

Review - Operational Semantics

- We have an imperative language with pointers and function calls
- We have defined the semantics of the language
- Operational semantics
- Relatively simple
- Not compositional (due to loops and recursive calls)
- Adequate guide for an implementation

Programs \rightarrow Theorems. Axiomatic Semantics

- Consists of
- A language for making assertions about programs
- Rules for establishing when assertions hold
- Typical assertions:
- During the execution, only non-null pointers are dereferenced
- This program terminates with $x=0$
- Partial vs. total correctness assertions
- Safety vs. liveness properties
- Usually focus on safety (partial correctness)
- Still need volunteers to teach
- BDDs
- SAT-solvers
- SAT-based decision procedures
- Temporal logic (and maybe other modal logics)
- ESC/Java
- Please let me know soon

More Semantics

- There is also denotational semantics
- Each program has a meaning in the form of a mathematical object
- Compositional
- More complex formalism
- e.g. what are appropriate meanings ?
- Neither is good for arguing program correctness
- Operational semantics requires running the code
- Denotational semantics requires complex calculations
- We do instead: Programs \rightarrow Theorems \rightarrow Proofs

Partial Correctness Assertions

- The assertions we make about programs are of the form:

$$
\{A\} \subset\{B\}
$$

with the meaning that:

- Whenever we start the execution of c in a state that satisfies A, the program either does not terminate or it terminates in a state that satisfies B
- A is called precondition and B is called postcondition
- For example:

$$
\{y \leq x\} z:=x ; z:=z+1\{y<z\}
$$

is a valid assertion

- These are called Hoare triple or Hoare assertions Automated Deduction - George Necula - Lecture 2

Total Correctness Assertions

- $\{A\} \subset\{B\}$ is a partial correctness assertion. It does not imply termination
- $[A] c[B]$ is a total correctness assertion meaning that

Whenever we start the execution of c in a state that satisfies A the program does terminate in a state that satisfies B

- Now let's be more forma
- Formalize the language of assertions, A and B
- Say when an assertion holds in a state
- Give rules for deriving Hoare triples

Languages for Assertions

- A specification language
- Must be easy to use and expressive (conflicting needs) - Most often only expression (8
- Syntax: how to construct assertions
- Semantics: what assertions mean
- Typical examples
- First-order logic
- Temporal logic (used in protocol specification, hardware specification)
- Special-purpose languages: Z, Larch, Java ML

An Assertion Language

- We'll use a fragment of first-order logic firs \dagger

Formulas $P::=A|T| \perp\left|P_{1} \wedge P_{2}\right| \forall x . P\left|P_{1} \Rightarrow P_{2}\right|$
Atoms $A::=f\left(A_{1}, \ldots, A_{n}\right)\left|E_{1} \leq E_{2}\right| E_{1}=E_{2} \mid \ldots$

- We can also have an arbitrary assortment of function symbols
- $\operatorname{ptr}(E, T) \quad$ - expression E denotes a pointer to T
- $\mathrm{E}: \operatorname{ptr}(\mathrm{T})$ - same in a different notation
- reachable $\left(E_{1}, E_{2}\right)$ - list cell E_{2} is reachable from E_{1}
- these can be built-in or defined

Semantics of Assertions

- Formal definition (we drop σ for simplicity):

$\rho \vDash+$ true \quad always
$\rho \vDash e_{1}=e_{2} \quad$ iff $\rho \vdash e_{1} \Downarrow n_{1}$ and $\rho \vdash e_{2} \Downarrow n_{2}$ and $n_{1}=n_{2}$
$\rho \vDash e_{1} \geq e_{2}$
$\rho \vDash A_{1} \wedge A_{2}$
iff $\rho \vdash e_{1} \Downarrow n_{1}$ and $\rho \vdash e_{2} \Downarrow n_{2}$ and $n_{1} \geq n_{2}$
$\rho \vDash A_{1} \vee A_{2}$ and $\rho \vDash A_{2}$
$\rho \vDash A_{1} \Rightarrow A_{2}$
iff $\rho \vDash A_{1}$ or $\rho \vDash A_{2}$
$\rho \vDash \forall x . A$$\quad$ iff $\forall n \in \mathbb{Z} . \rho[x:=n] \vDash A$
$\rho \vDash \exists x . A \quad$ iff $\exists n \in \mathbb{Z} . \rho[x:=n] \vDash A$

Semantics of Assertions

- Now we can define formally the meaning of a partial correctness assertion
$\vDash\{A\} \subset\{B\}$
$\forall \rho \sigma . \forall \rho^{\prime} \sigma^{\prime} .\left(\rho, \sigma \vDash A \wedge \rho, \sigma \vdash c \Downarrow \rho^{\prime}, \sigma^{\prime}\right) \Rightarrow \rho^{\prime}, \sigma^{\prime} \vDash B$
- ... and the meaning of a total correctness assertion $\vDash[A] c[B]$ iff
$\forall \rho \sigma . \forall \rho^{\prime} \sigma^{\prime} .\left(\rho, \sigma \vDash A \wedge \rho, \sigma \vdash c \Downarrow \rho^{\prime}, \sigma^{\prime}\right) \Rightarrow \rho^{\prime}, \sigma^{\prime} \vDash B$ \wedge

$$
\forall \rho \sigma . \rho, \sigma \vDash A \Rightarrow \exists \rho^{\prime} \sigma^{\prime} . \rho, \sigma \vdash c \Downarrow \rho^{\prime}, \sigma^{\prime}
$$

Why Isn't This Enough?

