REVIEW QUESTIONS Chapter 8

- (a) Non-electrolyte (no ions present)
 (b) Weak electrolyte (few ions present)
 (c) Strong electrolyte (mostly ions present)
 (d) Strong electrolyte (only ions present)
- 1. Identify each of the diagrams below as strong electrolyte, weak electrolyte or non-electrolyte:

2. Identify the predominant particles in each of the following solutions and write the equation for the formation of the solution:

a)	Li ₂ CO ₃	Ions (strong electrolyte)
		$Li_2CO_3(s) \rightarrow 2Li^+(aq) + CO_3^{2-}(aq)$
b)	CCl_4	Molecules (non-electrolyte)
		$\operatorname{CCl}_4(\mathbf{l}) \rightarrow \operatorname{CCl}_4(\mathbf{aq})$
c)	H_2S	Molecules (weak electrolyte)
		$H_2S \longrightarrow H^+(aq) + HS^-(aq)$

3. How many equivalents are present in 5.0 g of Al^{3+} ?

5.0 g Al³⁺ x $\frac{1 \text{ mol}}{27.0 \text{ g}}$ x $\frac{3 \text{ Eq}}{1 \text{ mol}}$ = 0.56 Eq

4. An intravenous replacement solution contains 4.0 mEq/L of Ca^{2+} ions. How many grams of Ca^{2+} are in 3.0 L of the solution?

3.0 L soln x
$$\frac{4 \text{ mEq}}{1 \text{ L soln}} \times \frac{1 \text{ Eq}}{10^3 \text{ mEq}} \times \frac{1 \text{ mol } \text{Ca}^{2+}}{2 \text{ Eq}} \times \frac{40.1 \text{ g}}{1 \text{ mol}} = 0.24 \text{ g } \text{Ca}^{2+}$$

- 5. Calculate the mass percent (m/m or m/v)) for each of the following solutions:
 - a) 25 g of KCl in 125 g H_2O

mass of solution = 25 g + 125 g = 150 g mass % = $\frac{25 \text{ g}}{150 \text{ g}}$ x100 = 17% (m/m)

b) 75 g of NaOH in 325 mL of solution

mass
$$\% = \frac{75 \text{ g}}{325 \text{ mL}} \text{x100} = 23\% \text{ (m/v)}$$

- 6. Calculate the molarity of the following solutions:
 - a) 0.50 mol sugar in 270 mL of solution.

Volume of solution = 270 mL = 0.27 L molarity = $\frac{0.50 \text{ mol}}{0.27 \text{ L}}$ = 1.9 M

b) 17.0 g of $AgNO_3$ in 0.500 L of solution.

moles of solute = 17.0 g x $\frac{1 \text{ mol}}{169.9 \text{ g}}$ = 0.100 mol molarity = $\frac{0.100 \text{ mol}}{0.500 \text{ L}}$ = 0.200 M

- 7. Calculate the moles of solute needed to prepare each of the following solutions:
 - a) 450 mL of 0.20 M KBr solution.

$$0.45 \text{ L x } \frac{0.20 \text{ mol}}{1 \text{ L}} = 0.090 \text{ mol}$$

b) 2.0 L of 1.5 M NaOH solution.

$$2.0 \text{ L x} \frac{1.5 \text{ mol}}{1 \text{ L}} = 3.0 \text{ mol}$$

- 8. Calculate the mass of solute needed to prepare each of the following solutions:
 - a) 2.0 L of 1.8 M NaOH solution.

2.0 L x
$$\frac{1.8 \text{ mol}}{1 \text{ L}} = 3.6 \text{ mol}$$

3.6 $\frac{1.8 \text{ mol}}{1 \text{ L}} = 140 \text{ g}$ (2 sig figs)

b) $250 \text{ mL of } 1.0 \text{ M CaCl}_2 \text{ solution.}$

$$0.25 \text{ L x } \frac{1.0 \text{ mol}}{1 \text{ L}} \text{ x } \frac{111 \text{ g}}{1 \text{ mol}} = 28 \quad (2 \text{ sig figs})$$

c) 750 mL of 3.5% (m/v) K_2CO_3 solution.

