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Axiomatic Semantics
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• Still need volunteers to teach
– BDDs

– SAT-solvers

– SAT-based decision procedures

– Temporal logic (and maybe other modal logics)

– ESC/Java

• Please let me know soon
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Review - Operational Semantics

• We have an imperative language with pointers and 
function calls

• We have defined the semantics of the language

• Operational semantics
– Relatively simple

– Not compositional (due to loops and recursive calls)

– Adequate guide for an implementation
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More Semantics

• There is also denotational semantics
– Each program has a meaning in the form of a mathematical 
object

– Compositional

– More complex formalism

• e.g. what are appropriate meanings ?

• Neither is good for arguing program correctness
– Operational semantics requires running the code

– Denotational semantics requires complex calculations

• We do instead: Programs → Theorems → Proofs
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Programs →→→→ Theorems. Axiomatic Semantics

• Consists of:
– A language for making assertions about programs

– Rules for establishing when assertions hold

• Typical assertions:
– During the execution, only non-null pointers are dereferenced

– This program terminates with x = 0

• Partial vs. total correctness assertions
– Safety vs. liveness properties

– Usually focus on safety (partial correctness)
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Partial Correctness Assertions

• The assertions we make about programs are of the 
form:

{A} c {B }

with the meaning that:
– Whenever we start the execution of c in a state that 
satisfies A, the program either does not terminate or it 
terminates in a state that satisfies B 

• A is called precondition and B is called postcondition

• For example:

{ y � x } z := x; z := z +1 { y < z }

is a valid assertion

• These are called Hoare triple or Hoare assertions
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Total Correctness Assertions

• {A} c {B } is a partial correctness assertion. It does 
not imply termination

• [A] c [B ] is a total correctness assertion meaning that

Whenever we start the execution of c in a state that 
satisfies A the program does terminate in a state that 
satisfies B

• Now let’s be more formal
– Formalize the language of assertions, A and B

– Say when an assertion holds in a state

– Give rules for deriving Hoare triples
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Languages for Assertions

• A specification language
– Must be easy to use and expressive (conflicting needs)

• Most often only expression �

– Syntax: how to construct assertions

– Semantics: what assertions mean 

• Typical examples
– First-order logic

– Temporal logic (used in protocol specification, hardware 
specification)

– Special-purpose languages: Z, Larch, Java ML
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State-Based Assertions

• Assertions that characterize the state of the 
execution
– Recall: state = state of locals + state of memory

• Our assertions will need to be able to refer to 
– Variables

– Contents of memory

• What are not state-based assertions 
– Variable x is live, lock L will be released

– There is no correlation between the values of x and y
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An Assertion Language

• We’ll use a fragment of first-order logic first
Formulas  P ::= A | T | ⊥⊥⊥⊥ | P1 ∧ P2 | ∀x.P | P1 ⇒ P2 | 

Atoms     A ::=   f(A1,…,An) | E1 ≤ E2 | E1 = E2 | …

• We can also have an arbitrary assortment of function 
symbols
– ptr(E,T)      - expression E denotes a pointer to T

– E : ptr(T)    - same in a different notation

– reachable(E1,E2)  - list cell E2 is reachable from E1

– these can be built-in or defined
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Semantics of Assertions

• We introduced a language of assertions, we need to 
assign meanings to assertions.
– We ignore for now references to memory

• Notation ρ, σ � A to say that an assertion holds in a 
given state.
– This is well-defined when ρ is defined on all variables 
occurring in A and σ is defined on all memory addresses 
referenced in A

• The � judgment is defined inductively on the 
structure of assertions.
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Semantics of Assertions

• Formal definition (we drop σ for simplicity):

ρ � true         always
ρ � e1 = e2 iff ρ ⊢ e1 ⇓ n1 and ρ ⊢ e2 ⇓ n2 and n1 = n2
ρ � e1 ≥ e2 iff ρ ⊢ e1 ⇓ n1 and ρ ⊢ e2 ⇓ n2 and n1 ≥ n2
ρ � A1 ∧ A2 iff ρ � A1 and ρ � A2

ρ � A1 ∨ A2 iff ρ � A1 or ρ � A2

ρ � A1 ⇒ A2 iff ρ � A1 implies ρ � A2

ρ � ∀x.A         iff ∀n∈Z.ρ[x:=n] � A
ρ � ∃x.A         iff ∃n∈Z.ρ[x:=n] � A
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Semantics of Assertions

• Now we can define formally the meaning of a partial 
correctness assertion 
� { A} c { B }:
∀ρσ .∀ρ’σ’.(ρ,σ � A ∧ ρ, σ ⊢ c ⇓ ρ’, σ’) ⇒ ρ’,σ’ � B

• … and the meaning of a total correctness assertion
� [A] c [B] iff
∀ ρσ.∀ρ’σ’.(ρ,σ � A ∧ ρ, σ ⊢ c ⇓ ρ’, σ’) ⇒ ρ’,σ’ � B

∧

∀ρσ. ρ,σ � A ⇒ ∃ρ’σ’. ρ, σ ⊢ c ⇓ ρ’, σ’
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Why Isn’t This Enough?