- Now we have the formal mechanism to decide when $\{A\} \subset\{B\}$
- Start the program in all states that satisfies A
- Run the program
- Check that each final state satisfies B
- This is exhaustive testing
- Not enough
- Can't try the program in all states satisfying the precondition
- Can't find all final states for non-deterministic programs
- And also it is impossible to effectively verify the truth of a $\forall x . A$ postcondition (by using the definition of validity)

Derivations as Proxies for Validity

- We define a symbolic technique for deriving valid assertions from others that are known to be valid
- We start with validity of first-order formulas
- We write $\vdash A$ when we can derive (prove) the assertion A
- We wish that $(\forall \rho \sigma, \rho, \sigma \neq A)$ iff $\vdash A$
- We write $\vdash\{A\} c\{B\}$ when we can derive (prove) the partial correctness assertion
- We wish that $\vDash\{A\} \subset\{B\}$ iff $\vdash\{A\} \subset\{B\}$

Derivation Rules for Assertions

- The derivation rules for $\vdash A$ are the usual ones from first-order logic with
- Natural deduction style axioms:

$$
\frac{\vdash A \vdash B}{\vdash A \wedge B} \frac{\vdash[a / x] A \quad(a \text { is fresh })}{\vdash \forall x \cdot A} \frac{\vdash \forall x \cdot A}{\vdash[E / x] A}
$$

Derivation Rules for Hoare Triples

- Similarly we write $\vdash\{A\} \subset\{B\}$ when we can derive the triple using derivation rules
- There is one derivation rule for each command in the language
- Plus, the rule of consequence

$$
\frac{\vdash A^{\prime} \Rightarrow A \vdash\{A\} \subset\{B\} \vdash B \Rightarrow B^{\prime}}{\vdash\left\{A^{\prime}\right\} \subset\left\{B^{\prime}\right\}}
$$

Derivation Rules for Hoare Logic

- One rule for each syntactic construct:

$$
\begin{gathered}
\frac{\vdash\{A\} \text { skip }\{A\}}{} \\
\frac{\vdash\{A\} c_{1}\{B\} \quad \vdash\{B\} c_{2}\{C\}}{\vdash\{A\} c_{1} ; c_{2}\{C\}} \\
\frac{\vdash\{A \wedge b\} c_{1}\{B\} \quad \vdash\{A \wedge \neg b\} c_{2}\{B\}}{\vdash\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}
\end{gathered}
$$

Derivation Rules for Hoare Logic (II)

- The rule for while is not syntax directed
- It needs a loop invariant

$$
\frac{\vdash\{A \wedge b\} \subset\{A\}}{\vdash\{A\} \text { while } b \text { do } c\{A \wedge \neg b\}}
$$

- Exercise: try to see what is wrong if you make changes to the rule (e.g., drop " \wedge b" in the premise, ...)

Hoare Rules: Assignment

- Example: $\{A\} x:=x+2\{x>=5\}$. What is A ?
- A has to imply $x \geq 3$
- General rule:
$\vdash\{[e / x] A\} \times:=e\{A\}$
- Surprising how simple the rule is !
- Buttry $\{A\}^{*} x=5\left\{{ }^{*} x+{ }^{*} y=10\right\}$
- A is "* $y=5$ or $x=y$ "
- How come the rule does not work?

The Assignment Axiom (Cont.)

- Hoare said: "Assignment is undoubtedly the most characteristic feature of programming a digital computer, and one that most clearly distinguishes it from other branches of mathematics. It is surprising therefore that the axiom governing our reasoning about assignment is quite as simple as any to be found in elementary logic."
- Caveats are sometimes needed for languages with aliasing:
- If x and y are aliased then
$\{$ true $\} x:=5\{x+y=10\}$
is true
Automated Deduction - George Necula - Lecture 2
22

Multiple Hoare Rules

- For some constructs multiple rules are possible:

$$
\vdash\{A\} x:=e\left\{\exists x_{0} \cdot\left[x_{0} / x\right] A \wedge x=\left[x_{0} / x\right] e\right\}
$$

(This was the "forward" axiom for assignment before Hoare)
$\frac{\vdash A \wedge b \Rightarrow C \quad \vdash\{C\} c\{A\} \vdash A \wedge \neg b \Rightarrow B}{\vdash\{A\} \text { while } b \text { do } c\{B\}}$
$\frac{\vdash\{C\} c\{b \Rightarrow C \wedge \neg b \Rightarrow B\}}{\vdash\{b \Rightarrow C \wedge \neg b \Rightarrow B\} \text { while } b \text { do } c\{B\}}$

- Exercise: these rules can be derived from the previous ones using the consequence rules

Example: Conditional

$$
\begin{gathered}
D_{1}:: \vdash\{\text { true } \wedge y \leq 0\} x:=1\{x>0\} \\
D_{2}:: \vdash\{\text { true } \wedge y>0\} x:=y\{x>0\} \\
\hline\{\text { true } \text { if } y \leq 0 \text { then } x:=1 \text { else } x:=y\{x>0\}
\end{gathered}
$$

- D_{1} is obtained by consequence and assignment

$$
\begin{gathered}
\vdash\{1>0\} x:=1\{x>0\} \\
\vdash+\text { true } \wedge y \leq 0 \Rightarrow 1>0 \\
\hline \vdash\{\text { true } \wedge y \leq 0\} x:=1\{x \geq 0\}
\end{gathered}
$$

- D_{2} is also obtained by consequence and assignment

$$
\begin{aligned}
& \vdash\{y>0\} x:=y\{x>0\} \\
& \vdash+\vdash+\text { rue } \wedge y>0 \Rightarrow y>0 \\
& \hline \vdash\{\text { true } \wedge y>0\} x:=y\{x>0\} \\
& \text { Automated Deduction }- \text { George Necula }- \text { Lecture } 2
\end{aligned}
$$

24

Example: Loop

- We want to derive that
$\vdash\{x \leq 0\}$ while $x \leq 5$ do $x:=x+1\{x=6\}$
- Use the rule for while with invariant $x \leq 6$
\qquad $-\{x \leq 6 \wedge x \leq 5\} x:=x+1\{x \leq 6\}$
$\vdash\{x \leq 6\}$ while $x \leq 5$ do $x:=x+1\{x \leq 6 \wedge x>5\}$
- Then finish-off with consequence
$\vdash x \leq 0 \Rightarrow x \leq 6$
$\vdash x \leq 6 \wedge x>5 \Rightarrow x=6 \quad \vdash\{x \leq 6\}$ while $\ldots\{x \leq 6 \wedge x>5\}$
$\vdash\{x \leq 0\}$ while ... $\{x=6\}$
Automated Deduction - George Necula - Lecture 2

