invariants

– Iterate through the loop a fixed number of times

– PREfix, versions of ESC (Compaq SRC)

– Sacrifice completeness for usability

13

Automated Deduction - George Necula - Lecture 2 73

Symbolic Evaluation. Putting it all together

• Let
– x1, …, xn be all the variables and a1, …, an fresh parameters

– Σ0 be the state [x1 := a1, …,xn :=an]

– ∅ be the empty Inv set

• For all functions f in your program, compute

∀a1…an. Σ0(Pref) ⇒ VC(fentry, Σ0, ∅)
• If all of these predicates are valid then:

– If you start the program by invoking any f in a state that
satisfies Pref the program will execute such that

• At all “inv e” the e holds, and

• If the function returns then Postf holds

– Can be proved w.r.t. a real interpreter (operational semantics)

– Proof technique called co-induction (or, assume-guarantee)
Automated Deduction - George Necula - Lecture 2 74

VC Generation Example

• Consider the program

Precondition: x � 0
Loop: inv x � 6

if x > 5 goto End

x := x + 1

goto Loop

End: return Postconditon: x = 6

Automated Deduction - George Necula - Lecture 2 75

VC Generation Example (cont.)

∀x.
x � 0 ⇒

x � 6 ∧
∀x’.

(x’ � 6 ⇒
x’ > 5 ⇒ x’ = 6

∧

x’ � 5 ⇒ x’ + 1 � 6)

• VC contains both proof obligations and assumptions
about the control flow

Automated Deduction - George Necula - Lecture 2 76

VC Generation Example (with memory)

• Consider the program

1: I := 0 Precondition: B : bool ∧ A : array(bool, L)
R := B

3: inv I ≥ 0 ∧ R : bool

if I ≥ L goto 9

assert saferd(A + I)

T := *(A + I)

I := I + 1

R := T

goto 3

9: return R Postconditon: R : bool

Automated Deduction - George Necula - Lecture 2 77

VC Generation Example (cont.)

∀A. ∀B. ∀L. ∀µ
B : bool ∧ A : array(bool, L) ⇒

0 ≥ 0 ∧ B : bool ∧
∀I. ∀R.

I ≥ 0 ∧ R : bool ⇒
I ≥ L ⇒ R : bool

∧

I < L ⇒ saferd(A + I) ∧
I + 1 ≥ 0 ∧
sel(µ, A + I) : bool

• VC contains both proof obligations and assumptions
about the control flow

Automated Deduction - George Necula - Lecture 2 78

VC and Invariants

• Consider the Hoare triple:
{x ≤ 0} whileI x ≤ 5 do x := x + 1 {x = 6}

• The VC for this is:
x ≤ 0⇒ I(x) ∧ ∀x. (I(x) ⇒ (x > 5 ⇒ x = 6 ∧

x ≤ 5 ⇒ I(x+1)))

• Requirements on the invariant:
– Holds on entry ∀x. x ≤ 0⇒ I(x)

– Preserved by the body ∀x. I(x) ∧ x ≤ 5 ⇒ I(x+1)

– Useful ∀x. I(x) ∧ x > 5 ⇒ x = 6

• Check that I(x) = x ≤ 6 satisfies all constraints

14

Automated Deduction - George Necula - Lecture 2 79

VC Can Be Large

• Consider the sequence of conditionals
(if x < 0 then x := - x); (if x ≤ 3 then x += 3)

– With the postcondition P(x)

• The VC is
x < 0 ∧ -x ≤ 3 ⇒ P(- x + 3) ∧
x < 0 ∧ -x > 3⇒ P(- x) ∧
x ≥ 0 ∧ x ≤ 3 ⇒ P(x + 3) ∧
x ≥ 0 ∧ x > 3 ⇒ P(x)

• There is one conjunct for each path
=> exponential number of paths !

– Conjuncts for non-feasible paths have un-satisfiable guard !

• Try with P(x) = x ≥ 3

Automated Deduction - George Necula - Lecture 2 80

VC Can Be Large (2)

• VCs are exponential in the size of the source because
they attempt relative completeness:
– To handle the case then the correctness of the program must
be argued independently for each path

• Remark:
– It is unlikely that the programmer could write a program by
considering an exponential number of cases

– But possible. Any examples?

• Solutions:
– Allow invariants even in straight-line code

– Thus do not consider all paths independently !