• Now we have the formal mechanism to decide when 
{A} c {B }
– Start the program in all states that satisfies A

– Run the program

– Check that each final state satisfies B

• This is exhaustive testing

• Not enough
– Can’t try the program in all states satisfying the precondition

– Can’t find all final states for non-deterministic programs

– And also it is impossible to effectively verify the truth of a 
∀x.A postcondition (by using the definition of validity)
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Derivations as Proxies for Validity

• We define a symbolic technique for deriving valid 
assertions from others that are known to be valid
– We start with validity of first-order formulas

• We write ⊢A when we can derive (prove) the 
assertion A
– We wish that  (∀ρσ. ρ,σ � A)   iff ⊢ A

• We write ⊢ {A} c {B} when we can derive (prove) the 
partial correctness assertion
– We wish that   � {A} c {B}   iff ⊢ {A} c {B}
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Derivation Rules for Assertions

• The derivation rules for ⊢ A are the usual ones from 
first-order logic with

• Natural deduction style axioms:

⊢ A ∧ B

⊢ A      ⊢ B

⊢ ∀x.A

⊢ [a/x]A (a is fresh)  

⊢ ∃x.A

⊢ [E/x]A

⊢ B

⊢ A ⇒ B   ⊢ A

⊢ A ⇒ B

⊢ A

…

⊢ B ⊢ B

⊢ [a/x]A

…

⊢ B

⊢ ∃x.A

⊢ [E/x]A

⊢ ∀x.A
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Derivation Rules for Hoare Triples

• Similarly we write ⊢ {A} c { B} when we can derive the 
triple using derivation rules

• There is one derivation rule for each command in the 
language

• Plus, the rule of consequence

⊢ {A’} c {B’}

⊢ A’ ⇒ A   ⊢ {A} c {B}   ⊢ B ⇒ B’
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Derivation Rules for Hoare Logic

• One rule for each syntactic construct:

⊢ {A} skip {A}

⊢ {A} c1; c2 {C}

⊢ {A} c1 {B}    ⊢ {B} c2 {C}

⊢ {A} if b then c1 else c2 {B}

⊢ {A ∧ b} c1 {B}    ⊢ {A ∧ ¬ b} c2 {B}
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Derivation Rules for Hoare Logic (II)

• The rule for while is not syntax directed
– It needs a loop invariant

– Exercise: try to see what is wrong if you make changes to the 
rule (e.g., drop “∧ b” in the premise, …)

⊢ {A} while b do c {A ∧ ¬ b}

⊢ {A ∧ b} c {A}
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Hoare Rules: Assignment

• Example:    { A } x := x + 2 {x >= 5 }. What is A?
– A has to imply x ≥ 3

• General rule:

• A is   “*y = 5 or x = y”

• How come the rule does not work?

• Surprising how simple the rule is !

• But try      { A } *x = 5 { *x + *y = 10 }

⊢ {[e/x]A} x := e {A}
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Example: Assignment

• Assume that x does not appear in e

Prove that {true} x := e { x = e }

• We have

because [e/x](x = e) ≡ e = [e/x]e ≡ e = e

• Assignment + consequence:

⊢ {e = e} x := e {x = e}

⊢ {e = e} x := e {x = e}

⊢ {true} x := e {x = e}

⊢ true ⇒ e = e
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The Assignment Axiom (Cont.)

• Hoare said: “Assignment is undoubtedly the most 
characteristic feature of programming a digital 
computer, and one that most clearly distinguishes it 
from other branches of mathematics. It is surprising 
therefore that the axiom governing our reasoning 
about assignment is quite as simple as any to be found 
in elementary logic.”

• Caveats are sometimes needed for languages with 
aliasing:
– If x and y are aliased then

{ true } x := 5 { x + y = 10}

is true
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Multiple Hoare Rules

• For some constructs multiple rules are possible:

• Exercise: these rules can be derived from the 
previous ones using the consequence rules

⊢ {A} x := e {∃x0.[x0/x]A ∧ x = [x0/x]e}

⊢ {A} while b do c {B}

⊢ A ∧ b ⇒ C    ⊢ {C} c {A}   ⊢ A ∧ ¬ b ⇒ B

(This was the “forward” axiom for assignment 
before Hoare)

⊢ {b ⇒ C ∧ ¬ b ⇒ B} while b do c {B}

⊢ {C} c {b ⇒ C ∧ ¬ b ⇒ B}
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Example: Conditional

• D1 is obtained by consequence and assignment

• D2 is also obtained by consequence and assignment

⊢ {true} if y � 0 then x := 1 else x := y {x > 0}

D1 :: ⊢ {true ∧ y � 0} x := 1 {x > 0}

D2 :: ⊢ {true ∧ y > 0} x := y {x > 0}

⊢ {true ∧ y � 0} x := 1 {x ≥ 0}

⊢ {1 > 0} x := 1 {x > 0}

⊢ true ∧ y � 0 ⇒ 1 > 0

⊢ {true ∧ y > 0} x := y {x > 0}

⊢ {y > 0} x := y {x > 0}

⊢ true ∧ y > 0 ⇒ y > 0
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Example: Loop