Another Example

- Verify that
$\vdash\{A\}$ while true do $c\{B\}$
holds for any A, B and c
- We must construct a derivation tree

- We need an additional lemma:
$\forall c . \vdash\{$ true $\} c\{$ true $\}$
- How do you prove this one?
Automated Deduction - George Necula - Lecture 2 26

GCD Example

GCD Example (2)

- Crucial to select good loop invariant
- Let the precondition Pre be

$$
x=m \wedge y=n
$$

- Let the postcondition Post be

$$
x=\operatorname{gcd}(m, n)
$$

We use the loop invariant

$$
I \stackrel{\text { def }}{=} \operatorname{gcd}(x, y)=\operatorname{gcd}(m, n)
$$

GCD Example (3)

We first use the rule of consequence to obtain the subgoal

$$
\begin{equation*}
\vdash\{I\} c\{I \wedge \neg(x \neq y)\} \tag{1}
\end{equation*}
$$

But we also need to prove

$$
\begin{equation*}
\vdash \text { Pre } \Rightarrow I \tag{2}
\end{equation*}
$$

$\vdash I \wedge \neg(x \neq y) \Rightarrow$ Post
Subgoal 2 reduces to
$x=m \wedge y=n \Rightarrow \operatorname{gcd}(x, y)=\operatorname{gcd}(m, n)$
Subgoal 3 reduces to $\operatorname{gcd}(x, y)=\operatorname{gcd}(m, n) \wedge x=y \Rightarrow x=\operatorname{gcd}(m, n)$

GCD Example (4)

Now we still have to derive subgoal 1:

$$
\vdash\{I\} c\{I \wedge \neg(x \neq y)\}
$$

We can apply the rule for while and we get the subgoal

$$
\begin{equation*}
\vdash\{I \wedge x \neq y\} d\{I\} \tag{4}
\end{equation*}
$$

where d is the body of the loop:

$$
\begin{aligned}
& \text { if }(x \leq y) \\
& \quad \text { then } y:=y-x \\
& \text { else } x:=x-y
\end{aligned}
$$

GCD Example (5)

We can derive subgoal 4 using the rule
for conditionals and we get two subgoals

$$
\begin{align*}
& \vdash\{I \wedge x \neq y \wedge x \leq y\} y:=y-x\{I\} \\
& \vdash\{I \wedge x \neq y \wedge x>y\} x:=x-y\{I\} \tag{6}
\end{align*}
$$

Each of the subgoals 5 and 6 can be derived using the rule of consequence followed by assignment:
$\vdash I \wedge x \neq y \wedge x \leq y \Rightarrow \operatorname{gcd}(m, n)=\operatorname{gcd}(x, y-x)$
$\vdash I \wedge x \neq y \wedge x>y \Rightarrow \operatorname{gcd}(m, n)=\operatorname{gcd}(x-y, y)$
(8)

Automated Deduction - George Necula - Lecture 2

GCD Example (6)

$$
\vdash I \wedge x \neq y \wedge x>y \Rightarrow \operatorname{gcd}(m, n)=\operatorname{gcd}(x-y, y)
$$

- The above can be proved by realizing that $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$
- Q.e.d
- This completes the proof
- We used a lot of arithmetic
- We had to invent the loop invariants

What about the proof for total correctness?

Hoare Rule for Function Call

- If no recursion we can inline the function call

$$
\frac{f\left(x_{1}, \ldots, x_{n}\right)=C_{f} \in \text { Program }\{A\} C_{f}\{B[f / x]\}}{\vdash\left\{A\left[e_{1} / x_{1}, \ldots, e_{n} / x_{n}\right]\right\} \times:=f\left(e_{1}, \ldots, e_{n}\right)\{B\}}
$$

- In general

1. each function f has a Pr_{f} and Post_{f}

$$
\vdash\left\{\operatorname{Pre}_{f}\left[e_{1} / x_{1}, \ldots, e_{n} / x_{n}\right]\right\} \times:=f\left(e_{1}, \ldots, e_{n}\right)\left\{\operatorname{Post}_{f}[x / f]\right\}
$$

2. For each function we check $\left\{\right.$ Pre $\left._{f}\right\} C_{f}\left\{\right.$ Post $\left._{f}\right\}$

Naïve Handling of Program State

- We allow memory read in assertions: *x + *y = 5
- We try:
$\{A\}{ }^{*} x=5\left\{{ }^{*} x+{ }^{*} y=10\right\}$
- A ought to be "* $y=5$ or $x=y$ "
- The Hoare rule would give us

$$
\begin{aligned}
& (* x+* y=10)[5 / * x] \\
= & 5+* y=10 \\
= & \text { * } y=5 \quad \text { (we lost one case) }
\end{aligned}
$$

Handling Program State

- We cannot have side-effects in assertions
- While creating the theorem we must remove side-effects!
- But how to do that when lacking precise aliasing information?
- Important technique: Postpone alias analysis
- Model the state of memory as a symbolic mapping from addresses to values:
- If E denotes an address and M a memory state then:
- sel(M,E) denotes the contents of memory cel
- upd (M, E, V) denotes a new memory state obtained from M by writing V at address E