750 mL x
$$\frac{3.5 \text{ g K}_2 \text{CO}_3}{100 \text{ mL}} = 26 \text{ g}$$
 (2 sig figs)

9. What volume (mL) of a 4.0 M solution of KCl contains 0.100 moles of solute?

0.100 mol x
$$\frac{1 \text{ L}}{4.0 \text{ mol}}$$
 x $\frac{10^3 \text{ mL}}{1 \text{ L}}$ = 25 mL

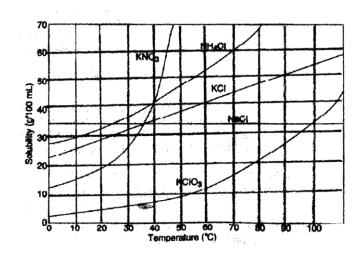
10. What volume (mL) of a 1.5 M solution of NaCl contains 25.0 g of solute?

25.0 g x
$$\frac{1 \text{ mol}}{58.45 \text{ g}}$$
 = 0.428 mol
0.428 mol x $\frac{1 \text{ L}}{1.5 \text{ mol}}$ x $\frac{10^3 \text{ mL}}{1 \text{ L}}$ = 290 mL (2 sig figs)

11. How many liters of a 5.0% (m/v) glucose solution would contain 75 g of glucose?

75 g glucose x
$$\frac{100 \text{ mL}}{5.0 \text{ g glucose}}$$
 x $\frac{1 \text{ L}}{10^3 \text{ mL}}$ = 1.5 L

12. A patient receives an IV containing 2.5% (m/v) glucose solution at the rate of 35 mL in 1 hour. How many grams of glucose does this patient receive after 12 hours?


12 hr x
$$\frac{35 \text{ mL}}{1 \text{ hr}}$$
 x $\frac{2.5 \text{ g glucose}}{100 \text{ mL}} = 11 \text{ g}$ (2 sig figs)

- 13. Use the solubility graph below to answer the following questions:
 - a) Which substance has the greatest solubility at 30°C?

NH₄Cl

b) What is the solubility of KCl at 60°C?

c) A sample of KNO₃ with a mass of 50.0 g is added to 150 mL of water at 40°C. Is this solution saturated or unsaturated. Give explanation or show calculations.

Solubility of KNO₃ at 40° C = 40 g KNO₃/100 g water (40%)

150 mL of water = 150 g since density of water is 1.0 g/mL

 $\frac{50.0 \text{ g KNO}_3}{150 \text{ g water}} = 33.3\%$ Therefore, solution is unsaturated

- 14. Indicate whether each of the following is soluble or insoluble in water:
 - a) MgSO₄ <u>soluble</u> b) KCl <u>soluble</u>.
 - c) $(NH_4)_2 CO_3$ soluble . d) PbS insoluble .
 - e) $Ca(OH)_2$ soluble . f) Na_3PO_4 soluble .

15. For each reaction below, write the net ionic equation to show the formation of a precipitate. If no precipitate occurs, write "No Reaction" after the arrow.

a)
$$Pb(NO_3)_2 (aq) + 2 NaI (aq) \rightarrow PbI_2 (s) + 2 NaNO_3 (aq)$$

 $Pb^{2+} + 2NO_3^- + 2Na^+ + 2\Gamma \rightarrow PbI_2 (s) + 2Na^+ + 2NO_3^-$
Net Ionic Equation $Pb^{2+} + 2\Gamma \rightarrow PbI_2 (s)$

b) NaCl (aq) + $(NH_4)_2SO_4$ (aq) \rightarrow No Reaction

No precipitate forms since the two possible products formed $(Na_2SO_4 and NH_4Cl)$ are both soluble

c) 3 CaCl₂ (aq) + 2 Na₃PO₄ (aq)
$$\rightarrow$$
 Ca₃(PO₄)₂ (s) + 6 NaCl (aq)
3 Ca²⁺ + 6 Cl⁻ + 6 Na⁺ + 2 PO₄³⁻ \rightarrow Ca₃(PO₄)₂ (s) + 6 Na⁺ + 6 Cl⁻