• We want to derive that

⊢ {x � 0} while x � 5 do x := x + 1 { x = 6}

• Use the rule for while with invariant x � 6

• Then finish-off with consequence

⊢ {x � 6} while x � 5 do x := x + 1 { x � 6 ∧ x > 5}

⊢ {x + 1 � 6} x := x + 1 { x � 6 }

⊢ {x � 6 ∧ x � 5 } x := x + 1 {x � 6}

⊢ x � 6 ∧ x � 5 ⇒ x + 1 � 6  

⊢ {x � 6} while … { x � 6 ∧ x > 5}

⊢ {x � 0} while … {x = 6}

⊢ x � 0 ⇒ x � 6

⊢ x � 6 ∧ x > 5 ⇒ x  =6
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Another Example

• Verify that 

⊢ {A } while true do c { B}

holds for any A, B and c 

• We must construct a derivation tree

• We need an additional lemma:

∀c. ⊢ { true } c {true} 
– How do you prove this one?

{true} while true do c {true ∧ false}

⊢ {true ∧ true} c { true }

⊢ {A} while true do c { B}

⊢ A ⇒ true

⊢ true ∧ false ⇒ B
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GCD Example
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GCD Example (2)

• Crucial to select good loop invariant
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GCD Example (3)
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GCD Example (4)
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GCD Example (5)
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GCD Example (6)

• The above can be proved by realizing that
gcd(x,y)  = gcd(x-y,y)

• Q.e.d.

• This completes the proof

• We used a lot of arithmetic

• We had to invent the loop invariants

• What about the proof for total correctness?
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Hoare Rule for Function Call

• If no recursion we can inline the function call

• In general, 
1. each function f has a Pref and Postf

2. For each function we check  { Pref } Cf {Postf }

⊢ {A[e1/x1,…,en/xn]} x := f(e1, …, en) {B}

f(x1,…,xn) = Cf ∈ Program  { A } Cf {B[f/x]} 

⊢ {Pref[e1/x1,…,en/xn]} x := f(e1, …, en) {Postf [x/f] }
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Axiomatic Semantics 
in Presence of Side-Effects
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Naïve Handling of Program State

• We allow memory read in assertions: *x + *y = 5

• We try:

{ A } *x = 5 { *x + *y = 10 }

• A ought to be   “*y = 5 or x = y”

• The Hoare rule would give us:

(*x + *y = 10)[5/*x]  

= 5 + *y = 10

= *y = 5 (we lost one case)

• How come the rule does not work?
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Handling Program State

• We cannot have side-effects in assertions
– While creating the theorem we must remove side-effects !

– But how to do that when lacking precise aliasing information ?

• Important technique: Postpone alias analysis

• Model the state of memory as a symbolic mapping 
from addresses to values:
– If E denotes an address and M a memory state then:

– sel(M,E) denotes the contents of memory cell 

– upd(M,E,V) denotes a new memory state obtained from M by 
writing V at address E
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More on Memory

• We allow variables to range over memory states
– So we can quantify over all possible memory states 

• And we use the special pseudo-variable µ in assertions 
to refer to the current state of memory

• Example:

“∀i. i ≥ 0 ∧ i < 5 ⇒ sel(µ, A + i) > 0” =   allpositive(µ, A, 0, 5)

says that entries 0..4 in array A are positive
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Semantics of Memory Expressions

• We need a new kind of values (memory values)
Values v ::= n | a | σ

ρ, σ ⊢ µ ⇓ σ

ρ, σ ⊢ sel(Em, E2) ⇓ σ’(a)

ρ, σ ⊢ Em ⇓ σ’ ρ, σ ⊢ E2 ⇓ a

ρ, σ ⊢ upd(Em, Ea, Ev) ⇓ σ’[a := v]

ρ, σ ⊢ Em ⇓ σ’ ρ, σ ⊢ Ea ⇓ a        ρ, σ ⊢ Ev ⇓ v
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Hoare Rules: Side-Effects

• To correctly model writes we use memory expressions
– A memory write changes the value of memory

• Important technique: treat memory as a whole

• And  reason later about memory expressions with 
inference rules such as (McCarthy):

{ B[upd(µ, E1, E2)/µ] } *E1 := E2 {B}

if E1 = E3E2

if E1 ≠ E3sel(M, E3)
sel(upd(M, E1, E2), E3) = 
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Memory Aliasing

• Consider again: { A } *x = 5 { *x + *y = 10 }

• We obtain: 

A =  (*x + *y = 10)[upd(µ, x, 5)/µ]
= (sel(µ, x) + sel(µ, y) = 10) [upd(µ, x, 5)/µ]
= sel(upd(µ, x, 5), x) + sel(upd(µ, x, 5), y) = 10 (*)

= 5 + sel(upd(µ, x, 5), y) = 10
= if x = y then 5 + 5 = 10 else 5 + sel(µ, y) = 10
= x = y or *y = 5 (**)