More on Memory

- We allow variables to range over memory states - So we can quantify over all possible memory states
- And we use the special pseudo-variable μ in assertions to refer to the current state of memory
- Example:

$$
" \forall i . i \geq 0 \wedge i<5 \Rightarrow \operatorname{sel}(\mu, A+i)>0 "=\text { allpositive }(\mu, A, 0,5)
$$

says that entries $0 . .4$ in array A are positive

Semantics of Memory Expressions

- We need a new kind of values (memory values)

$$
\text { Values } v::=n|a| \sigma
$$

$$
\begin{gathered}
\rho, \sigma \vdash \mu \Downarrow \sigma \\
\frac{\rho, \sigma \vdash E_{m} \Downarrow \sigma^{\prime} \quad \rho, \sigma \vdash E_{2} \Downarrow a}{\rho, \sigma \vdash \operatorname{sel}\left(E_{m}, E_{2}\right) \Downarrow \sigma^{\prime}(a)} \\
\frac{\rho, \sigma \vdash E_{m} \Downarrow \sigma^{\prime} \quad \rho, \sigma \vdash E_{a} \Downarrow a \quad \rho, \sigma \vdash E_{v} \Downarrow v}{\rho, \sigma \vdash \operatorname{upd}\left(E_{m}, E_{a}, E_{v}\right) \Downarrow \sigma^{\prime}[a:=v]}
\end{gathered}
$$

Memory Aliasing

- Consider again: $\{A\}{ }^{*} x=5\left\{{ }^{*} x+{ }^{*} y=10\right\}$
- We obtain:
$A=\left({ }^{*} x+* y=10\right)[\operatorname{upd}(\mu, x, 5) / \mu]$
$=(\operatorname{sel}(\mu, x)+\operatorname{sel}(\mu, y)=10)[\operatorname{upd}(\mu, x, 5) / \mu]$
$=\operatorname{sel}(\operatorname{upd}(\mu, x, 5), x)+\operatorname{sel}(\operatorname{upd}(\mu, x, 5), y)=10$
$=5+\operatorname{sel}(\operatorname{upd}(\mu, x, 5), y)=10$
$=$ if $x=y$ then $5+5=10$ else $5+\operatorname{sel}(\mu, y)=10$
$=x=y$ or * $y=5$
- To (*) is theorem generation
- From (*) to (**) is theorem proving

Using Hoare Rules. Notes

- Hoare rules are mostly syntax directed
- There are three wrinkles:
- When to apply the rule of consequence?
- What invariant to use for while?
- How do you prove the implications involved in consequence?
- The last one is how theorem proving gets in the picture
- This turns out to be doable!
- The loop invariants turn out to be the hardest problem! (Should the programmer give them? See Dijkstra.)

Automated Deduction - George Necula - Lecture 2

Where Do We Stand?

- We have a language for asserting properties of programs
- We know when such an assertion is true
- We also have a symbolic method for deriving

Soundness of Axiomatic Semantics

- Formal statement

If $\vdash\{A\} \subset\{B\}$ then $\vDash\{A\} \subset\{B\}$
or, equivalently
For all ρ, σ, if $\rho, \sigma \vDash A$ and $D:: \rho, \sigma \vdash c \Downarrow \rho^{\prime}, \sigma^{\prime}$ and $H:: \vdash\{A\} \subset\{B\}$ then $\rho^{\prime}, \sigma^{\prime} \vDash B$

Completeness of Axiomatic Semantics

- Is it true that whenever $\vDash\{A\} \subset\{B\}$ we can also derive $\vdash\{A\} \subset\{B\}$?
- If it isn't then it means that there are valid properties of programs that we cannot verify with Hoare rules
- Good news: for our language the Hoare triples are complete
- Bad news: only if the underlying logic is complete (whenever \vDash A we also have \vdash A)
- this is called relative completeness

Automated Deduction - George Necula - Lecture 2

Proof Idea (Cont.)

- Completeness of axiomatic semantics:

$$
\text { If } \vDash\{A\} \subset\{B\} \text { then } \vdash\{A\} \subset\{B\}
$$

- Assuming that we can compute wp (c, B) with the following properties:

1. wp is a precondition (according to the Hoare rules)
$\vdash\{w p(c, B)\} \subset\{B\}$
2. wp is the weakest precondition

If $\vDash\{A\} \subset\{B\}$ then $\vDash A \Rightarrow w p(c, B)$
$\frac{\vdash A \Rightarrow w p(c, B) \quad \vdash\{w p(c, B)\} c\{B\}}{\vdash\{A\} c\{B\}}$

- We also need that whenever $\vDash A$ then $\vdash A$!

Weakest Preconditions

- Define wp (c, B) inductively on c, following Hoare rules:

$$
\frac{\{A\} c_{1}\{C\} \quad\{C\} c_{2}\{B\}}{\{A\} c_{1} ; c_{2}\{B\}}
$$

$\operatorname{wp}\left(c_{1} ; C_{2}, B\right)=\operatorname{wp}\left(c_{1}, \operatorname{wp}\left(c_{2}, B\right)\right)$
$\{[e / x] B\} \times:=E\{B\}$
$w p(x:=e, B)=[e / x] B$

$$
\frac{\left\{A_{1}\right\} c_{1}\{B\} \quad\left\{A_{2}\right\} c_{2}\{B\}}{\left\{E \Rightarrow A_{1} \wedge \neg E \Rightarrow A_{2}\right\} \text { if } E \text { then } c_{1} \text { else } c_{2}\{B\}}
$$

wp(if E then c_{1} else $\left.c_{2}, B\right)=E \Rightarrow w p\left(c_{1}, B\right) \wedge \neg E \Rightarrow w p\left(c_{2}, B\right)$

A Partial-Order for Assertions

- What is the assertion that contains least information?
- true - does not say anything about the state
- What is an appropriate information ordering ?

$$
A \sqsubseteq A^{\prime} \text { iff } \quad=A^{\prime} \Rightarrow A
$$

- Is this partial order complete?
- Take a chain $A_{1} \sqsubseteq A_{2} \sqsubseteq \ldots$
- Let $\wedge A_{i}$ be the infinite conjunction of A_{i}

$$
\sigma \vDash \wedge A_{i} \text { iff for all } i \text { we have that } \sigma \vDash A_{i}
$$

- Verify that $\wedge A_{i}$ is the least upper bound
- Can $\wedge A_{i}$ be expressed in our language of assertions?
- In many cases yes (see Winskel), we'll assume yes

Weakest Preconditions (Cont.)