Net Ionic Equation $3 \operatorname{Ca}^{2+} + 2 \operatorname{PO}_4^{3-} \rightarrow \operatorname{Ca}_3(\operatorname{PO}_4)_2(s)$

d)
$$\operatorname{Ca(NO_3)_2(aq)} + \operatorname{Na_2S(aq)} \rightarrow \operatorname{CaS(s)} + 2\operatorname{NaNO_3(aq)}$$

 $\operatorname{Ca^{2+}} + 2\operatorname{NO_3^-} + 2\operatorname{Na^+} + \operatorname{S^{2-}} \rightarrow \operatorname{CaS(s)} + 2\operatorname{Na^+} + 2\operatorname{NO_3^-}$
Net Ionic Equation $\operatorname{Ca^{2+}} + \operatorname{S^{2-}} \rightarrow \operatorname{CaS(s)}$

16. Complete and balance the following chemical equations:

a) 2 HCl (aq) + Ca(OH)₂ (aq)
$$\rightarrow$$
 CaCl₂ (aq) + 2 H₂O (l)

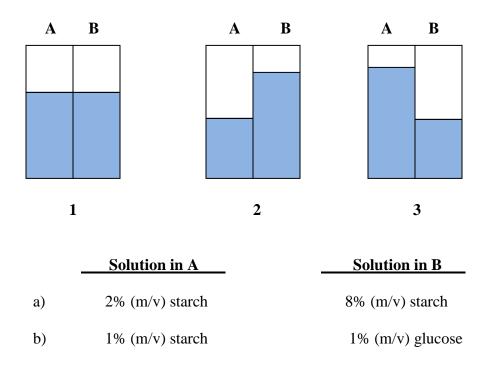
b)
$$\operatorname{CaCO}_3(s) + 2 \operatorname{HNO}_3(aq) \rightarrow \operatorname{Ca(NO}_3)_2(aq) + \operatorname{CO}_2(g) + \operatorname{H}_2O(l)$$

c)
$$H_2SO_4(aq) + 2 \text{ LiOH}(aq) \rightarrow \text{Li}_2SO_4(aq) + 2 \text{ H}_2O(l)$$

17. How many mL of a 15 M NH_3 solution is needed to prepare 50. mL of a 6.0 M NH_3 solution?

$$V_2 = {M_1 V_1 \over M_2} = {(6.0 M)(50. mL) \over 15 M} = 20. mL$$

18. Calculate the molarity of a solution prepared by mixing 250 mL of 0.75 M H_2SO_4 with 150 mL of water.


$$V_2 = 250 \text{ mL} + 150 \text{ mL} = 400 \text{ mL}$$

 $M_2 = \frac{M_1 V_1}{V_2} = \frac{(0.75 \text{ M})(250 \text{ mL})}{400 \text{ mL}} = 0.47 \text{ M}$

19. What is the final volume, in mL, when 5.00 mL of 12.0 M NaOH is diluted to 0.600 M?

$$V_2 = {M_1 V_1 \over M_2} = {(12.0 M)(5.00 mL) \over 0.600 M} = 100. mL$$

20. Determine the osmolarity and tonicity of each of the following solutions:

21. A semipermeable membrane separates two compartments A and B. If the levels of A and B are equal initially, select the diagram that illustrates the final levels for each of the following solutions:

0.1M NaCl (0.2 osmol) 0.1M glucose (0.1 osmol) 0.15 M CaCl₂ (0.45 osmol) 0.2M NaCl (0.4 osmol) d)

The solutions will flow from the lower concentration of particles towards the greater concentration of particles, to equalize the concentrations. Therefore:

- a) Diagram 2 (solution A has lower concentration than solution B)
- b) Diagram 1 (both solutions have the same concentration)

c)

- c) Diagram 3 (solution B has lower concentration than solution A)
- d) Diagram 3 (solution B has lower concentration than solution A)