• To (*) is theorem generation

• From (*) to (**) is theorem proving
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Alternative Handling for Memory

• Reasoning about aliasing is expensive (NP-hard)

• Sometimes completeness is sacrificed with the 
following (approximate) rule:

otherwise (p is a fresh 
new parameter)

p

if E1 = (obviously) E3E2

if E1 ≠ (obviously) E3sel(M, E3)sel(upd(M, E1, E2), E3) = 

• The meaning of “obvious” varies:
• The addresses of two distinct globals are ≠
• The address of a global and one of a local are ≠

• PREfix and GCC use such schemes
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Using Hoare Rules. Notes

• Hoare rules are mostly syntax directed

• There are three wrinkles:
– When to apply the rule of consequence ?

– What invariant to use for while ?

– How do you prove the implications involved in consequence ?

• The last one is how theorem proving gets in the 
picture
– This turns out to be doable !

– The loop invariants turn out to be the hardest problem !

(Should the programmer give them? See Dijkstra.)
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Where Do We Stand?

• We have a language for asserting properties of 
programs

• We know when such an assertion is true

• We also have a symbolic method for deriving 
assertions

A
{ A} c {B}

ρ, σ � A
� { A} c {B}

⊢ A
⊢ { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness
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Soundness of Axiomatic Semantics

• Formal statement
If ⊢ { A } c { B} then � { A} c { B} 

or, equivalently
For all ρ, σ, if ρ, σ � A and D :: ρ, σ ⊢ c ⇓ ρ’, σ’
and H :: ⊢ { A } c { B} then ρ’, σ’ � B 
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Completeness of Axiomatic Semantics
Weakest Preconditions
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Completeness of Axiomatic Semantics

• Is it true that whenever � {A} c {B} we can also derive 
⊢ {A} c {B} ?

• If it isn’t then it means that there are valid 
properties of programs that we cannot verify with 
Hoare rules

• Good news: for our language the Hoare triples are 
complete

• Bad news: only if the underlying logic is complete
(whenever � A we also have ⊢ A)

- this is called relative completeness
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Proof Idea

• Dijkstra’s idea: To verify that { A } c { B}
a) Find out all predicates A’ such that � { A’} c { B}

• call this set Pre(c, B)

b) Verify for one A’ ∈ Pre(c, B) that A ⇒ A’

• Assertions can be ordered:

false true⇒

strong weak
Pre(c, B)

weakest
precondition: WP(c, B)

• Thus: compute WP(c, B) and prove A ⇒WP(c, B)

A
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Proof Idea (Cont.)

• Completeness of axiomatic semantics:
If � { A } c { B } then ⊢ { A } c { B}

• Assuming that we can compute wp(c, B) with the 
following properties: 
1. wp is a precondition (according to the Hoare rules)

⊢ { wp(c, B) } c { B} 

2. wp is the weakest precondition          
If  � { A } c { B}   then  � A ⇒ wp(c, B)

• We also need that whenever � A then ⊢ A !

⊢ {A} c {B}

⊢ A ⇒ wp(c, B)         ⊢ {wp(c, B)} c {B}
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Weakest Preconditions

• Define wp(c, B) inductively on c, following Hoare rules:

wp(c1; c2, B) = wp(c1, wp(c2, B))

wp(x := e, B) = [e/x]B

wp(if E then c1 else c2, B) = E ⇒ wp(c1, B) ∧ ¬ E ⇒ wp(c2, B)

{ A } c1; c2 {B}

{A} c1 {C}            {C} c2 {B}

{ [e/x]B } x := E {B}

{ E ⇒ A1 ∧ ¬ E ⇒ A2} if E then c1 else c2 {B}

{A1} c1 {B}            {A2} c2 {B}
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Weakest Preconditions for Loops

• We start from the equivalence

while b do c    =  if b then c; while b do c else skip

• Let w = while b do c and W = wp(w, B)

• We have that 

W = b ⇒ wp(c, W) ∧ ¬ b ⇒ B

• But this is a recursive equation !
– We know how to solve these using domain theory

• We need a domain for assertions
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A Partial-Order for Assertions

• What is the assertion that contains least information?
– true – does not say anything about the state

• What is an appropriate information ordering ?
A ⊑ A’ iff � A’ ⇒ A

• Is this partial order complete? 
– Take a chain A1 ⊑ A2 ⊑ …

– Let ∧Ai be the infinite conjunction of Ai

σ � ∧Ai iff for all i we have that σ � Ai

– Verify that ∧Ai is the least upper bound

• Can ∧Ai be expressed in our language of assertions?
– In many cases yes (see Winskel), we’ll assume yes
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Weakest Precondition for WHILE

• Use the fixed-point theorem

F(A) = b ⇒ wp(c, A) ∧ ¬ b ⇒ B
– Verify that F is both monotonic and continuous

• The least-fixed point (i.e. the weakest fixed point) is

wp(w, B) = ∧Fi(true)
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Weakest Preconditions (Cont.)