- Define a family of wp's
- $w p_{k}($ while e do $c, B)=$ weakest precondition on which the loop if it terminates in k or fewer iterations, it terminates in B
$w_{p_{0}}=\neg E \Rightarrow B$
$w p_{1}=E \Rightarrow w p\left(c, w p_{0}\right) \wedge \neg E \Rightarrow B$
- $w p(w h i l e ~ e ~ d o ~ c, ~ B) ~=~ \Lambda_{k \geq 0} w p_{k}=\operatorname{lub}\left\{w p_{k} \mid k \geq 0\right\}$
- Is it the case that $w p_{k} \Rightarrow w p_{k-1}$? The opposite?
- Weakest preconditions are
- Impossible to compute (in general)
- Can we find something easier to compute yet sufficient?

Weakest Preconditions for Loops

- We start from the equivalence
while b do $c=$ if b then c; while b do c else skip
- Let $w=$ while b do c and $W=w p(w, B)$
- We have that
$W=b \Rightarrow w p(c, W) \wedge \neg b \Rightarrow B$
- But this is a recursive equation!
- We know how to solve these using domain theory
- We need a domain for assertions

Automated Deduction - George Necula - Lecture 2

Weakest Precondition for WHILE

- Use the fixed-point theorem

$$
F(A)=b \Rightarrow w p(c, A) \wedge \neg b \Rightarrow B
$$

- Verify that F is both monotonic and continuous
- The least-fixed point (i.e. the weakest fixed point) is $w p(w, B)=\wedge F^{i}($ true $)$

Weakest Precondition. Example 1

- Consider the code:
while $x \leq 5$ do $x:=x+1$
with postcondition $P=x \geq 7$
- What is the weakest precondition ?
- $w p(x:=x+1, A)=A[x+1 / x]$
- $W P_{0}=\neg(x \leq 5) \Rightarrow x \geq 7 \quad=x \notin\{6\}$
- $W P_{1}=x \leq 5 \Rightarrow x+1 \notin 6 \wedge W P_{0}=x \notin\{5,6\}$
- $W P_{2}=x \leq 5 \Rightarrow x+1 \notin\{5,6\} \wedge W P_{0}=x \notin\{4,5,6\}$
- ...
- $W P=x \geq 7$

Weakest Precondition. Example 2

- Consider the code:
while $x \geq 5$ do $x:=x+1$
with postcondition $P=x \geq 7$
- What is the weakest precondition?
- $w p(x:=x+1, A)=A[x+1 / x]$
- $W P_{0}=\neg(x \geq 5) \Rightarrow x \geq 7=x \geq 5$
- $W P_{1}=x \geq 5 \Rightarrow x+1 \geq 5 \wedge W P_{0}=x \geq 5$
- $W P=x \geq 5$

Theorem Proving and Program Analysis (again)

- Predicates form a lattice

WP(s, B) = lub_(Pre(s, B))

- This is not obvious at all:
- lub $\left\{P_{1}, P_{2}\right\}=P_{1} \vee P_{2}$
- lub PS = $V_{P \in P S} P$
- But can we always write this with a finite number of v ?
- Even checking implication can be quite hard
- Compare with program analysis in which lattices are of finite height and quite simple

Program Verification is Program Analysis on the lattice of first order formulas

Verification Conditions

- Factor out the hard work
- Loop invariants
- Function specifications
- Assume programs are annotated with such specs.
- Good software engineering practice anyway
- We will assume that the new form of the while construct includes an invariant:
while e_{I} do c
- The invariant formula must hold every time before b is evaluated

Invariants Are Not Easy

- Consider the following code from QuickSort
int partition(int *a, int L_{0}, int H_{0}, int pivot) \{
int $L=L_{0}, H=H_{0}$:
while $(L<H)$ \{
while(a[L] < pivot) L ++,
while(a[H] > pivot) H ---;
if $(L<H)\{$ swap $a[L]$ and $a[H]\}$
\}
return L
\}
- Consider verifying only memory safety
-What is the loop invariant for the outer loop ?

Verification Condition Generation (1)

Verification Condition Generation for WHILE

$\mathrm{VC}\left(\right.$ while $_{I}$ e do $\left.c, B\right)=$

$$
\underbrace{I \wedge}_{\begin{array}{c}
\text { I holds } \\
\text { on entry }
\end{array}}(\forall x_{1} \ldots x_{n} \cdot \underbrace{I \Rightarrow(e \Rightarrow V C(c, I)}_{\begin{array}{c}
\text { I is preserved in } \\
\text { arbitrary iteration } \\
\text { B holds when the } \\
\text { loop terminates }
\end{array}} \wedge \underbrace{\neg e \Rightarrow B)})
$$

- I is the loop invariant (provided externally)
- x_{1}, \ldots, x_{n} are all the variables modified in c
- The \forall is similar to the \forall in mathematical induction: $P(0) \wedge \forall n \in \mathbb{N} . P(n) \Rightarrow P(n+1)$

Verification Conditions for Function Calls

- $V C\left(x:=f\left(e_{1}, \ldots, e_{n}\right), P\right)=$

$$
\operatorname{Pre}_{f}\left[E_{i} / x_{i}\right] \wedge \forall \mu \forall f \operatorname{Post}_{f} \Rightarrow P[f / x]
$$

- We check the precondition
- with actuals substituted for formals
- We assume that the memory and " f " are changed
- We check that function postcondition is stronger than P

Soundness and Completeness of VCGen

- We must prove that, for all c and B

$$
\vDash\{V C(c, B)\} \subset\{B\}
$$

- Or, equivalently

$$
V C(c, B) \Rightarrow W P(c, B)
$$

- Try it (the case for loops is interesting)
- Completeness is trickier
- One formulation: it is possible to choose the loop invariants such that

$$
W P(c, B) \Rightarrow V C(c, B)
$$

- Try it !!