Automated Deduction - George Necula - Lecture 2 81

Invariants in Straight-Line Code

• Purpose: modularize the verification task

• Add the command “after c establish I”
– Same semantics as c (I is only for verification purposes)

VC(after c establish I, P) =def VC(c,I) ∧ ∀xi. I ⇒ P
• where xi are the ModifiedVars(c)

• Use when c contains many paths
after if x < 0 then x := - x establish x ≥ 0;

if x ≤ 3 then x += 3 { P(x) }

• VC now is (for P(x) = x ≥ 3)
(x < 0 ⇒ - x ≥ 0) ∧ (x ≥ 0 ⇒ x ≥ 0) ∧
∀x. x ≥ 0⇒ (x ≤ 3⇒ P(x+3) ∧ x > 3 ⇒ P(x))

Automated Deduction - George Necula - Lecture 2 82

Dropping Paths

• In absence of annotations drop some paths

• VC(if E then c1 else c2, P) = choose one of
– E ⇒ VC(c1, P) ∧ ¬E ⇒ VC(c2, P)

– E ⇒ VC(c1, P)

– ¬E ⇒ VC(c2, P)

• We sacrifice soundness !
– No more guarantees but possibly still a good debugging aid

• Remarks:
– A recent trend is to sacrifice soundness to increase usability

– The PREfix tool considers only 50 non-cyclic paths through a
function (almost at random)

Automated Deduction - George Necula - Lecture 2 83

VCGen for Exceptions

• We extend the source language with exceptions
without arguments:
– throw throws an exception

– try c1 handle c2 executes c2 if c1 throws

• Problem:
– We have non-local transfer of control

– What is VC(throw, P) ?

• Solution: use 2 postconditions
– One for normal termination

– One for exceptional termination

Automated Deduction - George Necula - Lecture 2 84

VCGen for Exceptions (2)

• Define: VC(c, P, Q) is a precondition that makes c
either not terminate, or terminate normally with P or
throw an exception with Q

• Rules
VC(skip, P, Q) = P

VC(c1; c2, P, Q) = VC(c1, VC(c2, P, Q), Q)

VC(throw, P, Q) = Q

VC(try c1 handle c2, P, Q) = VC(c1, P, VC(c2, Q, Q))

VC(try c1 finally c2, P, Q) = ?

15

Automated Deduction - George Necula - Lecture 2 85

VCGen for Exceptions (3)

• What if we have exceptions with arguments

• Introduce global variable ex for the exception
argument

• The exceptional postcondition can now refer to ex

• Remember that we must add an exceptional
postcondition to functions also
– Like the THROWS clause in Java or Modula-3

Automated Deduction - George Necula - Lecture 2 86

Additional Language Extensions

• wrong
– Semantics: terminate execution with an error

– VC(wrong, P) = false

• fail
– Semantics: terminate execution with a benign error

– Used to denote error conditions that are allowed (e.g. index
out of bounds)

– VC(fail, P) = true

• assert E = if E then skip else wrong
– Used to specify verification goals

• assume E = if E then skip else fail
– Used to specify assumptions (e.g. about inputs)

Automated Deduction - George Necula - Lecture 2 87

Additional Language Extensions (2)

• Undefined variables
– VC(let x in c, P) = ∀x. VC(c, P)

Automated Deduction - George Necula - Lecture 2 88

Call-by-Reference

• Let f(VAR x, y) { x ← 5; f ← x + y }

• with
– Pref = y ≥ 10

– Postf = f ≥ 15

• VC of the body is ∀xy. y ≥ 10 ⇒ 5 + y ≥ 15
– Which is provable !

• Let {x = 10} y ← f(x,x) {y ≥ 15 }

• Its VC is x = 10 ⇒ (x ≥ 10 ∧ (∀y. y ≥ 15 ⇒ y ≥ 15)
– Also provable

– But if we run the code, y is 10 at the end !

– What’s going on?

Automated Deduction - George Necula - Lecture 2 89

Call-by-Reference

• Axiomatic semantics can model only call-by-value

• Not a big problem, just have to model call-by-
reference with call-by-value
– Pass pointers instead

– Use the sel/upd axioms instead of assignment axioms

Automated Deduction - George Necula - Lecture 2 90

Arrays

• Arrays can be modeled like we did pointers

• In a safe language (no & and no pointer arithmetic)
– We can have a store value for each array

– Instead of a unique store µ

• A[E] is considered as sel(A,E)

• A[E1] ← E2 is considered as A ← upd(A, E1, E2)

• What is the advantage over sel(µ, A+E) ?