• Define a family of wp’s
– wpk(while e do c, B) = weakest precondition on which the loop 
if it terminates in k or fewer iterations, it terminates in B

wp0 = ¬ E ⇒ B 

wp1 = E ⇒ wp(c, wp0) ∧ ¬ E ⇒ B

…

• wp(while e do c, B) = ∧k ≥ 0 wpk = lub {wpk | k ≥ 0}

• Is it the case that wpk ⇒ wpk-1 ? The opposite?

• Weakest preconditions are 
– Impossible to compute (in general)

– Can we find something easier to compute yet sufficient ?
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Weakest Precondition. Example 1

• Consider the code: 

while x � 5 do x := x + 1 

with postcondition P = x ≥ 7

• What is the weakest precondition ?

• wp(x := x + 1, A) = A[x+1/x]

• WP0 = ¬ (x � 5) ⇒ x ≥ 7              = x ∉ { 6 }

• WP1 = x � 5 ⇒ x +1 ∉ 6  ∧WP0 = x ∉ { 5, 6}

• WP2 = x � 5 ⇒ x + 1 ∉ { 5, 6 } ∧WP0 = x ∉ { 4, 5, 6 }

• …

• WP = x ≥ 7
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Weakest Precondition. Example 2

• Consider the code: 

while x ≥ 5 do x := x + 1 

with postcondition P = x ≥ 7

• What is the weakest precondition ?

• wp(x := x + 1, A) = A[x+1/x]

• WP0 = ¬ (x ≥ 5) ⇒ x ≥ 7              = x ≥ 5

• WP1 = x ≥ 5 ⇒ x +1 ≥ 5  ∧WP0 = x ≥ 5

• …

• WP = x ≥ 5
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Theorem Proving and Program Analysis 
(again)

• Predicates form a lattice:
WP(s, B) = lub⇒(Pre(s, B))

• This is not obvious at all:
– lub {P1, P2} = P1 ∨ P2
– lub PS = ∨P ∈ PS P

– But can we always write this with a finite number of ∨ ?

• Even checking implication can be quite hard

• Compare with program analysis in which lattices are of 
finite height and quite simple

Program Verification is Program Analysis on the 
lattice of first order formulas
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Verification Conditions
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Not Quite Weakest Preconditions

• Recall what we are trying to do:

false true⇒

strong weak
Pre(s, B)

weakest
precondition: WP(c, B)A

verification 
condition: VC(c, B)

• We shall construct a verification condition: VC(c, B)
– The loops are annotated with loop invariants !

– VC is guaranteed stronger than WP

– But hopefully still weaker than A: A ⇒ VC(c, B) ⇒WP(c, B)
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Verification Conditions

• Factor out the hard work
– Loop invariants

– Function specifications

• Assume programs are annotated with such specs.
– Good software engineering practice anyway

• We will assume that the new form of the while 
construct includes an invariant:

whileI b do c

– The invariant formula must hold every time before b is 
evaluated
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Invariants Are Not Easy

• Consider the following code from QuickSort
int partition(int *a, int L0, int H0, int pivot) {

int L = L0, H = H0;

while(L < H) {

while(a[L] < pivot) L ++;

while(a[H] > pivot) H --;

if(L < H) { swap a[L] and a[H] }

}

return L

}

• Consider verifying only memory safety

• What is the loop invariant for the outer loop ?
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Verification Condition Generation (1)

• Mostly follows the definition of the wp function

VC(skip, B) = B

VC(c1; c2, B) = VC(c1, VC(c2, B))

VC(if b then c1 else c2, B) = b ⇒ VC(c1, B) ¬b ⇒ VC(c2, B)

VC(x := e, B)  = [e/x]B

VC(let x = e in c, B) = [e/x] VC(c, B)

VC(*e1 := e2, B) = [upd(µ, e1, e2)/µ]B
VC(while b do c, B) = ? 
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Verification Condition Generation for WHILE

VC(whileI e do c, B) = 

I ∧ (∀x1…xn. I ⇒ (e ⇒ VC(c, I) ∧ ¬ e ⇒ B) )

• I is the loop invariant (provided externally)

• x1, …, xn are all the variables modified in c

• The ∀ is similar to the ∀ in mathematical induction:
P(0) ∧ ∀n ∈ N. P(n) ⇒ P(n+1)

I holds
on entry

I is preserved in 
an arbitrary iteration

B holds when the 
loop terminates 

in an arbitrary iteration
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Verification Conditions for Function Calls

• VC(x := f(e1,…,en), P) = 

Pref[Ei/xi] ∧ ∀µ∀f Postf ⇒ P[f/x] 

• We check the precondition
– with actuals substituted for formals

• We assume that the memory and “f” are changed

• We check that function postcondition is stronger than 
P
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Soundness and Completeness of VCGen

• We must prove that, for all c and B
� { VC(c, B) } c { B} 

• Or, equivalently

VC(c, B) ⇒WP(c, B)

• Try it (the case for loops is interesting)

• Completeness is trickier

• One formulation: it is possible to choose the loop 
invariants such that

WP(c, B) ⇒ VC(c, B)