Forward Verification Condition Generation

- Traditionally VC is computed backwards
- Works well for structured code
- But it can also be computed in a forward direction
- Works even for un-structured languages (e.g., assembly language)
- Uses symbolic evaluation, a technique that has broad applications in program analysis
- e.g. the PREfix tool (Intrinsa, Microsoft) works this way

Symbolic Evaluation. Basic Intuition

- VC generation is traditionally backwards due to assignments
$\operatorname{VC}\left(x_{1}:=e_{1} ; \ldots, x_{n}:=e_{n}, P\right)=$
($P\left[e_{n} / x_{n}\right]$) $\left[e_{n-1} / x_{n-1}\right] \ldots\left[e_{1} / x_{1}\right]$
- We can use the following rule
$\left(P\left[e_{2} / x_{2}\right]\right)\left[e_{1} / x_{1}\right]=P\left[e_{2}\left[e_{1} / x_{1}\right] / x_{2}, e_{1} / x_{1}\right]$
- Symbolic evaluation computes the substitution in a forward direction, and applies it when it reaches the postcondition

Symbolic Evaluation. The Invariants.

- The symbolic evaluator keeps track of the encountered invariants
- A new element of execution state: Inv $\subseteq\{1 \ldots n\}$
- If $k \in$ Inv then
- I_{k} is an invariant instruction that we have already executed
- Basic idea: execute an inv instruction only twice:
- The first time it is encountered
- And one more time around an arbitrary iteration

Symbolic Evaluation. The State.

- We set up a symbolic evaluation state:
$\Sigma:$ Var \rightarrow SymbolicExpressions
$\Sigma(x) \quad=$ the symbolic value of x in state Σ
$\Sigma[x:=e]=$ a new state in which x 's value is e

We shall use states also as substitutions
$\Sigma(e)$ - obtained from e by replacing x with $\Sigma(x)$
So far this is pretty much like the operational semantics

Symbolic Evaluation. Rules.

- Define a VC function as an interpreter:

VC: $1 . . \mathrm{n} \times$ SymbolicState \times InvariantState \rightarrow Assertion

$V C(k, \Sigma, I n v)=$| $V C(L, \Sigma$, Inv $)$ | if $I_{k}=$ goto L |
| :--- | :--- |
| $e \Rightarrow V C(L, \Sigma, I n v)$
 $\neg e \Rightarrow V C(k+1, \Sigma$, Inv $)$ | if $I_{k}=$ if e goto L |
| $V C(k+1, \Sigma[x:=\Sigma(e)]$, Inv $)$ | if $I_{k}=x:=e$ |
| $\Sigma\left(\right.$ Post $\left._{\text {current-function }}\right)$ | if $I_{k}=$ return |
| $\sum\left(\right.$ Pre $\left._{f}\right) \wedge$
 $\forall a_{1} . . a_{m} . \Sigma^{\prime}\left(\right.$ Post $\left.\dagger_{f}\right) \Rightarrow V C\left(k+1, \Sigma^{\prime}\right.$, Inv $)$
 (where y_{1}, \ldots, y_{m} are modified by $\left.f\right)$
 and a_{1}, \ldots, a_{m} are fresh parameters
 and $\Sigma^{\prime}=\Sigma\left[y_{1}:=a_{1}, \ldots, y_{m}:=a_{m}\right]$ | if $I_{k}=f()$ |

and $\Sigma^{\prime}=\Sigma\left[y_{1}:=a_{1}, \ldots, y_{m}:=a_{m}\right]$

Symbolic Evaluation. Invariants.
Two cases when seeing an invariant instruction:

1. We see the invariant for the first time

- $I_{k}=$ inv e.
- $k \notin \operatorname{Inv}$
- Let $\left\{y_{1}, \ldots, y_{m}\right\}=$ the variables that could be modified on a path from the invariant back to itself
- Let a_{1}, \ldots, a_{m} be fresh new symbolic parameters
$V C(k, \Sigma, I n v)=$
$\left.\Sigma(e) \wedge \forall a_{1} \ldots a_{m} . \Sigma^{\prime}(e) \Rightarrow V C\left(k+1, \Sigma^{\prime}, \operatorname{Inv} \cup\{k\}\right]\right)$
with $\Sigma^{\prime}=\Sigma\left[y_{1}:=a_{1}, \ldots, y_{m}:=a_{m}\right]$
(like a function call)
Automated Deduction - George Necula - Lecture 2

Symbolic Evaluation. Invariants.

2. We see the invariant for the second time

- $I_{k}=\operatorname{inv} E$
- $k \in \operatorname{Inv}$
$\operatorname{VC}(\mathrm{k}, \Sigma, \operatorname{Inv})=\Sigma(e)$

> (like a function return)

- Some tools take a more simplistic approach
- Do not require invariants
- Iterate through the loop a fixed number of times
- PREfix, versions of ESC (Compaq SRC)
- Sacrifice completeness for usability
Automated Deduction - George Necula - Lecture 2 72

Symbolic Evaluation. Putting it all together

- Let
- x_{1}, \ldots, x_{n} be all the variables and a_{1}, \ldots, a_{n} fresh parameters
- Σ_{0} be the state [$x_{1}:=a_{1}, \ldots, x_{n}:=a_{n}$]
- \emptyset be the empty Inv set
- For all functions f in your program, compute

$$
\forall a_{1} \ldots a_{n} . \Sigma_{0}\left(\operatorname{Pr}_{f}\right) \Rightarrow V C\left(f_{\text {entry }}, \Sigma_{0}, \varnothing\right)
$$

- If all of these predicates are valid then:
- If you start the program by invoking any fin a state that satisfies Pre_{f} the program will execute such that
- At all "inv e" the e holds, and
- If the function returns then Oost $_{f}$ holds
- Can be proved w.r.t. a real interpreter (operational semantics)
- Proof technique called co-induction (or assume-guarantee)

VC Generation Example

- Consider the program

Precondition: $x \leq 0$
Loop: inv $x \leq 6$
if $x>5$ goto End
$x:=x+1$
goto Loop
End: return Postconditon: $x=6$