16

Automated Deduction - George Necula - Lecture 2 91

Mutable Records - Two Models

• Let r : RECORD f1 : T1; f2 : T2 END

• Records are reference types

• Method 1
– One “memory” for each record

– One index constant for each field. We postulate f1 ≠ f2

– r.f1 is sel(r,f1) and r.f1 := E is r := upd(r,f1,E)

• Method 2
– One “memory” for each field

– The record address is the index

– r.f1 is sel(f1,r) and r.f1 := E is f1 := upd(f1,r,E)

Automated Deduction - George Necula - Lecture 2 92

VC Generation for Assembly Language

• Issues when extending this to real assembly language

• A fixed set of variables
– Machine registers

• Handling of stack slots
– Option 1: as memory locations (too inefficient)

– Option 2: as additional registers (reverse spilling)

• Careful with renaming at function calls and returns

• Does not work in presence of address-of operator

• Two’s complement arithmetic
– Careful to distinguish between + and ⊕

• See Necula-Ph.D. thesis for x86 and Alpha example

Automated Deduction - George Necula - Lecture 2 93

VC as a “Semantic CheckSum”

• Weakest preconditions are an expression of the
program semantics
– Two equivalent programs have (logically) equivalent WP

• VC are almost the same
– Except for the loop invariants and function specifications

• In fact, VC abstract over some syntactic details
– Order of unrelated expressions

– Names of variables

– Common subexpressions

Automated Deduction - George Necula - Lecture 2 94

VC for Type Checking Low Level Code

• Type checking low level code is hard because
– We cannot have variable declarations

• Each instance of a register use can have different types

– The type of a register depends on the data flow

• Varies depending on how a use was reached

• Consider the program and its VC

x ← 4

x ← x == 5

assert x : bool

x ← not x

assert x

4 == 5 : bool ∧ ¬ (4 == 5)

• No live logical variables

• Not confused by reuse of x

Automated Deduction - George Necula - Lecture 2 95

Invariance of VC Through Optimizations

• In fact, VC is so good at abstracting syntactic details
that it is invariant through many common optimiz.
– Preserves syntactic form, not just semantic meaning !

• We’ll take a look at some optimizations and see how VC
changes/doesn’t change

• This can be used to verify correctness of compiler
optimizations (Translation Validation)

Automated Deduction - George Necula - Lecture 2 96

Dead-Code Elimination

• VC is insensitive to dead-code

• The symbolic evaluator won’t even look at it !

17

Automated Deduction - George Necula - Lecture 2 97

Common-Subexpression Elimination

• CSE does not change the VC

Automated Deduction - George Necula - Lecture 2 98

Copy Propagation

• Does not change the VC

• Just like CSE

Automated Deduction - George Necula - Lecture 2 99

Instruction Scheduling

• Instruction scheduling does not change VC

Automated Deduction - George Necula - Lecture 2 100

Register Allocation

• Does not change VC
– Final logical variables are quantified over

• Even spilling can be accomodated
– By giving register names to spill slots on the stack

Automated Deduction - George Necula - Lecture 2 101

Loop Invariant Hoisting

• VC is not changed

• For same reasons as with CSE

Automated Deduction - George Necula - Lecture 2 102

Redundant Conditional Elimination

• VC changes syntactically

• But not semantically (since C1 ∧ C2 ∧ … ∧ Cn ⇒ C)
– We do have to prove something here

• Same for array-bounds checking elimination

18

Automated Deduction - George Necula - Lecture 2 103

VC Characterize a Safe Interpreter

• Consider a fictitious “safe” interpreter
– As it goes along it performs checks (e.g. saferd, validString)

– Some of these would actually be hard to implement

• The VC describes all of the checks to be performed
– Along with their context (assumptions from conditionals)

– Invariants and pre/postconditions are used to obtain a finite
expression (through induction)

• VC is valid ⇒ interpreter never fails
– We enforce same level of “correctness”

– But better (static + more powerful checks)

Automated Deduction - George Necula - Lecture 2 104

Conclusion

• Verification conditions
– Are an expression of semantics and specifications

– Completely independent of a language

– Can be computed backward/forward on
structured/unstructured code

– Can be computed on high-level/low-level code

• Using symbolic evaluation we can hope to check
correctness of compiler optimizations
– See “Translation Validation for an Optimizing Compiler” off
the class web page

• Next time: We start proving VC predicates