• Try it !!
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Forward Verification Condition Generation

• Traditionally VC is computed backwards
– Works well for structured code

• But it can also be computed in a forward direction
– Works even for un-structured languages (e.g., assembly 
language)

– Uses symbolic evaluation, a technique that has broad 
applications in program analysis 

• e.g. the PREfix tool (Intrinsa, Microsoft) works this way
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Symbolic Evaluation

• Consider the language of instructions:
x := e |  f() | if e goto L |  goto L | L: | return | inv e

• The “inv e” instruction is an annotation
– Says that boolean expression e holds at that point

• Programs are sequences of instructions

• Notation: Ik is the instruction at address k
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Symbolic Evaluation. Basic Intuition

• VC generation is traditionally backwards due to 
assignments

VC(x1 := e1; …, xn := en, P) = 

(P[en/xn]) [en-1/xn-1] … [e1/x1]

• We can use the following rule

(P[e2/x2])[e1/x1] = P[e2[e1/x1]/x2, e1/x1]

• Symbolic evaluation computes the substitution in a 
forward direction, and applies it when it reaches the 
postcondition
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Symbolic Evaluation. The State.

• We set up a symbolic evaluation state:

Σ : Var→ SymbolicExpressions

Σ(x) = the symbolic value of x in state Σ
Σ[x:=e] = a new state in which x’s value is e

We shall use states also as substitutions:

Σ(e) - obtained from e by replacing x with Σ(x)

So far this is pretty much like the operational semantics
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Symbolic Evaluation. The Invariants.

• The symbolic evaluator keeps track of the 
encountered invariants

• A new element of execution state: Inv ⊆ {1…n}

• If k ∈ Inv then
– Ik is an invariant instruction that we have already executed

• Basic idea: execute an inv instruction only twice:
– The first time it is encountered

– And one more time around an arbitrary iteration
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Symbolic Evaluation. Rules.

• Define a VC function as an interpreter:

VC : 1..n × SymbolicState × InvariantState → Assertion

if Ik = returnΣ(Postcurrent-function)
if Ik = x := eVC(k+1, Σ[x:=Σ(e)], Inv)

VC(k, Σ, Inv) =

if Ik = f()

Σ(Pref)    ∧
∀a1..am.Σ’(Postf) ⇒ VC(k+1, Σ’, Inv)
(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and Σ’ = Σ[y1 := a1, …, ym := am]

if Ik = if e goto L
e ⇒ VC(L, Σ, Inv)      ∧

¬ e ⇒ VC(k+1, Σ, Inv)

if Ik = goto L VC(L, Σ,  Inv)
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Symbolic Evaluation. Invariants.

Two cases when seeing an invariant instruction:

1. We see the invariant for the first time
– Ik = inv e. 

– k ∉ Inv

– Let {y1, …, ym} = the variables that could be modified on a 
path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, Σ, Inv) = 
Σ(e) ∧ ∀a1…am. Σ’(e) ⇒ VC(k+1, Σ’, Inv ∪ {k}])

with Σ’ = Σ[y1 := a1, …, ym := am]
(like a function call)
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Symbolic Evaluation. Invariants.

2. We see the invariant for the second time
– Ik = inv E

– k ∈ Inv

VC(k, Σ, Inv) = Σ(e)
(like a function return)

• Some tools take a more simplistic approach
– Do not require invariants

– Iterate through the loop a fixed number of times

– PREfix, versions of ESC (Compaq SRC)

– Sacrifice completeness for usability
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Symbolic Evaluation. Putting it all together

• Let
– x1, …, xn be all the variables and a1, …, an fresh parameters

– Σ0 be the state [x1 := a1, …,xn :=an]

– ∅ be the empty Inv set

• For all functions f in your program, compute

∀a1…an. Σ0(Pref) ⇒ VC(fentry, Σ0, ∅)
• If all of these predicates are valid then:

– If you start the program by invoking any f in a state that 
satisfies Pref the program will execute such that

• At all “inv e” the e holds, and 

• If the function returns then Postf holds

– Can be proved w.r.t. a real interpreter (operational semantics)

– Proof technique called co-induction (or, assume-guarantee)
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VC Generation Example

• Consider the program

Precondition: x � 0
Loop: inv x � 6 

if x > 5 goto End

x := x + 1

goto Loop

End:  return Postconditon: x = 6
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VC Generation Example (cont.)

∀x. 
x � 0 ⇒

x � 6 ∧
∀x’.

(x’ � 6 ⇒
x’ > 5 ⇒ x’ = 6

∧

x’ � 5 ⇒ x’ + 1 � 6 )

• VC contains both proof obligations and assumptions 
about the control flow                               
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VC Generation Example (with memory)

• Consider the program

1: I := 0          Precondition: B : bool ∧ A : array(bool, L)
R := B

3: inv I ≥ 0 ∧ R : bool

if I ≥ L goto 9

assert saferd(A + I)

T := *(A + I)

I := I + 1

R := T

goto 3

9: return R Postconditon: R : bool
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VC Generation Example (cont.)