VC Generation Example (with memory)

```
- Consider the program
```

1:I:= $0 \quad$ Precondition: B : bool $\wedge A$: array(bool, L) $\mathrm{R}:=\mathrm{B}$
3: inv $I \geq 0 \wedge R$: bool
if $I \geq L$ goto 9
assert saferd(A + I)
$\mathrm{T}:=$ * $(A+I)$
$I:=I+1$
$\mathrm{R}:=\mathrm{T}$
goto 3
9: return R Postconditon: R: bool
about the control flow

VC and Invariants

- Consider the Hoare triple:
$\{x \leq 0\}$ while ${ }_{I} x \leq 5$ do $x:=x+1\{x=6\}$
- The VC for this is:
$x \leq 0 \Rightarrow I(x) \wedge \forall x .(I(x) \Rightarrow(x>5 \Rightarrow x=6 \wedge$

$$
x \leq 5 \Rightarrow I(x+1)))
$$

- Requirements on the invariant:

$$
\begin{array}{ll}
\text { - Holds on entry } & \forall x \cdot x \leq 0 \Rightarrow I(x) \\
\text { - Preserved by the body } & \forall x \cdot I(x) \wedge x \leq 5 \Rightarrow I(x+1) \\
\text { - Useful } & \forall x \cdot I(x) \wedge x>5 \Rightarrow x=6
\end{array}
$$

- Check that $I(x)=x \leq 6$ satisfies all constraints

VC Can Be Large

- Consider the sequence of conditionals
(if $x<0$ then $x:=-x$); (if $x \leq 3$ then $x+=3$)
- With the postcondition $P(x)$
- The VC is

$$
\begin{aligned}
& x<0 \wedge-x \leq 3 \Rightarrow P(-x+3) \wedge \\
& x<0 \wedge-x>3 \Rightarrow P(-x) \wedge \\
& x \geq 0 \wedge x \leq 3 \Rightarrow P(x+3) \wedge
\end{aligned}
$$

\Rightarrow exponential number of paths !

- Remark:

$$
x \geq 0 \wedge x>3 \Rightarrow P(x)
$$

- There is one conjunct for each path
- Conjuncts for non-feasible paths have un-satisfiable guard!
- Try with $P(x)=x \geq 3$

VC Can Be Large (2)

- VCs are exponential in the size of the source because they attempt relative completeness:
- To handle the case then the correctness of the program must be argued independently for each path
- It is unlikely that the programmer could write a program by considering an exponential number of cases
- But possible. Any examples?
- Solutions
- Allow invariants even in straight-line code
- Thus do not consider all paths independently !

Dropping Paths

- In absence of annotations drop some paths
- $V C\left(\right.$ if E then c_{1} else $\left.c_{2}, P\right)=$ choose one of
$-E \Rightarrow V C\left(c_{1}, P\right) \wedge \neg E \Rightarrow V C\left(c_{2}, P\right)$
$-\mathrm{E} \Rightarrow \mathrm{VC}\left(\mathrm{c}_{1}, \mathrm{P}\right)$
$-\neg E \Rightarrow V C\left(c_{2}, P\right)$
- We sacrifice soundness!
- No more guarantees but possibly still a good debugging aid
- Remarks:
- A recent trend is to sacrifice soundness to increase usability
- The PREfix tool considers only 50 non-cyclic paths through a function (almost at random)

VCGen for Exceptions (2)

- Define: $V C(c, P, Q)$ is a precondition that makes c either not terminate, or terminate normally with P or throw an exception with Q
- Rules
$V C($ skip, $P, Q)=P$
$V C\left(c_{1} ; c_{2}, P, Q\right)=V C\left(c_{1}, V C\left(c_{2}, P, Q\right), Q\right)$
$V C($ throw, $P, Q)=Q$
$V C\left(\right.$ try c_{1} handle $\left.c_{2}, P, Q\right)=V C\left(c_{1}, P, V C\left(c_{2}, Q, Q\right)\right)$
$V C\left(\right.$ try c_{1} finally $\left.c_{2}, P, Q\right)=$?

VCGen for Exceptions (3)

- What if we have exceptions with arguments
- Introduce global variable ex for the exception argument
- The exceptional postcondition can now refer to ex
- Remember that we must add an exceptional postcondition to functions also
- Like the THROWS clause in Java or Modula-3

Additional Language Extensions (2)

- Undefined variables
- $V C($ let x in $c, P)=\forall x$. $V C(c, P)$

Call-by-Reference

- Let $f(\operatorname{VAR} x, y)\{x \leftarrow 5 ; f \leftarrow x+y\}$
- with
- Pre $_{f}=y \geq 10$
- Post $_{f}=\mathrm{f} \geq 15$
- VC of the body is $\forall x y . y \geq 10 \Rightarrow 5+y \geq 15$
- Which is provable!
- Let $\{x=10\} y \leftarrow f(x, x)\{y \geq 15\}$
- Its VC is $x=10 \Rightarrow(x \geq 10 \wedge(\forall y \cdot y \geq 15 \Rightarrow y \geq 15)$
- Also provable
- But if we run the code, y is 10 at the end!
- What's going on?

Arrays

- Arrays can be modeled like we did pointers
- In a safe language (no \& and no pointer arithmetic)
- We can have a store value for each array
- Instead of a unique store μ
- $A[E]$ is considered as $\operatorname{sel}(A, E)$
- $A\left[E_{1}\right] \leftarrow E_{2}$ is considered as $A \leftarrow \operatorname{upd}\left(A, E_{1}, E_{2}\right)$
- What is the advantage over sel $(\mu, A+E)$?

Mutable Records - Two Models

- Let r : RECORD f1: T1; f2: T2 END
- Records are reference types
- Method 1
- One "memory" for each record
- One index constant for each field. We postulate $f 1 \neq f 2$
- $r . f 1$ is sel(r,f1) and $r . f 1:=\mathrm{E}$ is $r:=\operatorname{upd}(r, f 1, E)$
- Method 2
- One "memory" for each field
- The record address is the index
- r.f1 is sel(f1rr) and $r . f 1:=E$ is $f 1:=\operatorname{upd}(f 1, r, E)$

VC Generation for Assembly Language

- Issues when extending this to real assembly language
- A fixed set of variables
- Machine registers
- Handling of stack slots
- Option 1: as memory locations (too inefficient)
- Option 2: as additional registers (reverse spilling)
- Careful with renaming at function calls and returns
- Does not work in presence of address-of operator
- Two's complement arithmetic
- Careful to distinguish between + and \oplus
- See Necula-Ph.D. thesis for x86 and Alpha example

VC as a "Semantic CheckSum"

- Weakest preconditions are an expression of the program semantics
- Two equivalent programs have (logically) equivalent WP
- VC are almost the same
- Except for the loop invariants and function specifications
- In fact, VC abstract over some syntactic details
- Order of unrelated expressions
- Names of variables
- Common subexpressions

Invariance of VC Through Optimizations

- In fact, VC is so good at abstracting syntactic details that it is invariant through many common optimiz.
- Preserves syntactic form, not just semantic meaning!
- We'll take a look at some optimizations and see how VC changes/doesn't change
- This can be used to verify correctness of compiler optimizations (Translation Validation)

Dead-Code Elimination

- VC is insensitive to dead-code
- The symbolic evaluator won't even look at it !

Before		After	
Code	VC	Code	VC
$\begin{array}{ll} 1 & i=e_{1} \\ z & \text { go to } \mathrm{L} \\ 3 & i=e_{2} \\ \text { L L: } & \ldots P \ldots \\ \hline \end{array}$	$\left.{ }^{[1 / i}{ }_{i}\right] P$	$\begin{gathered} i=e_{1} \\ \mathrm{~L}: \quad . . . P \ldots . \end{gathered}$	$\left[{ }_{1}^{1 / i}\right] P$

Common-Subexpression Elimination

Before		After	
Code	VC	Code	VC
$1 i=e_{1}$	$\left.e_{1}, e_{1} / j\right] P$	$i=e_{1}$	$\left.\mid e_{1}, e_{1} / j\right] P$
$2 j=e_{1}$		$\ldots P \ldots$	
$3 \ldots P \ldots$		$\ldots . .$.	

- CSE does not change the VC

Copy Propagation

Before		After	
Code	VC	Code	VC
$1=e_{1}$ 2 $j=i$ $3 \ldots P . .$.	$\left[e_{1} / i, e_{1} / j\right] P$	$i=e_{1}$	$\left[e_{1} / i, e_{1} / j\right] P$

- Does not change the VC
- Just like CSE

Register Allocation

Before		After	
Code	VC	Code	VC
$\begin{aligned} & 1 i=e \\ & 2 j=e^{\prime} \\ & 3 \ldots \ldots \ldots \end{aligned}$			$\left.\left.{ }_{\left[\mathrm{r}_{1} / \mathrm{i}\right][}\left[{ }^{e} / / \mathrm{id} \mathrm{e}^{\prime} /\right]_{j}\right] P\right)$

- Does not change VC
- Final logical variables are quantified over
- Even spilling can be accomodated
- By giving register names to spill slots on the stack

Redundant Conditional Elimination

Before		After	
Code	VC	Code	VC
\quad if $\neg C_{1}$ go to L_{2} if $\neg C_{2}$ go to L_{2} $\ldots \ldots$ if $\neg C_{n}$ go to L_{2} if C go to L_{1} $\ldots P^{\prime \prime} \ldots$ $\mathrm{L}_{1} \ldots P^{\prime} \ldots$ $\mathrm{L}_{2} \ldots P_{\ldots} .$.	$\begin{aligned} & -C_{1} \supset P \wedge \\ & C_{1} \supset\left(\neg C_{2} \supset P\right) \wedge \\ & \quad\left(C_{2} \supset \ldots\right. \\ & \quad C_{n} \supset\left(C \supset P^{\prime}\right) \wedge \\ & \left(\neg C \supset P^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & \text { if } \neg C_{1} \text { go to } \mathrm{L}_{2} \\ & \text { if } \neg C_{2} \text { go to } \mathrm{L}_{2} \\ & \ldots \\ & \text { if } \neg C_{n} \text { go to } \mathrm{L}_{2} \\ & \frac{\text { inv } C,\{ \}}{\ldots P^{\prime} \ldots} \\ & \mathrm{L}_{2}: \ldots P . . \end{aligned}$	$\begin{gathered} \neg C_{1} \supset P \wedge \\ C_{1} \supset\left(\neg C_{2} \supset P\right) \wedge \\ \left(C_{2} \supset \ldots\right. \\ \quad C_{n} \supset C \wedge \\ C \supset P^{\prime}, \end{gathered}$

- VC is not changed
- For same reasons as with CSE
- VC changes syntactically
- But not semantically (since $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n} \Rightarrow C$)
- We do have to prove something here
- Same for array-bounds checking elimination

VC Characterize a Safe Interpreter

- Consider a fictitious "safe" interpreter
- As it goes along it performs checks (e.g. saferd, validString)
- Some of these would actually be hard to implement
- The VC describes all of the checks to be performed
- Along with their context (assumptions from conditionals)
- Invariants and pre/postconditions are used to obtain a finite expression (through induction)
- $V C$ is valid \Rightarrow interpreter never fails
- We enforce same level of "correctness"
- But better (static + more powerful checks)

Automated Deduction - George Necula - Lecture 2

Conclusion

- Verification conditions
- Are an expression of semantics and specifications
- Completely independent of a language
- Can be computed backward/forward on structured/unstructured code
- Can be computed on high-level/low-level code
- Using symbolic evaluation we can hope to check correctness of compiler optimizations
- See "Translation Validation for an Optimizing Compiler" off the class web page
- Next time: We start proving VC predicates