∀A. ∀B. ∀L. ∀µ
B : bool ∧ A : array(bool, L) ⇒

0 ≥ 0 ∧ B : bool ∧
∀I. ∀R.

I ≥ 0 ∧ R : bool ⇒
I ≥ L ⇒ R : bool

∧

I < L ⇒ saferd(A + I) ∧
I + 1 ≥ 0 ∧
sel(µ, A + I) : bool

• VC contains both proof obligations and assumptions 
about the control flow                               
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VC and Invariants

• Consider the Hoare triple:
{x ≤ 0} whileI x ≤ 5 do x := x + 1 {x = 6}

• The VC for this is:
x ≤ 0⇒ I(x) ∧ ∀x. (I(x) ⇒ (x > 5 ⇒ x = 6 ∧

x ≤ 5 ⇒ I(x+1) ))

• Requirements on the invariant:
– Holds on entry                ∀x. x ≤ 0⇒ I(x)

– Preserved by the body   ∀x.  I(x) ∧ x ≤ 5 ⇒ I(x+1)

– Useful                            ∀x.  I(x) ∧ x > 5 ⇒ x = 6

• Check that I(x) = x ≤ 6 satisfies all constraints
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VC Can Be Large

• Consider the sequence of conditionals
(if x < 0 then x := - x); (if x ≤ 3 then x += 3)

– With the postcondition P(x)

• The VC is 
x < 0 ∧ -x ≤ 3 ⇒ P(- x + 3)  ∧
x < 0 ∧ -x > 3⇒ P(- x)     ∧
x ≥ 0 ∧ x ≤ 3 ⇒ P(x + 3)    ∧
x ≥ 0 ∧ x > 3 ⇒ P(x ) 

• There is one conjunct for each path
=> exponential number of paths !

– Conjuncts for non-feasible paths have un-satisfiable guard !

• Try with P(x) = x ≥ 3
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VC Can Be Large (2)

• VCs are exponential in the size of the source because 
they attempt relative completeness:
– To handle the case then the correctness of the program must 
be argued independently for each path

• Remark:
– It is unlikely that the programmer could write a program by 
considering an exponential number of cases

– But possible. Any examples?

• Solutions:
– Allow invariants even in straight-line code

– Thus do not consider all paths independently !
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Invariants in Straight-Line Code

• Purpose: modularize the verification task

• Add the command “after c establish I”
– Same semantics as c (I is only for verification purposes)

VC(after c establish I, P) =def VC(c,I) ∧ ∀xi. I ⇒ P
• where xi are the ModifiedVars(c) 

• Use when c contains many paths
after if x < 0 then x := - x  establish x ≥ 0;

if x ≤ 3 then x += 3 { P(x) }

• VC now is (for P(x) = x ≥ 3)
(x < 0 ⇒ - x ≥ 0) ∧ (x ≥ 0 ⇒ x ≥ 0) ∧
∀x. x ≥ 0⇒ (x ≤ 3⇒ P(x+3) ∧ x > 3 ⇒ P(x))
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Dropping Paths

• In absence of annotations drop some paths

• VC(if E then c1 else c2, P) = choose one of
– E ⇒ VC(c1, P) ∧ ¬E ⇒ VC(c2, P)

– E ⇒ VC(c1, P)

– ¬E ⇒ VC(c2, P)

• We sacrifice soundness !
– No more guarantees but possibly still a good debugging aid

• Remarks:
– A recent trend is to sacrifice soundness to increase usability 

– The PREfix tool considers only 50 non-cyclic paths through a 
function (almost at random)
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VCGen for Exceptions

• We extend the source language with exceptions 
without arguments:
– throw throws an exception    

– try c1 handle c2 executes c2 if c1 throws

• Problem:
– We have non-local transfer of control

– What is VC(throw, P) ?

• Solution: use 2 postconditions
– One for normal termination

– One for exceptional termination

Automated Deduction - George Necula - Lecture 2 84

VCGen for Exceptions (2)

• Define: VC(c, P, Q) is a precondition that makes c
either not terminate, or terminate normally with P or 
throw an exception with Q

• Rules
VC(skip, P, Q)    = P

VC(c1; c2, P, Q)  = VC(c1, VC(c2, P, Q), Q)

VC(throw, P, Q) = Q

VC(try c1 handle c2, P, Q) = VC(c1, P, VC(c2, Q, Q))

VC(try c1 finally c2, P, Q) = ?
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VCGen for Exceptions (3)

• What if we have exceptions with arguments

• Introduce global variable ex for the exception  
argument

• The exceptional postcondition can now refer to ex

• Remember that we must add an exceptional 
postcondition to functions also
– Like the THROWS clause in Java or Modula-3
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Additional Language Extensions

• wrong
– Semantics: terminate execution with an error

– VC(wrong, P) = false

• fail
– Semantics: terminate execution with a benign error

– Used to denote error conditions that are allowed (e.g. index 
out of bounds)

– VC(fail, P) = true

• assert E = if E then skip else wrong
– Used to specify verification goals

• assume E = if E then skip else fail
– Used to specify assumptions (e.g. about inputs)
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Additional Language Extensions (2)

• Undefined variables
– VC(let x in c, P) = ∀x. VC(c, P)
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Call-by-Reference

• Let  f(VAR x, y) { x ← 5; f ← x + y  }

• with
– Pref = y ≥ 10 

– Postf = f ≥ 15

• VC of the body is ∀xy. y ≥ 10 ⇒ 5 + y ≥ 15
– Which is provable !

• Let  {x = 10} y ← f(x,x) {y ≥ 15 }

• Its VC is x = 10  ⇒ (x ≥ 10 ∧ (∀y. y ≥ 15 ⇒ y ≥ 15)
– Also provable

– But if we run the code, y is 10 at the end !

– What’s going on?
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Call-by-Reference

• Axiomatic semantics can model only call-by-value

• Not a big problem, just have to model call-by-
reference with call-by-value
– Pass pointers instead

– Use the sel/upd axioms instead of assignment axioms

Automated Deduction - George Necula - Lecture 2 90

Arrays

• Arrays can be modeled like we did pointers

• In a safe language (no & and no pointer arithmetic)
– We can have a store value for each array

– Instead of a unique store µ

• A[E] is considered as sel(A,E)

• A[E1] ← E2 is considered as A ← upd(A, E1, E2)

• What is the advantage over sel(µ, A+E) ?
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Mutable Records - Two Models

• Let r :  RECORD f1 : T1; f2 : T2 END

• Records are reference types

• Method 1
– One “memory” for each record

– One index constant for each field. We postulate f1 ≠ f2

– r.f1 is sel(r,f1) and  r.f1 := E is r := upd(r,f1,E)

• Method 2
– One “memory” for each field

– The record address is the index

– r.f1 is sel(f1,r) and  r.f1 := E is f1 := upd(f1,r,E)
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VC Generation for Assembly Language

• Issues when extending this to real assembly language

• A fixed set of variables
– Machine registers

• Handling of stack slots
– Option 1: as memory locations (too inefficient)

– Option 2: as additional registers (reverse spilling)

• Careful with renaming at function calls and returns

• Does not work in presence of address-of operator

• Two’s complement arithmetic
– Careful to distinguish between + and ⊕

• See Necula-Ph.D. thesis for x86 and Alpha example 
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VC as a “Semantic CheckSum”

• Weakest preconditions are an expression of the 
program semantics
– Two equivalent programs have (logically) equivalent WP

• VC are almost the same
– Except for the loop invariants and function specifications

• In fact, VC abstract over some syntactic details
– Order of unrelated expressions

– Names of variables

– Common subexpressions
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VC for Type Checking Low Level Code

• Type checking low level code is hard because
– We cannot have variable declarations 

• Each instance of a register use can have different types

– The type of a register depends on the data flow

• Varies depending on how a use was reached

• Consider the program        and its VC

x ← 4

x ← x == 5

assert x : bool

x ← not x

assert x

4 == 5 : bool ∧ ¬ (4 == 5)

• No live logical variables

• Not confused by reuse of x
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Invariance of VC Through Optimizations

• In fact, VC is so good at abstracting syntactic details 
that it is invariant through many common optimiz.
– Preserves syntactic form, not just semantic meaning !

• We’ll take a look at some optimizations and see how VC 
changes/doesn’t change

• This can be used to verify correctness of compiler 
optimizations (Translation Validation)
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Dead-Code Elimination

• VC is insensitive to dead-code

• The symbolic evaluator won’t even look at it !
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Common-Subexpression Elimination

• CSE does not change the VC
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Copy Propagation

• Does not change the VC

• Just like CSE
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Instruction Scheduling

• Instruction scheduling does not change VC
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Register Allocation

• Does not change VC
– Final logical variables are quantified over

• Even spilling can be accomodated
– By giving register names to spill slots on the stack
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Loop Invariant Hoisting

• VC is not changed

• For same reasons as with CSE
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Redundant Conditional Elimination

• VC changes syntactically

• But not semantically (since C1 ∧ C2 ∧ … ∧ Cn ⇒ C )
– We do have to prove something here

• Same for array-bounds checking elimination
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VC Characterize a Safe Interpreter

• Consider a fictitious “safe” interpreter
– As it goes along it performs checks (e.g. saferd, validString)

– Some of these would actually be hard to implement

• The VC describes all of the checks to be performed
– Along with their context (assumptions from conditionals)

– Invariants and pre/postconditions are used to obtain a finite 
expression (through induction)

• VC is valid ⇒ interpreter never fails
– We enforce same level of “correctness”

– But better (static + more powerful checks)
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Conclusion

• Verification conditions
– Are an expression of semantics  and specifications

– Completely independent of a language

– Can be computed backward/forward on 
structured/unstructured code

– Can be computed on high-level/low-level code

• Using symbolic evaluation we can hope to check 
correctness of compiler optimizations
– See “Translation Validation for an Optimizing Compiler” off 
the class web page

• Next time: We start proving VC predicates


